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Probabilistic 
Threat Detection 
for Risk 
Management in 
Cyber-physical 
Medical Systems
Aakarsh Rao, Nadir Carreón, Roman Lysecky, and Jerzy Rozenblit, 
University of Arizona

// Medical devices are complex cyber-physical 

systems exposed to numerous security risks 

and vulnerabilities. This article presents a 

dynamic risk management and automated threat 

mitigation approach based on a probabilistic 

threat estimation framework. A smart-connected-

pacemaker case study illustrates the approach. //

THE INTERNET OF THINGS (IoT) 
represents the foundation of radical 
changes in cyber-physical systems.1 
There is rapid development and in-
corporation of Internet-connected 
devices in our lives, transforming 

several fields. This has been pos-
sible due to technical advancements 
of incorporating efficient computa-
tional resources, advanced sensors, 
and networking capabilities that al-
low communication of devices with 

the Internet as well as other devices.2 
Unsurprisingly, the IoT is strongly in-
fluencing advances in healthcare and 
medical-device development. Such  
devices are now part of the digital-
health ecosystem. They facilitate 
continual patient monitoring and ser-
vice, interoperability, and real-time 
data access. However, several critical 
challenges, including security, safety, 
privacy, essential performance, and 
regulatory compliance, have emerged.

Medical devices are exposed to  
a wide attack surface. Instances of 
malware, security vulnerabilities, and 
threats are proliferating. A signifi-
cant number of recalls over the years 
have taken place.3–5 In addition to 
strict regulations required for medi-
cal devices by the US Food and Drug 
Administration (FDA), recommenda-
tions for risk assessment and manage-
ment for premarket and postmarket 
security management are now becom-
ing standard.6,7

To ensure safety, security, and 
privacy in the presence of unknown 
security threats, devices should dy-
namically detect and assess risk, sub-
sequently taking automated mitigative  
actions when the risk is elevated. 
This requires that a risk assessment 
model be developed at design time 
with runtime security threat de-
tection, adaptive risk management 
policies, and automated mitigation 
schemes during deployment. Flexible 
security frameworks that incorporate 
conventional security solutions along 
with in-device security are required.8 
Toward this goal, we previously  
proposed a multimodal-device design 
with a composite risk model.9 Here, 
we describe how we’ve incorporated 
a novel real-time threat detector with 
an adaptive risk assessment method-
ology to ensure unabridged threat 
mitigation during the deployment of 
devices.
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Much work exists in real-time 
threat assessment and management, 
especially in intrusion detection  
systems.10,11 Probabilistic methods  
like Markov models have been uti-
lized to detect threats in such sys-
tems.12 However, in critical medical 
cyber-physical systems that are 
characterized by strict timing con-
straints, expedient and robust threat 
detection is essential.13 This necessi-
tates the analysis of the distribution 
of events in each execution window 
compared to the current state sam-
ple as in Markov models. Thus, we 
utilize cumulative distribution func-
tions (CDFs) for modeling the nor-
mal device behavior, which is used 
to quantify the likeliness of security 
threats at runtime. This probabilis-
tic threat detector is used to assess 
and manage the system’s risk, which 
results in a precise real-time update 
of the current system risk. This ap-
proach reduces the false-positive 
rate to prevent erroneous activation 
of a mitigation scheme that may 
otherwise lead to accidental loss of 
functionality. This article presents a 
comprehensive framework for threat 
detection and mitigation during de-
ployment of medical devices. We dem-
onstrate this framework through a 
smart-connected-pacemaker scenario.

Framework Design 
Overview
An overview of our approach is pre-
sented in Figure 1. The medical de-
vice has been designed based on our 
multimodal approach. The compos-
ite risk model associates risk values 
with the device’s various software 
and hardware components. For the 
details of the composite risk model 
and multimodal design, we direct 
readers to “Composite Risk Model-
ing for Automated Threat Mitiga-
tion in Medical Devices.”9 Based on 

the current system risk, which will 
be updated dynamically, the threat 
mitigation either disallows access to 
the affected component or updates 
the current operating mode to miti-
gate the risk while sustaining essen-
tial functionality. In this article, we 
focus on the integration of threat 
detection with risk assessment and 
management during medical-device 
deployment.

Threat Detection Design
The runtime threat detector moni-
tors the execution sequences and 
timing of all critical system opera-
tions, specifically those within the 
system’s composite risk model. The 
threat detection analyzes the timing 
of these system operations within a 
sliding execution window. For each 
execution window Ew, the CDF is 
calculated and compared to pre-
defined bounds of the system’s nor-
mal execution behavior. Using a 
CDF-based model of the system be-
havior under normal execution sce-
narios enables the runtime threat 

detection to estimate the presence 
of a threat affecting each operation. 
Utilizing the internal execution time 
provides protection against cloaked 
threats that follow the correct execu-
tion sequence but whose behaviors 
still have an impact on the opera-
tion execution time, a feature lack-
ing in sequence-only detectors. This 
estimation compares the overlap be-
tween the CDFs obtained at runtime 
and the CDFs obtained from the sys-
tem under normal circumstances.

To construct the normal execu-
tion model, the software applica-
tion is statically analyzed to identify 
the critical operations defined in the 
device’s composite risk model. The 
system is executed under different 
execution scenarios, and timing mea-
surements are collected for all opera-
tions. The timing of the operations is 
obtained automatically and nonin-
trusively through the system’s trace 
port (in our case study, the pace-
maker’s), which, importantly, does 
not perturb the device’s execution. 
The CDF analysis checks the timing 

FIGURE 1. Overview of a framework for runtime threat detection, risk-based assessment, 

and automated mitigation in medical devices.
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across all execution windows for the 
training data and calculates the up-
per and lower distribution bounds 
for each operation. This is used at 
runtime to detect any deviation from 
the expected execution. For a single 
operation, the estimated threat prob-
ability depends on the complement 
of the overlap between the runtime 
CDFs and the CDF boundaries of 
the normal system execution. Fi-
nally, to eliminate or minimize false 
positives, cross-validation is used to 
determine the maximum estimated 
threat for normal operation execu-
tion. This threshold Pth is used to fil-
ter out false positives at runtime.

Risk Assessment and  
Management Unit
The estimated threat probabilities 
from the runtime threat detection 
are directly utilized as the input of 
our risk assessment to update the 
risk values of system components 
and operations. We use a level-
based approach to update the risk 
for individual system operations 

based on the estimated threat prob-
ability. Risk values are updated as 
follows:

riskupdated 5 riskinitial 1 Pt 3 Cl,  (1)

where Pt represents the estimated 
threat probability affecting the com-
ponent and Cl is the level-based con-
stant. During device design, every 
component is assigned an initial base 
risk value. This is determined by the 
criticality of the component or an 
expert’s judgment, which is updated 
during deployment according to 
Equation 1. Cl is deduced as

C

P P

P
P

otherwise

0,

,l

t th

t

th

=

<


















  

,

where Pth represents the probability 
thresholds. As Pt increases, riskupdated  
will increment faster, and if it is 
slightly above the threshold (still a 
security threat), the risk will increase 
at a slower rate. The formulation 

also restricts the risk from increasing 
too rapidly by truncating Cl to the 
smallest succeeding integer value. If 
the threat persists, the cumulative 
risk will continue increasing, relative 
to the threat probability, until the de-
vice’s operating threshold is reached. 
At this point, the mode of operation 
is switched to a lower mode.

A key aspect to consider while 
incorporating our proposed frame-
work is to assure that the latency 
of the overall risk management is 
well within the temporal limits of 
activating the principal intended 
action by the medical device.14 
Thus, once the threat is detected, 
the mitigation latency L is calcu-
lated as

L 5 n 3 tupdate 1 tmode,  (2)

where n is the number of windows 
that were analyzed between the 
time when the threat was intro-
duced in the system and the time 
when the current-mode maximum 
risk was reached, tupdate is the time 

FIGURE 2. A multimodal smart connected pacemaker with its composite risk model.
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required for the risk to be updated, 
and tmode is the time to switch 
modes. n depends on multiple fac-
tors, mainly the threat and execu-
tion window Ew. In the real world, 
there is no method to precisely 
know when the threat was intro-
duced into the system. Therefore, 
the latency is calculated by con-
ducting experiments and measur-
ing the estimated probability of 
the threats. Our threat mitigation 
response adapts according to the 
measured estimated probability.

Smart-Connected-
Pacemaker Scenario
We developed a smart-connected- 
pacemaker prototype and implanted 
malware therein to demonstrate our 
framework.13 Figure 2 shows the 
pacemaker design, based on the mul-
timodal approach with the composite 
risk model as described in “Compos-
ite Risk Modeling for Automated 
Threat Mitigation in Medical De-
vices.”9 For our demonstration, we 
consider two operational modes, but 
we note that our framework can ac-
commodate any number of modes as 
required by the designer. We model 
higher levels of abstraction for our 
device components (e.g., Bluetooth 
or WiFi would both be included in 
the wireless-communication compo-
nent) to emphasize the operation of 
our proposed framework.

The critical components required 
for the pacemaker’s essential per-
formance include the pacer, sensor,  
and pacing-computations component, 
which are incorporated in Mode 0. 
The other components are used in 
Mode 1, as they do not contribute to 
the essential functionality. Hardware– 
software middleware facilitates the 
secure transfer of data and signals be-
tween operational modes. The middle-
ware is also responsible for analyzing 

the runtime threat detection, updating 
the risk model, and determining what 
mitigation strategy to invoke when 
a threat is detected. The device is as-
sumed to run with full functionality in 
the highest mode. Note that the cumu-
lative risk for Mode 0 is 20 and the cu-
mulative risk for Mode 1 is 30.

Making the value of Cl dependent 
on both the estimated threat prob-
ability and the threshold allows the 
system to increase the risk at either 
a faster or slower rate for different 
scenarios. Figure 3 presents how the 
threat probability is calculated in our 
scenario. The red solid line repre-
sents the CDF bounds for the normal 
execution model. The black, blue, 
and green lines represent the CDFs 
for three runtime execution win-
dows. The black CDF is completely 
outside the boundaries and thus has 

an estimated threat probability of 
100%. In contrast, the blue CDF is 
completely inside the boundaries, 
and thus the threat estimate is 0%. 
For the green CDF, there is partial 
overlap with the predefined boundar-
ies, and the probability is estimated 
as the percentage of points of the 
CDF that fall outside the boundar-
ies. The threat probability is equal to  
1 2 (0.65 2 0.20), or 0.55, indicat-
ing there is an estimated 55% chance 
of a threat.

An illustrative example shows 
how the shift in modes is done based 
on the estimated threat probability. 
Using Figure 2 as a starting point for 
our example and Mode 1 as the ini-
tial operating mode, we can observe 
that the wireless-communication 
component has a risk value of 6 for 
the current execution. For simplicity, 

FIGURE 3. An example of CDF-based threat estimation based on real data from 

the smart-connected-pacemaker prototype. The red line represents CDF (cumulative 

distribution function) bounds. The black, blue, and green lines are runtime CDFs with 

estimated threat probabilities of 100%, 0%, and 55%, respectively.
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we consider malware that only affects 
the wireless-communication compo-
nent where Pth(wireless) 5 5%.

From our conducted experiment, 
Figure 4 shows how the wireless-
communication component’s risk 
(the red line) increases over time, 
based on the estimated threat proba-
bility. As the threat persists, the risk 
continues to increase, until the cu-
mulative risk (the blue line) exceeds 
Mode 1’s maximum risk threshold 
(the black line). In response, the mid-
dleware mitigates the risk by transi-
tioning to Mode 0, thereby reducing 
the overall system risk. Additionally, 
the affected component is no longer 
used in Mode 0.

In this scenario, runtime threat 
detection is performed on an ex-
ecution window corresponding to  
five iterations of the communication 

component. As such, the detection 
latency of five execution windows 
is equivalent to 25 iterations of the 
communication thread. The princi-
pal intended action of a pacemaker is 
to trigger a pulse to ensure a normal 
heart rate from 60 to 100 beats per 
minute, translating to 1 beat every 1 
to 0.6 seconds. Utilizing Equation 2, 
the total threat detection and miti-
gation latency L is approximately  
375 ms, which is well within the 
lower threshold time of 600 ms to 
trigger a normal beat.

I n conclusion, we have briefly 
described and exemplified our 
approach for efficient runtime 

security threat detection, dynamic 
risk assessment, and automated miti-
gation for medical devices. 
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