
Behavior Analysis-Based Learning Framework for Host Level Intrusion
Detection

Haiyan Qiao, Jianfeng Peng, Chuan Feng, Jerzy W. Rozenblit
Electrical and Computer Engineering Department

University of Arizona
Tucson, Arizona, USA

{haiyanq, jpeng, fengc, jr}@ece.arizona.edu

Abstract

Machine learning has great utility within the
context of network intrusion detection systems. In this
paper, a behavior analysis-based learning framework
for host level network intrusion detection is proposed,
consisting of two parts, anomaly detection and alert
verification. The anomaly detection module processes
unlabeled data using a clustering algorithm to detect
abnormal behaviors. The alert verification module
adopts a novel rule learning based mechanism which
analyzes the change of system behavior caused by an
intrusion to determine whether an attack succeeded and
therefore lower the number of false alarms. In this
framework, the host behavior is not represented by a
single user or program activity; instead, it is
represented by a set of factors, called behavior set, so
that the host behavior can be described more
accurately and completely.

1. Introduction

With the growing number of network attacks,
intrusion detection systems (IDSs) are becoming an
integral part of any complete security package of a
modern network system. The IDSs perform surveillance
and security monitoring of the network infrastructure. A
number of different intrusion detection systems have
been developed for particular domains (e.g., hosts or
networks), in specific environments (e.g., Windows NT
or Solaris), and at different levels of abstractions (e.g.,
kernel-level tools or application level tools). However,
computer systems and networks still suffer from an
increased threat of intrusions. The existing IDSs are far
from perfect and may generate false positive and non-
relevant positive alerts [1].

The most widely deployed and commercially
available methods for intrusion detection employ
signature-based technique, where the signatures or

patterns of well-known attacks are provided by human
experts. The system or network traffic is scanned for
attacks using well-known vulnerabilities and any
instances that match the signatures are detected as
intrusions. The advantage of this method is a low rate of
false positives. The disadvantage is that the signature
database has to be revised manually and the system is
vulnerable to new types of attack until the revision is
done. This limitation leads to active research on
intrusion detection techniques based on data mining.

Data mining based network intrusion detection
techniques are generally classified into two categories:
misuse detection and anomaly detection [2]. In misuse
detection, each instance in the training data set is labeled
as either normal or intrusion. A machine learning
algorithm is trained over the labeled data and then the
trained model is applied to classify new data. Misuse
intrusion detection is fast, requires little state
information, and has a low false-positive rate. With
different input data including new types of attacks, the
intrusion detection modules are retrained automatically
without the manual intervention. However, misuse
detection cannot detect novel, previously unseen attacks.
Anomaly detection, on the other hand, builds models of
normal data to measure a "baseline" of such stats as
CPU utilization, disk activity, user logins, file activity,
and so on. When there is a deviation from this baseline,
an alert is triggered. Currently, almost all commercial
intrusion detection systems use misuse detection
techniques. Yet, anomaly detection is getting more
attention because of its capability to detect novel or
unforeseen attacks. Essentially, anomaly detection is the
machine learning problem of modeling a normal
network or system behavior. Although anomaly
detection is becoming an active research topic,
widespread adoption of this method faces numerous
obstacles, including complexity and high false positive
rate.

In order to reduce false and irrelevant alerts, alert
verification has to be a part of IDS. Alert verification is

Proceedings of the 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (ECBS'07)
0-7695-2772-8/07 $20.00 © 2007

a process to determine whether an attack has been
successful or not. This information is passed to IDS to
help differentiate the type of alerts [16]: 1) The sensor
has correctly identified a successful attack; 2) The
sensor has correctly identified an attack but the attack
failed to meet its objectives; and 3) The sensor
incorrectly identified an event as an attack. Alert
verification effectively lowers the number of false
alarms that an administrator or the decision support
system has to deal with.

In this paper, a behavior analysis-based learning
framework for host based intrusion detection is
proposed, which includes anomaly detection and alert
verification. The framework has two characteristics.
First, it is learning-based. In the anomaly detection
module, a cluster-based outlier detection algorithm
detects anomalous data. In the alert verification module,
a rule-learning algorithm is applied to learn the behavior
changes of the targeted machine. The rules developed
serve as an index of alert verification. Second, the
framework is behavior analysis oriented. Instead of
using a single activity as the indicator of the host
behavior, a set of indicators, also called “behavior set”,
is defined and applied to describe the host behavior. The
intrusions are detected and verified based on the analysis
of the behavior set. Compared to other research work in
host-based anomaly detection, this method does not
need high-dimension data since the host baseline is
represented by a refined behavior set and each element
in the behavior set is of low dimensionality. Thus, state-
of-the-art data normalization is not required when
outlier detection is applied to detect anomalous data. In
section 2, host based anomaly detection is reviewed. In
section 3, the behavior analysis-based learning
framework is presented and discussed. In section 4, the
experimental results are given. Finally, conclusions and
future work are summarized in Section 5.

2. Related Work

In host based anomaly detection research, various
features are used to model the system behavior baseline,
e.g., keystroke characteristics, user command data,
system call sequences, file activities, etc. Generally
these features fall into three categories: user profile,
program profile, and system resource access.

Denning [3] first attempted to build anomaly
detection by comparing previous user profiles to current
user activity. Sequeira and Zaki [4] designed and
implemented a user-profile dependent and temporal
sequence clustering-based intrusion detection system by
collecting and processing UNIX shell command data.
Although analysis of user activity is a natural approach
to detect intrusions, experience shows that it is far from
accurate. This is because user behavior typically lacks
strict patterns.

User dynamics allowed more reflection on the
features that define host behavior. All actions carried out
by users involve using programs. Programs obtain the
required services by executing the specific system call
that provides the needed function. Since the code of a
given application should not change, the sequence of
system calls executed by a program should be regular
and predictive.

Most existing research on anomaly detection uses
system calls to model system behavior. A number of
approaches based on system calls are proposed. Forrest
et al. [5] established an analogy between the human
immune system and intrusion detection. Lee et al [6]
applied a rule learning program to study a sample of
system call data. Wagner and Dean [7] proposed to
statically generate a non-deterministic finite automaton
(NDFA) from the global control-flow graph of the
program and simulated NDFA on observed system call
trace. Ghosh et al. [10] utilized return address
information extracted from the call stack to generate the
execution path of a program for anomaly detection. Liao
and Vemuri [9] used the k-Nearest Neighbor classifier to
classify program behavior represented by frequencies of
system calls instead of system call sequence. Eskin et al.
[11] applied outlier detection algorithms to anomaly
detection using system call data, where the system call
data has to be mapped into feature space and the choice
of feature space is application specific.

Because the system-call level data is fine grained, it
increases overhead and decreases system performance.
Thus, some researchers study anomaly detection by
modeling files activities. Stolfo et al. [13] studied
anomaly detection by learning file system access
patterns. Apa et al. [12] noticed that in Windows OS
almost all system activities interact with the registry, so
they analyzed anomaly detection through modeling
normal registry access.

In reality, an attack is usually unpredictable, and it is
difficult to know which aspect of the system behavior is
associated with the attack. For this reason, modeling
system behavior based on only a single category is
unreliable, no matter whether the category is user
profile, program profile, or system resource access. In
what follows, we try to model behavior from all three
categories to increase the reliability of system behavior
modeling, and thus to increase the accuracy of anomaly
detection.

3. Behavior Analysist-Basd Learning
Framework

A system consists of both the user and the host
machine. It is appropriate to describe the system
behaviors using a set of factors of user profile, program

Proceedings of the 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (ECBS'07)
0-7695-2772-8/07 $20.00 © 2007

profile, and system resource usage. We call the set of
factors the “behavior set.”

 In this section, a learning framework of intrusion
detection is proposed based on analysis of the behavior
set, as shown in Fig. 1. This framework includes three
modules: anomaly detection, alert fusion, and alert
verification. The input of the framework is an event,
modeled as a triple }{ objectverbsubject ×× for
user/program behavior, and the output is alerts with
features of alert ID, alert type, timestamp, priority level,
confidence factor, verification status. In the anomaly
detection module, the normal behavior baseline is
modeled adaptively and stored in the database. When a
new event comes, it is classified as normal or intrusion
by the module. If an alert is triggered, the alert is fused
with other existing alerts to decrease the number of
alerts with the same cause. Then the fused alerts are sent
to the alert verification module to exclude false or
unrelated alerts. In this paper, we discuss only the
learning related modules: anomaly detection and alert
verification.

To model normal system behavior, both supervised
and unsupervised learning algorithms can be applied.
We choose unsupervised learning over supervised
learning. The main reason is that unsupervised learning
does not need labeled (normal/abnormal) data, which is
not readily available in reality. Labeled data is generally
obtained by simulation or experiments. If labeled data is
obtained by simulated intrusions, we are limited to the
set of known attacks that we simulated. New types of
attacks are not reflected in the training data set. If
labeled data is obtained by experiments, then we must
face the difficulties in manually classifying large
volume of audit data. In addition, if the experimental
data labeled normal have buried intrusions, then future
instances of those intrusions will not be detected
because they are assumed normal in the training set.

Unsupervised learning algorithms take as input a set
of unlabeled data and attempt to find noise and
intrusions buried within the data. If anomalies are rare,
unsupervised learning can be treated as a variant of the
outlier detection problem. Outlier based anomaly
detections cluster the data based on certain metrics and
the data located in sparse regions are claimed as
intrusions. Not all intrusions can be detected using
outlier based anomaly detection. For example, syn-flood
DOS cannot be detected using outlier detection since
they are not rare in data distribution. Only when system
behavior deviates significantly from average behavior
are outlier detections applicable.

3.1. Outlier detection algorithm

The outlier detection algorithm we propose is given
in Table I. The algorithm is an improvement of fixed-

width cluster estimation [11]. For each point, the
algorithm approximates the density of points near the
given point. The algorithm makes this approximation by
counting the number of points that are within a sphere of
radius w around the point. Points that are in a dense
region of the feature space and contain many points
within the circle or ball are considered normal. Points
that are in a sparse region of the feature space and
contain few points within the circle or ball are
considered anomalies.

In the original fixed-width cluster estimation, data
that does not belong to any existing clusters is assigned
to a new cluster and works as the central point. So the
central point of a cluster is sensitive to the sequence of
data to be clustered and new data might not be assigned
to the closest cluster. In the improved fixed width
clustering algorithm, the central point of a cluster is
adjusted as new data is added so data are always
assigned to the closest cluster. The idea of updating the
central point of a cluster is close to K-means clustering,
one of the most popular statistical clustering algorithms.
Unlike K-means clustering, the improved fixed-width
cluster estimation specifies cluster width instead of
fixing the number of clusters a priori. Thus the results
are sensitive to the value of cluster width. However, this
problem can be easily solved by interaction with the
clustering results through GUI. Since the clustering is
performed offline, it is easy to adjust the width
adaptively based on the visual clustering results when
the clustering data is of low dimension.

Using outlier detection, it is preferable that the
training data be of low dimensionality for the following
reasons. First, when distances are measured in all
dimensions, it is more difficult to detect outliers
effectively because of the average behavior of the noisy
and irrelevant dimensions. Second, it is not easy to
intuitively explain and understand the clustering results
with high dimensions. Third, in high dimensional space,
the data is sparse and the notion of proximity fails to
retain its meaningfulness. Finally, with increasing
dimensionality, it becomes increasingly difficult and
inaccurate to estimate the multidimensional distribution
of the data points.

Actually, in the learning framework we propose, we
do not need to use high dimensionality to represent the
feature space of the system behavior. Because the
system behavior is described by a set of factors instead
of a single complex indicator, all the elements in the
behavior set are ensured to be represented by low
dimensional data, e.g., the login time, access frequencies
of the files, etc.

Proceedings of the 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (ECBS'07)
0-7695-2772-8/07 $20.00 © 2007

Figure 1. Behavior analysis-based learning framework for host-based intrusion detection

3.2. Behavior analysis-based intrusion detection

Anomaly detection can only detect intrusions that make
the host behave differently from normal. Thus, before we
attempt to model normal behavior, the key question is how to
define host behavior. As analyzed at the beginning of the
section, we use behavior set to describe system behavior in
order to accurately and completely reflect the system
characteristics. The behavior set is specified as a set {user
login time, frequency of applications launched, I/O activities,
frequency of files access, network activities stats, CPU usage
pattern over time, memory usage pattern, data bandwidth,
network connection speed}. In the set, user login time helps
to locate normal login time intervals; frequency of
application launched locates the most and the least used
applications; frequency of files can locate the most and the
least accessed files; I/O activities indicates the average bytes
written to the files; network activities stats locate normal
sequence, frequency, time interval, and other indexes of
various network activities, e.g., web browsing, ftp etc.; CPU
and memory usages etc. are related to system performance.

To describe the host behavior, we need metadata. A
relational database is constructed to store system profiling
metadata. The database constructed with WAMP is shown in
Fig. 2. In the database, the table features are well designed to
reveal the information defined in the behavior set. For
example, the table USER has features of userID, user name,
login time, remote/local login, logoff time. The table
PROCESS has features of process Id, process name, owner
of the process, memory usage of the process, CPU usage of
the process, time.

To maintain data in real time, the data is updated
periodically. The time interval to collect data can be
modified by the user via a sliding bar in the GUI as shown in
Fig. 2. In addition, the user can easily select a table and look
at the data through the database interface. When the record
size overflows, the new record overwrites the oldest record.

With the profiling database, the outlier detection
algorithm is applied to each single factor in the behavior set
if applicable. For instance, the user login time is trained to
get the normal login time intervals, e.g., [8:00 9:00] and
[13:00 14:00]. The CPU usage pattern is learned to model
the normal distribution pattern, e.g. peak time at [9:00 11:00]
and [14:00 16:00].

Typically, only a few indicators of the behavior set are
detected as abnormal. So the significance of the host’s
deviation from normal behavior has to be measured in some
way. In this framework, we adopt the idea of the weighted
sum. First, the deviation of each behavior indicator is
calculated using the outlier detection algorithm. Then we
compute the overall deviation from the host baseline model:

)/()(212211 mmm wwwdwdwdw ++++++ ,

Where m is size of behavior set, iw is predefined
weight of indicator i in the behavior set, and dm is binary
value 0 or 1, i.e., normal or abnormal. When the total
deviation is beyond a threshold, an alert is generated. The
values of iw),2,1(mi = can be customized based on the
host function and the user type. For example, a software
developer and an administrator will have very different file
activities. If we know the user of the host is a software

Proceedings of the 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (ECBS'07)
0-7695-2772-8/07 $20.00 © 2007

developer and the machine is mainly used for software
development, we can put more weight on deviations of
frequency of applications launched, I/O activities, and
frequency of file access.

TABLE I. ANOMALY DETECITON ALGORITHM

Inputs:

Cluster width w

The unlabeled data set D with n dimension

Initialization:

Set of clusters S is empty

Loop until D is empty

For each data d in data set D:

If S is empty

create a cluster C with one element d, add C the
cluster to S SSC →∪ , and set d as centroid

),(00 yx of C .

Otherwise

find the closest cluster C in S such that for any cluster
C ′ in S, dist(C, d) ≤ dist(C ′ , d), where dist(C, d) is
Euclidean distance from d to the centroid of cluster C.

If dist(C, d) ≤ w

insert d into cluster C. adjust the old centroid
),(00 yx to),('

0
'
0 yx , where

),1/()(),1/()(0
'
00

'
0 ++⋅=++⋅= mmymymmxmx

Cm = -1.

Otherwise

a new cluster dC with d as centroid is created,
SCS d →∪ }{ .

DdD →− }{

Find outliers:

Sort the clusters based on sizes in ascending
sequence, li CCC ≤≤ 2 , where l is the number
of clusters.

Let .2 pCCC li =+++

For 1=i to l

If %20)/(∗< lpCi , set the cluster iC as abnormal,
i++

Otherwise, set any cluster ijC j ≥, as normal, break

When a new service is installed or the user’s behavior
changes suddenly, false alerts are triggered. In this case, the
fuse module will fuse alerts generated for the same reason.
When new data instances are treated as intrusion by the

anomaly detection module at the beginning of a pattern
change, the new data are not discarded. As the data forming
new pattern increases, the host profiling database is updated,
and the clustering algorithm is retrained over the new set of
data for modeling the emerging new pattern

Figure 2. System performance database

When the behavior set is modified, the learning algorithm
remains the same, but the database has to be modified or
reconstructed.

3.3. Behavior analysis-based alert verification

Conventional alert verification approaches include active
and passive mechanisms [1]. Passive alert verification
mechanisms compare the configuration of the victim
machine to the requirements of a successful attack, e.g., a
vulnerable version of the Microsoft IIS server. It gathers
configuration data before an attack occurs and determines
whether the target machine is vulnerable to the attack. Active
mechanisms model the expected “outcome” of attacks,
checking the visible and checkable traces that a certain attack
leaves at a host, e.g., a temporary file or an outgoing network
connection. They gather configuration data or forensic traces
after an alert occurs. Neither approach can detect unknown
attacks. They assume that either the system vulnerability
required by an attack or the outcome of an attack is known in
advance. If this is true, the attack can be prevented by
installing a new service pack. Then there is no need to detect
the attack.

In the proposed learning framework, we focus on the
verification of unknown and new types of attacks based on
host behavior analysis. The after-attack performance
measured in quantity might be different in different systems.
However, the variance between prior-attack behavior and
post-attack behavior is consistent on various machines. For
example, an attack causes the network connection to be 50%
slower no matter what type of CPU and bandwidth the
machine has. Therefore, the basic idea of the alert

Proceedings of the 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (ECBS'07)
0-7695-2772-8/07 $20.00 © 2007

verification module is to learn the behavior features
associated with an attack and check the change of the value
of those features. It is applicable to the attacks that cause
system behavior change.

In the training phase, once an alert is verified manually
by system administration, the system behavior both before
and after the attack occurs are sampled from the system
performance database and stored in a separate system
metadata database. Since each alert has a timestamp t, we
just need to probe the system performance database and get
the records at time t and the last sample time t-1. For each
system performance-related feature in the records, we
calculate the change of feature values:

)1(/)1()((−−−=∆ tfeaturetfeaturetfeaturefeature iiii .

The system performance features include CPU usage,
memory usage, I/O usage, network stats etc. A record in the
form of

},,2,1,,{ lfeaturefeaturefeaturealertTypealertID ∆∆∆

is added to the configuration change baseline database,
where l is the number of total features, ifeature∆ is the
relative value change of feature i. When the configuration
change baseline database is constructed, the rule learning
algorithm RIPPER [14] will be applied to the database.
When applying RIPPER, we get rules for different types of
alerts separately. To extract rules for alert type i using
RIPPER, all the records with that alert type are treated as
positive data, all the other records are treated as negative
data. RIPPER takes the positive and negative data sets as
input, and outputs a rule set represented as a conjunction of
conditions in the form of ,vAn = ,θ≤cA or θ≥cA , where

nA is a nominal attribute and v is a legal value for nA , and

cA is a continuous variable and θ is some value for cA .

4. Experimental Results

There are some benchmark data available for network
intrusion detection research. For host-based intrusion
detection, one data set is from the 1999 DARPA intrusion
detection evaluation data which consists of BSM (Basic
Security Module) data of all processes run on Solaris
machines. Another set of data, obtained from Stephanie
Forrest’s group at the University of New Mexico [15],
contains normal traces for certain programs as well as
intrusion traces of system calls for several processes. In our
study, these benchmark data are not applicable. First,
because we use a novel concept, “behavior set,” to describe
system behavior instead of using system call traces, and
second, because all behavior elements are of low dimension
data for the accuracy of clustering. System call data cannot
be used for clustering directly and the preprocessing of data
is expensive. Eskin et al. [11] adopted spectrum kernels to
map the system call data into feature space. However, the
feature space corresponding to system calls is in large
dimension, e.g., 26 possible system calls and sub-sequences

of length 4 will give a dimension of the feature space ,264
close to 500,000.

To implement the learning framework proposed, we
started with system metadata collection. Based on the
behavior set we defined, as described in section 3, we
constructed the WAMP database server and wrote C++ code
to collect the system performance data from a host and store
the data into the database. The data will be used as a training
set to model the normal behavior of the system. The data is
collected in real time and the database is updated
dynamically. The data sampling rate is predefined and can be
modified through a sliding bar on the GUI as shown in Fig.
2. Fig. 3 shows one of the tables in the system profiling
database -- CPU usage data collected from the host.

Figure 3. CPU usage data collected from host

Figure 4. Experimental result of clustering

The unsupervised anomaly detection algorithm is
implemented in Java. Given the training data set and cluster

Proceedings of the 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (ECBS'07)
0-7695-2772-8/07 $20.00 © 2007

width, the cluster-based outlier detection algorithm is applied
and the simulation result is shown in Fig. 4. Using this
algorithm, data instances in sparse regions are treated as
noise and intrusions buried in the training data, and data
instances in dense regions are treated as normal data. When a
new data instance comes, whether it is labeled as normal or
intrusion depends on which region it is located in. The
algorithm needs to specify cluster width instead of the
number of clusters. Because the clustering is performed
offline, the cluster width can be adjusted easily through the
GUI for accurate results.

The connection with the database server is implemented
with Java JDBC and the anomaly detection algorithm is also
applied to real data from the database. The initial
experimental results on a few factors in the behavior set, e.g.,
the user login time and CPU usage distribution over time, are
satisfactory. Further experiments need to be carried out.

To adapt to system behavior pattern changes, the
database is updated periodically and the algorithm is applied
over the new input data to update the clusters that represent
normal behavior.

5. Conclusion

In this paper, behavior analysis-based intrusion detection
at the host level has been discussed and a learning frame has
been proposed. Two parts in the frame, anomaly detection
and alert verification, have been designed using machine
learning techniques. The behavior analysis-based framework
has the following advantages: 1) the host behavior is
described more accurately and comprehensively with a set of
indicators, i.e., user profile, program profile, and system
resource access; 2) the anomaly detection module does not
need labeled data, which are difficult to obtain; 3) each
indicator in the behavior set is represented by the data in low
dimensionality since the host behavior is refined into a set of
indicators; 4) with these low dimension data, the clustering
algorithm can be applied over the data without
normalization, which is data-dependent and application
specific; 5) the clustering algorithm does not need to pre-
define the number of clusters, and the width of clusters can
be adjusted visually offline; and 6) a novel alert verification
approach can check the changes in the host behavior caused
by an attack and learn rules associated with the attack.

Currently, the anomaly detection module has been
simulated and the host profiling database has been
constructed. In the future, the anomaly detection module will
be tested on data from a real-world database and the testing
results will be carefully examined. In addition, we will
implement the alert verification mechanism.

References

[1] F. Valeur, G. Vigna, C. Kruegel, R. A. Kemmerer. A
comprehensive approach to intrusion detection alert
correlation. 2004

[2] S. Axelsson. Intrusion detection systems: A survey and
taxonomy. Technical Report 99-15, Department of Computer
Engineering, Chalmers University, March 2000.

[3] D. E. Denning, "An intrusion-detection model." IEEE
Transactions on Software Engineering, Vol. SE-13(No.
2):222-232, Feb. 1987.

[4] K. Sequeira, M. Zaki, ADMIT: Anomaly-based Data Mining
for Intrusions, Proceedings of the 8th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, Edmonton, July 2002.

[5] S. Forrest, S.A. Hofmeyr, and A. Somayaji. Computer
immunology. Communications of the ACM, 40(10):88-96,
October 1997.

[6] W. Lee, S. Stolfo, and P.K. Chan. Learning patterns from
unix process execution traces for intrusion detection. In
Proceedings of AAAI97 Workshop on AI Methods in Fraud
and Risk Management, 1997.

[7] D. Wagner and D. Dean, “Intrusion Detection via Static
Analysis”, IEEE Symposium on Security and Privacy,
Oakland, CA, 2001

[8] Henry Hanping Feng, Oleg M. Kolesnikov, Prahlad Fogla,
Wenke Lee, and Weibo Gong. Anomaly Detection Using Call
Stack Information. 2003

[9] Yihua Liao, V. Rao Vemuri. Use of K-Nearest Neighbor
classifier for intrusion detection. Computer and Security.
Volume 21, Issue 5, 1 October 2002, pages 439-448

[10] A. K. Ghosh, A. Schwartzbard, and M. Schatz. Learning
program behavior profiles for intrusion detection. In
Proceedings of the 1st USENIX Workshop on Intrusion
Detection and Network Monitoring. USENIX Association,
April 11-12 1999.

[11] Eskin , E, A Arnold, M Prerau, L Portnoy, SJ Stolfo. A
geometric framework for unsupervised anomaly detection:
detecting intrusions in unlabeled data. In Data Mining for
Security Applications, 2002.

[12] Apap, F., A. Honig, S. Hershkop, E. Eskin and S. Stolfo.
Detecting Malicious Software by Monitoring Anomalous
Windows Registry Accesses. Fifth International Symposium
on Recent Advances in Intrusion Detection, RAID-2002.
Zurich, Switzerland, 2002.

[13] Stolfo, S. J., L. Bui, Shlomo. Hershkop. Unsupervised
Anomaly Detection in Computer Security and an Application
to File System Access. Proc. ISMIS, pp. 14–28, 2005.

[14] Cohen, W. W. Fast effective rule induction. In Proceedings
of the 12th International Conference on Machine
Learning. Lake Tahoe, CA, 1995.

[15] Warrender , C., S. Forrest, and B. Pearlmutter. Detecting
intrusions using system calls: alternative data models. In 1999
IEEE Symposium on Security and Privacy, pages 133–145.
IEEE Computer Society, 1999

[16] C. Kruegel and W. Robertson, “Alert Verification:
Determining the Success of Intrusion Attempts,” Proc. First
Workshop the Detection of Intrusions and Malware and
Vulnerability Assessment (DIMVA 2004), July 2004.

Proceedings of the 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (ECBS'07)
0-7695-2772-8/07 $20.00 © 2007

