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Abstract 

Machine learning has great utility within the 
context of network intrusion detection systems. In this 
paper, a behavior analysis-based learning framework 
for host level network intrusion detection is proposed, 
consisting of two parts, anomaly detection and alert 
verification. The anomaly detection module processes 
unlabeled data using a clustering algorithm to detect 
abnormal behaviors. The alert verification module 
adopts a novel rule learning based mechanism which 
analyzes the change of system behavior caused by an 
intrusion to determine whether an attack succeeded and 
therefore lower the number of false alarms. In this 
framework, the host behavior is not represented by a 
single user or program activity; instead, it is 
represented by a set of factors, called behavior set, so 
that the host behavior can be described more 
accurately and completely. 

1. Introduction  

With the growing number of network attacks, 
intrusion detection systems (IDSs) are becoming an 
integral part of any complete security package of a 
modern network system. The IDSs perform surveillance 
and security monitoring of the network infrastructure. A 
number of different intrusion detection systems have 
been developed for particular domains (e.g., hosts or 
networks), in specific environments (e.g., Windows NT 
or Solaris), and at different levels of abstractions (e.g., 
kernel-level tools or application level tools). However, 
computer systems and networks still suffer from an 
increased threat of intrusions. The existing IDSs are far 
from perfect and may generate false positive and non-
relevant positive alerts [1]. 

The most widely deployed and commercially 
available methods for intrusion detection employ 
signature-based technique, where the signatures or 

patterns of well-known attacks are provided by human 
experts. The system or network traffic is scanned for 
attacks using well-known vulnerabilities and any 
instances that match the signatures are detected as 
intrusions. The advantage of this method is a low rate of 
false positives. The disadvantage is that the signature 
database has to be revised manually and the system is 
vulnerable to new types of attack until the revision is 
done. This limitation leads to active research on 
intrusion detection techniques based on data mining.  

Data mining based network intrusion detection 
techniques are generally classified into two categories: 
misuse detection and anomaly detection [2]. In misuse 
detection, each instance in the training data set is labeled 
as either normal or intrusion. A machine learning 
algorithm is trained over the labeled data and then the 
trained model is applied to classify new data. Misuse 
intrusion detection is fast, requires little state 
information, and has a low false-positive rate. With 
different input data including new types of attacks, the 
intrusion detection modules are retrained automatically 
without the manual intervention. However, misuse 
detection cannot detect novel, previously unseen attacks. 
Anomaly detection, on the other hand, builds models of 
normal data to measure a "baseline" of such stats as 
CPU utilization, disk activity, user logins, file activity, 
and so on. When there is a deviation from this baseline, 
an alert is triggered. Currently, almost all commercial 
intrusion detection systems use misuse detection 
techniques. Yet, anomaly detection is getting more 
attention because of its capability to detect novel or 
unforeseen attacks. Essentially, anomaly detection is the 
machine learning problem of modeling a normal 
network or system behavior. Although anomaly 
detection is becoming an active research topic, 
widespread adoption of this method faces numerous 
obstacles, including complexity and high false positive 
rate. 

In order to reduce false and irrelevant alerts, alert 
verification has to be a part of IDS. Alert verification is 
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a process to determine whether an attack has been 
successful or not. This information is passed to IDS to 
help differentiate the type of alerts [16]: 1) The sensor 
has correctly identified a successful attack; 2) The 
sensor has correctly identified an attack but the attack 
failed to meet its objectives; and 3) The sensor 
incorrectly identified an event as an attack. Alert 
verification effectively lowers the number of false 
alarms that an administrator or the decision support 
system has to deal with. 

In this paper, a behavior analysis-based learning 
framework for host based intrusion detection is 
proposed, which includes anomaly detection and alert 
verification. The framework has two characteristics. 
First, it is learning-based. In the anomaly detection 
module, a cluster-based outlier detection algorithm 
detects anomalous data. In the alert verification module, 
a rule-learning algorithm is applied to learn the behavior 
changes of the targeted machine. The rules developed 
serve as an index of alert verification. Second, the 
framework is behavior analysis oriented. Instead of 
using a single activity as the indicator of the host 
behavior, a set of indicators, also called “behavior set”, 
is defined and applied to describe the host behavior. The 
intrusions are detected and verified based on the analysis 
of the behavior set. Compared to other research work in 
host-based anomaly detection, this method does not 
need high-dimension data since the host baseline is 
represented by a refined behavior set and each element 
in the behavior set is of low dimensionality. Thus, state-
of-the-art data normalization is not required when 
outlier detection is applied to detect anomalous data. In 
section 2, host based anomaly detection is reviewed. In 
section 3, the behavior analysis-based learning 
framework is presented and discussed. In section 4, the 
experimental results are given. Finally, conclusions and 
future work are summarized in Section 5. 

2. Related Work 

In host based anomaly detection research, various 
features are used to model the system behavior baseline, 
e.g., keystroke characteristics, user command data, 
system call sequences, file activities, etc. Generally 
these features fall into three categories: user profile, 
program profile, and system resource access. 

Denning [3] first attempted to build anomaly 
detection by comparing previous user profiles to current 
user activity. Sequeira and Zaki [4] designed and 
implemented a user-profile dependent and temporal 
sequence clustering-based intrusion detection system by 
collecting and processing UNIX shell command data. 
Although analysis of user activity is a natural approach 
to detect intrusions, experience shows that it is far from 
accurate. This is because user behavior typically lacks 
strict patterns.  

User dynamics allowed more reflection on the 
features that define host behavior. All actions carried out 
by users involve using programs. Programs obtain the 
required services by executing the specific system call 
that provides the needed function. Since the code of a 
given application should not change, the sequence of 
system calls executed by a program should be regular 
and predictive.  

Most existing research on anomaly detection uses 
system calls to model system behavior. A number of 
approaches based on system calls are proposed. Forrest 
et al. [5] established an analogy between the human 
immune system and intrusion detection. Lee et al [6] 
applied a rule learning program to study a sample of 
system call data. Wagner and Dean [7] proposed to 
statically generate a non-deterministic finite automaton 
(NDFA) from the global control-flow graph of the 
program and simulated NDFA on observed system call 
trace. Ghosh et al. [10] utilized return address 
information extracted from the call stack to generate the 
execution path of a program for anomaly detection. Liao 
and Vemuri [9] used the k-Nearest Neighbor classifier to 
classify program behavior represented by frequencies of 
system calls instead of system call sequence. Eskin et al. 
[11] applied outlier detection algorithms to anomaly 
detection using system call data, where the system call 
data has to be mapped into feature space and the choice 
of feature space is application specific. 

Because the system-call level data is fine grained, it 
increases overhead and decreases system performance. 
Thus, some researchers study anomaly detection by 
modeling files activities. Stolfo et al. [13] studied 
anomaly detection by learning file system access 
patterns. Apa et al. [12] noticed that in Windows OS 
almost all system activities interact with the registry, so 
they analyzed anomaly detection through modeling 
normal registry access. 

In reality, an attack is usually unpredictable, and it is 
difficult to know which aspect of the system behavior is 
associated with the attack. For this reason, modeling 
system behavior based on only a single category is 
unreliable, no matter whether the category is user 
profile, program profile, or system resource access. In 
what follows, we try to model behavior from all three 
categories to increase the reliability of system behavior 
modeling, and thus to increase the accuracy of anomaly 
detection. 

3. Behavior Analysist-Basd Learning 
Framework 

A system consists of both the user and the host 
machine. It is appropriate to describe the system 
behaviors using a set of factors of user profile, program 
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profile, and system resource usage. We call the set of 
factors the “behavior set.”  

 In this section, a learning framework of intrusion 
detection is proposed based on analysis of the behavior 
set, as shown in Fig. 1. This framework includes three 
modules: anomaly detection, alert fusion, and alert 
verification.  The input of the framework is an event, 
modeled as a triple }{ objectverbsubject ×× for 
user/program behavior, and the output is alerts with 
features of alert ID, alert type, timestamp, priority level, 
confidence factor, verification status. In the anomaly 
detection module, the normal behavior baseline is 
modeled adaptively and stored in the database. When a 
new event comes, it is classified as normal or intrusion 
by the module. If an alert is triggered, the alert is fused 
with other existing alerts to decrease the number of 
alerts with the same cause. Then the fused alerts are sent 
to the alert verification module to exclude false or 
unrelated alerts. In this paper, we discuss only the 
learning related modules: anomaly detection and alert 
verification. 

To model normal system behavior, both supervised 
and unsupervised learning algorithms can be applied. 
We choose unsupervised learning over supervised 
learning. The main reason is that unsupervised learning 
does not need labeled (normal/abnormal) data, which is 
not readily available in reality. Labeled data is generally 
obtained by simulation or experiments. If labeled data is 
obtained by simulated intrusions, we are limited to the 
set of known attacks that we simulated. New types of 
attacks are not reflected in the training data set. If 
labeled data is obtained by experiments, then we must 
face the difficulties in manually classifying large 
volume of audit data. In addition, if the experimental 
data labeled normal have buried intrusions, then future 
instances of those intrusions will not be detected 
because they are assumed normal in the training set. 

Unsupervised learning algorithms take as input a set 
of unlabeled data and attempt to find noise and 
intrusions buried within the data. If anomalies are rare, 
unsupervised learning can be treated as a variant of the 
outlier detection problem. Outlier based anomaly 
detections cluster the data based on certain metrics and 
the data located in sparse regions are claimed as 
intrusions. Not all intrusions can be detected using 
outlier based anomaly detection. For example, syn-flood 
DOS cannot be detected using outlier detection since 
they are not rare in data distribution. Only when system 
behavior deviates significantly from average behavior 
are outlier detections applicable.  

3.1. Outlier detection algorithm 

The outlier detection algorithm we propose is given 
in Table I. The algorithm is an improvement of fixed-

width cluster estimation [11]. For each point, the 
algorithm approximates the density of points near the 
given point. The algorithm makes this approximation by 
counting the number of points that are within a sphere of 
radius w around the point. Points that are in a dense 
region of the feature space and contain many points 
within the circle or ball are considered normal. Points 
that are in a sparse region of the feature space and 
contain few points within the circle or ball are 
considered anomalies.  

In the original fixed-width cluster estimation, data 
that does not belong to any existing clusters is assigned 
to a new cluster and works as the central point. So the 
central point of a cluster is sensitive to the sequence of 
data to be clustered and new data might not be assigned 
to the closest cluster. In the improved fixed width 
clustering algorithm, the central point of a cluster is 
adjusted as new data is added so data are always 
assigned to the closest cluster. The idea of updating the 
central point of a cluster is close to K-means clustering, 
one of the most popular statistical clustering algorithms. 
Unlike K-means clustering, the improved fixed-width 
cluster estimation specifies cluster width instead of 
fixing the number of clusters a priori. Thus the results 
are sensitive to the value of cluster width. However, this 
problem can be easily solved by interaction with the 
clustering results through GUI. Since the clustering is 
performed offline, it is easy to adjust the width 
adaptively based on the visual clustering results when 
the clustering data is of low dimension.  

Using outlier detection, it is preferable that the 
training data be of low dimensionality for the following 
reasons. First, when distances are measured in all 
dimensions, it is more difficult to detect outliers 
effectively because of the average behavior of the noisy 
and irrelevant dimensions. Second, it is not easy to 
intuitively explain and understand the clustering results 
with high dimensions. Third, in high dimensional space, 
the data is sparse and the notion of proximity fails to 
retain its meaningfulness. Finally, with increasing 
dimensionality, it becomes increasingly difficult and 
inaccurate to estimate the multidimensional distribution 
of the data points. 

Actually, in the learning framework we propose, we 
do not need to use high dimensionality to represent the 
feature space of the system behavior. Because the 
system behavior is described by a set of factors instead 
of a single complex indicator, all the elements in the 
behavior set are ensured to be represented by low 
dimensional data, e.g., the login time, access frequencies 
of the files, etc. 
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Figure 1. Behavior analysis-based learning framework for host-based intrusion detection 
 
 

3.2. Behavior analysis-based intrusion detection 

Anomaly detection can only detect intrusions that make 
the host behave differently from normal. Thus, before we 
attempt to model normal behavior, the key question is how to 
define host behavior. As analyzed at the beginning of the 
section, we use behavior set to describe system behavior in 
order to accurately and completely reflect the system 
characteristics. The behavior set is specified as a set {user 
login time, frequency of applications launched, I/O activities, 
frequency of files access, network activities stats, CPU usage 
pattern over time, memory usage pattern, data bandwidth, 
network connection speed}. In the set, user login time helps 
to locate normal login time intervals; frequency of 
application launched locates the most and the least used 
applications; frequency of files can locate the most and the 
least accessed files; I/O activities indicates the average bytes 
written to the files; network activities stats locate normal 
sequence, frequency, time interval, and other indexes of 
various network activities, e.g., web browsing, ftp etc.; CPU 
and memory usages etc. are related to system performance.  

To describe the host behavior, we need metadata. A 
relational database is constructed to store system profiling 
metadata. The database constructed with WAMP is shown in 
Fig. 2. In the database, the table features are well designed to 
reveal the information defined in the behavior set. For 
example, the table USER has features of userID, user name, 
login time, remote/local login, logoff time. The table 
PROCESS has features of process Id, process name, owner 
of the process, memory usage of the process, CPU usage of 
the process, time.  

To maintain data in real time, the data is updated 
periodically. The time interval to collect data can be 
modified by the user via a sliding bar in the GUI as shown in 
Fig. 2. In addition, the user can easily select a table and look 
at the data through the database interface. When the record 
size overflows, the new record overwrites the oldest record. 

With the profiling database, the outlier detection 
algorithm is applied to each single factor in the behavior set 
if applicable. For instance, the user login time is trained to 
get the normal login time intervals, e.g., [8:00 9:00] and 
[13:00 14:00]. The CPU usage pattern is learned to model 
the normal distribution pattern, e.g. peak time at [9:00 11:00] 
and [14:00 16:00]. 

Typically, only a few indicators of the behavior set are 
detected as abnormal. So the significance of the host’s 
deviation from normal behavior has to be measured in some 
way. In this framework, we adopt the idea of the weighted 
sum. First, the deviation of each behavior indicator is 
calculated using the outlier detection algorithm. Then we 
compute the overall deviation from the host baseline model: 

)/()( 212211 mmm wwwdwdwdw ++++++ , 

Where m is size of behavior set, iw is predefined 
weight of indicator i in the behavior set, and dm is binary 
value 0 or 1, i.e., normal or abnormal. When the total 
deviation is beyond a threshold, an alert is generated. The 
values of iw ),2,1( mi = can be customized based on the 
host function and the user type. For example, a software 
developer and an administrator will have very different file 
activities. If we know the user of the host is a software 
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developer and the machine is mainly used for software 
development, we can put more weight on deviations of 
frequency of applications launched, I/O activities, and 
frequency of file access. 

TABLE I.  ANOMALY DETECITON ALGORITHM 

Inputs: 

Cluster width w 

The unlabeled data set D with n dimension 

Initialization: 

Set of clusters S is empty 

Loop until D is empty 

For each data d in data set D: 

If S is empty 

create a cluster C with one element d, add  C the 
cluster to S SSC →∪ , and set d as centroid 

),( 00 yx of C . 

Otherwise  

find the closest cluster C in S such that for any cluster 
C ′  in S, dist(C, d) ≤ dist(C ′ , d), where dist(C, d) is 
Euclidean distance from d to the centroid of cluster C. 

If dist(C, d) ≤ w 

insert d into cluster C. adjust the old centroid  
),( 00 yx  to ),( '

0
'
0 yx , where 

),1/()(),1/()( 0
'
00

'
0 ++⋅=++⋅= mmymymmxmx

Cm = -1.  

Otherwise  

a new cluster dC  with d as centroid is created, 
SCS d →∪ }{ . 

DdD →− }{  

Find outliers: 

Sort the clusters based on sizes in ascending 
sequence, li CCC ≤≤ 2 , where l is the number 
of clusters.   

Let .2 pCCC li =+++  

For 1=i to l 

If %20)/( ∗< lpCi , set the cluster iC as abnormal, 
i++ 

Otherwise, set any cluster ijC j ≥,  as normal, break 

 

When a new service is installed or the user’s behavior 
changes suddenly, false alerts are triggered. In this case, the 
fuse module will fuse alerts generated for the same reason. 
When new data instances are treated as intrusion by the 

anomaly detection module at the beginning of a pattern 
change, the new data are not discarded. As the data forming 
new pattern increases, the host profiling database is updated, 
and the clustering algorithm is retrained over the new set of 
data for modeling the emerging new pattern 

 

Figure 2. System performance database 

When the behavior set is modified, the learning algorithm 
remains the same, but the database has to be modified or 
reconstructed. 

3.3. Behavior analysis-based alert verification 

Conventional alert verification approaches include active 
and passive mechanisms [1]. Passive alert verification 
mechanisms compare the configuration of the victim 
machine to the requirements of a successful attack, e.g., a 
vulnerable version of the Microsoft IIS server. It gathers 
configuration data before an attack occurs and determines 
whether the target machine is vulnerable to the attack. Active 
mechanisms model the expected “outcome” of attacks, 
checking the visible and checkable traces that a certain attack 
leaves at a host, e.g., a temporary file or an outgoing network 
connection. They gather configuration data or forensic traces 
after an alert occurs. Neither approach can detect unknown 
attacks. They assume that either the system vulnerability 
required by an attack or the outcome of an attack is known in 
advance. If this is true, the attack can be prevented by 
installing a new service pack. Then there is no need to detect 
the attack. 

In the proposed learning framework, we focus on the 
verification of unknown and new types of attacks based on 
host behavior analysis. The after-attack performance 
measured in quantity might be different in different systems. 
However, the variance between prior-attack behavior and 
post-attack behavior is consistent on various machines. For 
example, an attack causes the network connection to be 50% 
slower no matter what type of CPU and bandwidth the 
machine has. Therefore, the basic idea of the alert 
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verification module is to learn the behavior features 
associated with an attack and check the change of the value 
of those features. It is applicable to the attacks that cause 
system behavior change. 

In the training phase, once an alert is verified manually 
by system administration, the system behavior both before 
and after the attack occurs are sampled from the system 
performance database and stored in a separate system 
metadata database. Since each alert has a timestamp t, we 
just need to probe the system performance database and get 
the records at time t and the last sample time t-1. For each 
system performance-related feature in the records, we 
calculate the change of feature values:  

)1(/)1()(( −−−=∆ tfeaturetfeaturetfeaturefeature iiii . 

The system performance features include CPU usage, 
memory usage, I/O usage, network stats etc. A record in the 
form of  

},,2,1,,{ lfeaturefeaturefeaturealertTypealertID ∆∆∆  

is added to the configuration change baseline database, 
where l is the number of total features, ifeature∆ is the 
relative value change of feature i. When the configuration 
change baseline database is constructed, the rule learning 
algorithm RIPPER [14] will be applied to the database. 
When applying RIPPER, we get rules for different types of 
alerts separately. To extract rules for alert type i using 
RIPPER, all the records with that alert type are treated as 
positive data, all the other records are treated as negative 
data. RIPPER takes the positive and negative data sets as 
input, and outputs a rule set represented as a conjunction of 
conditions in the form of ,vAn =  ,θ≤cA  or θ≥cA , where 

nA is a nominal attribute and v is a legal value for nA , and 

cA is a continuous variable and θ  is some value for cA . 

4. Experimental Results 

There are some benchmark data available for network 
intrusion detection research. For host-based intrusion 
detection, one data set is from the 1999 DARPA intrusion 
detection evaluation data which consists of BSM (Basic 
Security Module) data of all processes run on Solaris 
machines. Another set of data, obtained from Stephanie 
Forrest’s group at the University of New Mexico [15], 
contains normal traces for certain programs as well as 
intrusion traces of system calls for several processes. In our 
study, these benchmark data are not applicable. First, 
because we use a novel concept, “behavior set,” to describe 
system behavior instead of using system call traces, and 
second, because all behavior elements are of low dimension 
data for the accuracy of clustering. System call data cannot 
be used for clustering directly and the preprocessing of data 
is expensive. Eskin et al. [11] adopted spectrum kernels to 
map the system call data into feature space. However, the 
feature space corresponding to system calls is in large 
dimension, e.g., 26 possible system calls and sub-sequences 

of length 4 will give a dimension of the feature space ,264  
close to 500,000. 

To implement the learning framework proposed, we 
started with system metadata collection. Based on the 
behavior set we defined, as described in section 3, we 
constructed the WAMP database server and wrote C++ code 
to collect the system performance data from a host and store 
the data into the database. The data will be used as a training 
set to model the normal behavior of the system. The data is 
collected in real time and the database is updated 
dynamically. The data sampling rate is predefined and can be 
modified through a sliding bar on the GUI as shown in Fig. 
2. Fig. 3 shows one of the tables in the system profiling 
database -- CPU usage data collected from the host.  

 

Figure 3. CPU usage data collected from host 

 

Figure 4. Experimental result of clustering 

The unsupervised anomaly detection algorithm is 
implemented in Java. Given the training data set and cluster 
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width, the cluster-based outlier detection algorithm is applied 
and the simulation result is shown in Fig. 4. Using this 
algorithm, data instances in sparse regions are treated as 
noise and intrusions buried in the training data, and data 
instances in dense regions are treated as normal data. When a 
new data instance comes, whether it is labeled as normal or 
intrusion depends on which region it is located in. The 
algorithm needs to specify cluster width instead of the 
number of clusters. Because the clustering is performed 
offline, the cluster width can be adjusted easily through the 
GUI for accurate results.  

The connection with the database server is implemented 
with Java JDBC and the anomaly detection algorithm is also 
applied to real data from the database. The initial 
experimental results on a few factors in the behavior set, e.g., 
the user login time and CPU usage distribution over time, are 
satisfactory. Further experiments need to be carried out.  

To adapt to system behavior pattern changes, the 
database is updated periodically and the algorithm is applied 
over the new input data to update the clusters that represent 
normal behavior.  

5. Conclusion 

In this paper, behavior analysis-based intrusion detection 
at the host level has been discussed and a learning frame has 
been proposed. Two parts in the frame, anomaly detection 
and alert verification, have been designed using machine 
learning techniques. The behavior analysis-based framework 
has the following advantages: 1) the host behavior is 
described more accurately and comprehensively with a set of 
indicators, i.e., user profile, program profile, and system 
resource access; 2) the anomaly detection module does not 
need labeled data, which are difficult to obtain; 3) each 
indicator in the behavior set is represented by the data in low 
dimensionality since the host behavior is refined into a set of 
indicators; 4) with these low dimension data, the clustering 
algorithm can be applied over the data without 
normalization, which is data-dependent and application 
specific; 5) the clustering algorithm does not need to pre-
define the number of clusters, and the width of clusters can 
be adjusted visually offline; and 6) a novel alert verification 
approach can check the changes in the host behavior caused 
by an attack and learn rules associated with the attack. 

Currently, the anomaly detection module has been 
simulated and the host profiling database has been 
constructed. In the future, the anomaly detection module will 
be tested on data from a real-world database and the testing 
results will be carefully examined. In addition, we will 
implement the alert verification mechanism. 
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