
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART A SYSTEMS AND HUMANS, VOL. 26, NO. 1, JANUARY 1996 81

A Knowledge-Based Simulation Environment
for Hierarchical Flexible Manufacturing

Bernard P. Zeigler, Fellow, ZEEE, Tae H. Cho, and Jer:zy W. Rozenblit, Member, IEEE

Abstract- This article presents an approach to embedding
expert systems within an object oriented simulation environment.
The basic idea is to create classes of expert system models
that can be interfaced with other model classes. An expert
system shell is developed within a knowledge-based design and
simulation environment which combines artificial intelligence and
systems modeling concepts. In the given framework, interruptible
and distributed expert systems can be defined as components
of simulations models. This facilitates simulation modeling of
knowledge-based controls for flexible manufacturing and many
other autonomous intelligent systems. Moreover, the structure
of a system can be specified using a recursive system entity
structure (SES) and unfolded to generate a family of hierarchical
structures using an extension of SES pruning called recursive
pruning. This recursive generation of hierarchical structures is
especially appropriate for design of multilevel flexible factories.
The article illustrates the utility of the proposed framework
within the flexible manufacturing context.

I. INTRODUCTION

OMPUTER simulation is one of the most widely used C techniques in manufacturing systems study [11-[3].
Rapid modeling of such systems can play a significant role in
supporting timely determination of optimal manufacturing
strategies in response to changing market requirements.
However developing simulation models of large-scale complex
systems is an arduous, time-consuming task.

Simulation modeling of manufacturing and other systems
has become even more demanding due to the incorporation
in recent years of intelligent knowledge-based elements into
their control functions. For example, expert systems have been
developed for solving problems of varying complexities in
areas such as planning, scheduling, controlling, maintenance
and fault diagnosis [3]-[7]. Such knowledge-based systems
present a host of specific requirements on an environment to
aid the simulation model builder. Such issues include:

Communication Links: Expert and knowledge-based con-
trol elements have to interact efficiently with the manufac-
turing or other processes they control. This requires that
there be a systematic way of establishing communication
links between expert system elements and other model
components for rapid and valid model development.

Manuscript received May 7, 1993; revised February 13, 1994 and October
23, 1994. This work was supported in part by Motorola Inc., Scottsdale, AZ.

The authors are with the AI Simulation Group, Department of Electrical
and Computer Engineering, University of Arizona, Tucson, AZ 85721 USA.

Publisher Item Identifier S 1083-4427(96)00050-1.

Distributed Expert Systems: Expert systems may be spa-
tially and functionally distributed. This requires the ca-
pability to represent multiple expert system model com-
ponents, often copies of the same prototypes, within the
same simulation environment.
ZnterrzqtibiZity: Often, due to cost and resource limi-
tations, only one expert system agent is available to
handle requests from multiple sources. In this case, the
inferenicing has to be interrupted to process more urgent
requests first. Also inferencing may have to pause while
waiting for needed process data. Such interruptlresume
behavior should be representable in the simulation model.
Hierarchical Modular Construction: Expert systems
should be treated no differently from other simulation
models in building complex models from components in
a model base [SI-[lo].

These requirements must be satisfied in order to efficiently
develop simulation models with embedded expert systems in
a timely, cost-effective and valid manner [111.

To address these issues, this article presents a framework for
embedding expert systems within an object oriented simulation
environmenit. The basic idea is to create classes of expert
system models that can be interfaced with other model classes.
An expert system shell for the simulation environment is
developed and implemented in the DEVS-Scheme knowledge-
based design and simulation environment. This framework
combines artificial intelligence, system theory, and modeling
formalism concepts [SI-[lo], [12]. We show how this frame-
work S U P P I D ~ ~ S the construction of interruptible distributed
experl. systems as modular components of simulations models.
We also show how fractal (recursive) architectures for flexible
manufacturing that have been previously proposed [131 can
be specified using a recursive system entity structure concept
in DEVS-Scheme. We remark that the framework extends
well beyond manufacturing to support simulation modeling
of knowledge-based control in many other high autonomy
systems [141.

11. BACKGROUND
There has been an increasing volume of research that

attempts to combine artificial intelligence (AI) and simulation
in the last several years [15]-[18]. Expert or knowledge-
based systems have been applied to simulation to support the
modell building process, express behaviors of intelligent agent
components, and aid the modeller to execute and interpret
simulation runs [191.

1083427/96$05.00 0 1996 IEIZE

82 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART A SYSTEMS AND HUMANS, VOL. 26, NQ. 1, JANUARY 1996

ENTITIES

KNOWLEDGE-BASES INFERENCE-ENGWES
I inference-engine

SYNTHESIS-KB CLASSIFICATION-KB SYNTHESIS-IE CLASFICATIOME

ROBOT-IE

Fig. 1. Class hierarchy of DESE

Several knowledge-based simulation shells have been de-
veloped. The Knowledge Based Simulation System (KBS)
[20j uses expert systems to assist the simulationist during
the entire simulation process. Simulation Craft [21] offers the
services of three basic experts embedded in the system: Model
Building Expert, Model Execution Expert, and Model Analysis
Expert. The behaviors of the objects created for simulation are
expressed by production rules in ART-ROSS [22].

DEVS-Scheme [9], [lo], [12] is a knowledge-based shula-
tion environment that allows a modeller to keep models in an
organized library in modular form, thus supporting the hierar-
chical synthesis required in investigating design alternatives.
The DEVS-Scheme environment is based on two formalisms:
discrete event-system specification (DEVS) and system entity
structure. The DEVS formalism [8] is a theoretical, well
grounded means of expressing hierarchical, modular discrete-
event models. In DEVS, a system has a time base, inputs,
states, outputs, and functions. The system functions determine
next states and outputs based on the current states and inputs
[SI, [9], [23]. The system entity structure (S E 8 directs the
synthesis of models from components in a model base. The
SES is a knowledge representation scheme that combines de-
composition, taxonomic, and coupling relationships 191, [101.
Due to its object-oriented multiple inheritance capabilities,
subclasses of existing classes can be readily added to DEVS-
Scheme as desired. The reader is assumed to be familiar with
the basic concepts of DEVS and SES as expounded in the
growing literature in the area [lo].

In the next section we show how to program expert systems
in an object oriented language and how such expert systems
are embedded in DEVS models.

111. EXPERT SYSTEM SHELL FOR SIMULATION ENVIRONMENT
The Distributed Expert System Environment (DESE) is de-

signed and implemented in SCOOPS (Scheme Object Oriented
Programming System) [24 j. Distributed expert systems (DES)
can have distributed control (inference engines) and data bases
(rules and facts). DESE is a software package consisting of
object classes, methods and other utility functions for modeling
distributed expert systems. The DES models created under
the DESE are instances of generic classes developed so as
to exploit the benefits of object oriented programming such as
the ease of reuse, modularity, and extensibility [25]-[27].

ENTITIES

* test-condition
* execute-action

router-rules 0 0 0

- : class or instance variable
* :method

Fig. 2. Class hierarchy of rules.

ENTITIES

I
PARAMETERS - threshold - triple

* test-triple
ROUTER-FACTS

- : class or instrance variable
*: method

Fig. 3. Class hierarchy of facts.

Our framework is based on the distributed expert system
classes shown in Fig. 1. The most general class is entities
which provides utilities for manipulating instances (objects)
for its subclasses. The class entities can be shared among
all subclasses which belong to their own problem domain.
The highest level classes (most general classes) in DES are
knowledge-bases and inference-engines. The class knowledge-
buses is further specialized into synthesis-kb and classijication-
kb to distinguish between synthesis expert systems [28] and
classification expert systems [29], [30], two main types of
expert systems and inferencing methods. The corresponding
two inference engine classes are synthesis-ie and classijication-
ie. As expert systems for new applications are developed, new
classes may be added to the existing classes shown in Fig
1. For example, a class robot-ie required in modeling au-
tonomous robots was developed by inheriting and augmenting
the features of classijication-ie.

Rules and facts have their own class specialization hierar-
chies. As shown in Figs. 2 and 3, the leaf nodes represent
some example classes created for modeling of expert systems
which make decisions for routing transportation devices within
the fractal architecture model to be discussed later. The class
parameters provides uncertainty management utilities based
on [31j.

ZEIGLER et al.: KNOWLEDGE-BASED SIMULATION ENVIRONMENT

Instance

variable

83

Usage clas5

knowledge

bases

knowledge

bases

knowledge

bases

local-

memory-

name

inference

engines

inference

-engines

inference

-engines

used to access each DES’s set of fact instances

TABLE I
INSTANCE VARIABLES OF CLASSES IN DESE

kb-mmp. name of the instance of the knowledge base component

which is the same as the DES’s name

it-ie points to an inference table which stores the

inferencine state I

The objects involved in the definitions of a DES are
instances of knowledge-base, inference-engine, rules and fact
classes. An inference-engine instance does not directly access
rules and facts. Instead, it refers to an associated knowledge-
base which has links to the relevant rules and facts. In this
way, the inferencing methods of the class inference-engines
or its subclasses are generic (i.e., can be used for rules and
facts stemming from a variety of classes).

Fig. 1 also shows the instance variables of each class.
The roles of instance variables are explained in Table I. The
instance variable local-memory-name is used when a copy of a
DES is made. This copy can access its own list of facts which
is an independent copy of the original DES’s list of facts (this
enables the engine to keep track of the distinct inferencing
states). The instance variable it-ie points to the inference
table which stores the current inferencing information about a
DES including fired rules, goal state, attribute list, etc., where
the initial value of the attribute lists represents the current
dynamic status of the model components being controlled.
These (fired rules, goal state, attribute list, etc.) are the
contents of the information that should be sent between expert
system elements and model components. It is the it-ie or
inference table that establishes the static communication links
between expert system elements and model components being
controlled. The nature of the communication links are static
since the model components to be controlled by particular
expert system elements are predefined at system design level.
When there are multiple sets of expert system elements in the
model as the fractal architecture model presented in Section
VI, each set of expert system elements can have its own static
communication links to corresponding model components.

A. InterJacing DESE and DEVS-Scheme:
Atomic-Expert-Models

The interface of DESE to DEVS-Scheme is accomplished
by creating classes called atomic-expert-models. This class
(multiply) inherits methods and variables from the classes
knowledge-bases and atomic-models (Fig. 4). Thus, as illus-

KNOWLEDGIE-BASES ATOMIC-MODELS

- inference-engine - objeet-classea
-rUle-class

* inference * new-ohjeets * make-new-expert

I * * *

- ind-vim (sigma phase) - int-transfn - a t - t m i n - outputfn - We-advancefn
* make-copy

ATOMIC-EXPERT-MODELS - ind-vars (expert-core)
make-copy

- : instance-variables
: method

Fig. 4. Interface of DES to DEVS-scheme.

ATOMIC-EXPERT-MODEL

r DEVS-COMPONENT

1 - EXPERT-CORE I I
INFERENCE-ENG. h U

OWLWDGE-BASES

Y E : PI
L

Fig. 5. Composition of atomic-expert-model.

trated in Fig. 5, an instance of class atomic-expert-models
has both a1 DES (called as expert-core) and an atomic-model
(called as DEVS component). These models can be dupli-
cated by invoking the make-copy method which produces
isomorphic copies [32].

When a copy of atomic-expert-model is created, the state
variables of expert-core are initialized to the original model’s
expert-cone name which is extended by the duplicated model
name (in order to access different expert system component).
The newly created copies of fact instances have names which
are extensions of the name of the original model. Rules are
not copied. Instead, each copy of the model has pointers to
the original rules.

Besides the utilities just presented, all the methods and
utilities of DEVS-Scheme remain applicable. In this way,
inheritance of methods is exploited to extend hierarchical,
modular dliscrete-event model construction and simulation to
include distributed expert system components.

B. Interruptibility of Expert System Models
Recall that an important requirement for embedding expert

systems in a simulation environment is to provide intenupt-

84 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBEF3ETICS-PART A: SYSTEMS AND HUMANS, VOL. 26, NO. 1, JANUARY 1996

AB AB 6leyel-one

I I
I

AB-dm
I

I
AB 6 level-two

I
ABleveLone

A

B-SW

c AB

Fig. 6. System entity structure for recursive pruning.

ibility of the DES models. The interrupt capability is needed
when an urgent or high priority task arrives while the inference
engine is processing a less urgent one. When processing of
the current task is interrupted, its state is saved for use when
inferencing is resumed later. The nature of saved states .are
the value of parameters (or facts of rules) just before the
inferencing is interrupted. The values of parameters change as
the inferencing process proceeds toward goal states from initial
states through several intermediate states. Since these states are
represented by different values of parameters, the saved state is
the value of parameters of an intermediate state.To implement
this behavior, there is transfer of control from the expert-core
to the DEVS component after the end of each basic inference
cycle. A check is done to see if a high priority external input
event has been buffered by the DEVS component since the
last check was made. This is similar to cyclic polling of an
operating system interrupt. In this context however, the basic
inference cycle can be defined as the user desires, for example,
as the firing of a single rule, firing of a given number of nules,
passage of a predefined simulation time, or the attainmelit of
an inferencing subgoal. The cost of interruption lies in two
aspects. The first aspect is in computer computation time.
Whenever the interrupt occurs, all the values must be saved
so that the resuming inferencing process can start from the
interrupted states. The second aspect is in simulation time,
i.e., the actual delay time of the system due to the interruption
of the current process. This delay occurs, however, ma:y be
compensated by improved performance, which is the reason
for providing interrupt capability.

IV. RECURSIVE PRUNING
The system entity structure (SES) directs the synthesis of

models from components in a model base [9], [lo]. The
SES is a knowledge representation scheme that combines the
decomposition, taxonomy, and coupling relationships. This
section presents a design technique for generating recursive
system entity structures, where substructures may contain
copies of themselves. An operation called recursive pruning is
applied to the SES for generating hierarchical model structures
with properties similar to fractals. For example, Fig. 6 shows

I
A @level-lwo

I
AB @ level-th ree

ABOlevel-n
I

C6level-n A 6 level-n

Fig. 7. PES with recursive pruning.

an SES which specifies the recursive structure of model AB.
AB consists of A and B, where B is specialized into C or
AB, the root model itself. If we select C at B-spec node in
the pruning process, the model AB will have A and C as its
subcomponents and no recursive structure is generated.

On the other hand, truly recursive pruning is invoked when
AB is selected at E-spec node. As in a context free grammar,
recursion can be continued to an arbitrary desired depth.
Fig. 7 represents the PES resulting from n layers of recursion
terminated by the final selection of C from the B-spec node.
The figure also shows how a level-matched name extension
is generated each time the E-spec node is encountered during
pruning process. This enables self-similar models in different
levels to be distinguished. Fig. 8 illustrates the hierarchical
model represented by the PES in Fig. 7.

When there are several recursions in pruning process, it
gets more complicated. To alleviate such complexity, we
can prune in more easily managed, reusable stages. In delay
pruning, decisions can be delayed for later pruning sessions.
For example, Fig. 9 shows an intermediate stage in which only
the number of recursions of AB and the selection at the A-
spec node of level one were decided. The remaining A-spec
nodes were left undecided and delayed for later pruning. This
intermediate PES was further pruned, eventually to take the
form of the PES at the left lower side of the figure. Here all
possible selections have been made and the PES is ready for
transformation to simulatable form.

Delay Pruning is useful in constructing several similar
model architectures where only relatively small differences in
subsequent pruning are needed. This will be further illustrated
in the flexible manufacturing system example to be discussed
next.

v. FRACTAL ARCHITECTURE MODEL

This section describes the application of DES models and
recursive pruning to the fractal architecture for flexible manu-
facturing introduced by Tirpak et al. [13]. The purpose of this

ZEIGLER et al.: KNOWLEDGE-BASED SIMULATION ENVIRONMENT

AB @ level-two

AB@level-three-
0

0

0

r AB@ level-n 1

: atomic models

I I : c o a p l e d m ~

Fig. 8. Model AB pruned to have a recursive structure.

example is not to achieve a fully algorithmic development but
to provide a framework for showing the utility of the just
presented simulation concepts.

The fractal architecture to be considered includes multiple
expert systems in a family of modular, hierarchically con-
structed DEVS models. Although this example considers only
a limited aspect of the manufacturing process (transporter
routing), it generalizes readily to all phases of the manufac-
turing process. Since expert system components are treated no
differently than other DEVS models, once the SES and model
base have been constructed, it is relatively easy to generate
alternative model architectures.

A. SES Representation of Fractal Architectures

Typically, a flexible manufacturing system (FMS) consists
of a hierarchy of several workcells, each containing one or
more transporters, sub-cells, etc. Managing the flow of infor-
mation and control across this hierarchy can be quite complex.
Tirpak et. a1 [13] argue that, cast in a fractal, i.e., recursive
form, a model of an FMS admits of a natural hierarchical
decomposition of highly decoupled units with similar structure

SES -7

I A B 0 l w d - o ~

I AiBIed-n CBlevel-n

A
A i U

I

Fig. 9. Dehy pruning.

bfu

next layer bfus

. . .
I I

..

4 1
transporters muting reqw

I " ' muting info * I

mutingrequest ~, I

85

- materiainow - information flow

Fig. 10. Basic fractal unit architecture.

and control. The objective of such structuring is to manage the
structural icomplexity and coordination of an FMS hierarchy by
maximizing local functionality and minimizing global control.
Moreover. the recurring components can be designed within
the object-oriented paradigm so as to maximize reuse across

86 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART A SYSTEMS AND HUMANS, VOL. 26, NO. 1, JANUARY 1996

factory
I next layer bSus c

I '
I :

I !

j :
: a : :
: : : : ,,' Mu ;hopfloor 1 i ;

next laver bfus \

i \ i t

: n; \ ';
\ : : : ,

workstation 1 : : ; 3; workstalion 2
next layer bfus next layer bfus c

I ...

Fig. 11. Fractal architecture pruned to have five BFU's.

levels. Thus the FMS fractal architecture model represents a
hierarchical structure built from elements of a single basic
design called a basic fractal unit (BFU). The design of the
BFU incorporates a set of pertinent attributes that can fully
represent any level in the hierarchy [13].

Fig. 10 depicts a BFU specifically designed to embody
the elements which fully describe the structure of any level
in the model hierarchy. Included within a BFU is a set
of lower layer BFU's whose internal detail is hidden. The

routing controller (transporter router) sees these units as
stations to which transfer batches should be delivered. It is
the responsibility of transporter routers within the lower layer
BFU's to subsequently route the received batches.

For illustration, the structure of one of the pruned mod-
els constructed for simulation is shown in Fig. 11 (detailed
function of each model is described in [14]). The top of
the hierarchy is a factory. The factory is composed of two
shop floors. The first shop floor (shopfloorl) in turn has

ZEIGLER et al.: KNOWLEDGE-BASED SIMULATION ENVIRONMENT 87

ATOMIC-EXPERT-MODELS KNOWLEDGE-BASES INFERENCE-ENGINES

I1
t

ROUTER-RULES
I

t
ROUTER-FACTS

I

.. . ..
: s c o o p s ~

:inst.needd.as - : indicated Un U& provided bylnstana wriables - : instanx nri.Me
* :rn&od

Fig. 12. Classes in the construction of the expert router.

two workstations, workstation1 and workstation2. Whereas,
the second shop floor has two machines without having any
workstation. Workstation1 has two machines and workstation2
has just one machine.

The transporter router is an expert system model which
controls routing of transporters in each BFU. It routes trans-
porters among the lower layer BFU’s, output buffer and input
buffer. There are total of five such DES models (one for each
BFU) whose inferencing is based on their own sets of facts,
responding to the different dynamic conditions encountered at
each level (Fig. 11). The router and the rules used by its expert
system are depicted in Fig. 12 and Appendix A.

B. Fractal Architecture Modeling

The recursive SES for the fractal architecture is shown
in Fig. 13. The root of the SES, b e ! which represents the
model as being composed of BFU and ef, experimental frame
consisting of genr (generator model) and transd (transducer
model). Generator provides inputs to BFU, and transd collects
the outputs from BFU for the calculation of output statistics.
The BFU is specialized into two models, the nl (next lower
layer) and ma (machine). The component nl is decomposed
into div (transfer batch job divider), routerm (transporter
router), io (input/output buffer), transps (transporters) and
BFU’s, where transps and BFU’s are broadcast-models, for
which the number of components can be selected during
pruning. The io is again decomposed into in-io (input buffer)
and out-io (output buffer).

The fractal SES is pruned to yield a desired model archi-
tecture such as shown in Fig. 11. During recursive pruning,
recursion stops when a machine ma is selected. Fig. 14 shows
the PES for the architecture in Fig. 11. This architecture is
just one of many possible that can be generated from the SES
(Fig. 13). We can decide on an arbitrary number of hierarchi-
cal levels in constructing an architecture by terminating the
recursion at the desired depth. Actually the depth need not be
uniform. For example, the PES in Fig. 14 has three layers of
recursion for the left side and two layers for the right side.
The coupling at the BFU level is depicted in Fig. 15.

I I I

nl bfuTspec ma genr transd
I

div rOUterm io transps bfus

Ill 111
transp bfu

I

I
in-buf out-buf

bfu : basic fractal unlt
bel : btu and exp. frame
ni : neat layer
pu : processing unH
div : divider
routerm : router model

in-but : Input-buffer
out-bur : output-buffer
transp : bansporter
et : experimental frame
genr : generator
transd : transducer

Fig. 13.
frame) architecture.

System entity structure for bef (basic fractal unit with experimental

I I
I IranapOBfac

I I
I rn

rnaoestl mal est1 I

Fig. 14. Pruned system entity structure of BFU.

The PES in Fig. 14 does not show the experimental frame
part of the architecture. There are five BFU’s in this ar-
chitecture. The root is BFU@fuc (BFU for factory level).
The modells at the second level (shop floor level) BFU’s
are BFU@lsJD and BFU@sfl. The models BFU@wsO and
BFU@wsl are workstation BFU’s within BFU@sfO. There
are two transporters in BFU @sfl. All other BFU’s have just
one transporter. Self-similar models within different BFU’s are
distinguished by the extension attached after the “@” symbol,

88 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART A SYSTEMS AND HUMANS, VOL. 26, NO. 1, JANUARY 1996

bfu
I- bfus I

i l l I I i

0 0 .

..............., : ,...
i i

aut-obb in-ibl i int-t-ob

I t A
bfU PO*

in-t-ob : input poil from banspoter (leading request)
in-ib input port from bansporter (transfer batches)
out-ob : output port lo vanspotem (bansfar batches)
out-t-ob : w$ul port lo muter (routing request)

Rest of the port co~eet ions o r e f o d by r m h g ohme “phinwlporrs
Md the comecrions of io model (w f i g u r e) .

p o n - m : c o m c t i m (message conmu) h z k I l Pat fmm m R e C q m f c
W t i : wiprrt Pat to muter [don;, d

.................. : inforroatian&on *
-:materklfbw

Fig. 15. DEVS BFU model.

e.g., div@fac, div@s@, d ives f l , and so on. These extensions,
which are generated during the pruning process, reflect the
level and the module they belong to.

VI. DISCUSSION AND CONCLUSION
The interruptibility feature developed for the DES envi-

ronment is well illustrated by the transporter routing expert
system. The current positions and velocities of all transporters
within a BFU must be known when the transporter controller
(router) makes its routing decisions. This position infomation
is used to decide the departure time (in addition to the
destination) of a transporter. By controlling their departure
times collisions among the transporters can be avoided. When
necessary, the router model interrupts the inferencing process
and sends position and velocity query messages to all the
transporters. After obtaining the needed position information
it resumes the inferencing process. Not all expert system
shells offer this interrupt capability. However, its utility as
demonstrated through simulation should suggest the need to
include it in real world applications.

Alternate structures (reconfigured structures) of the fractal
architecture model can be generated through the recursive
pruning process. The alternate structures can have different
hierarchical levels and different numbers of sub-BFU’s and
transporters within a BFU. After pruning, the details of an
architecture model can be conveniently initialized prior to
simulation. Such rapid prototyping should greatly enhance
the ability to investigate alternative architectural solutions to
manufacturing problems in a timely manner.

VO PORTS: message contents

INPUT PORTS

irpair that ccf&ts of a model requesting muting and a jobinfo

M :transperter model name for signalinme current trnnspn ia done

e.g. (wsl @&info)

e.g. tmnsplOwsl

OVTPUT PORTS

cut: ajob-info

Job-W : Uob-rype, Job-id, botch-size, scherbrlc)
where zhe scherbrle Is Im Of model Mmes

Fig. 16.
model.

U0 ports and corresponding message contents of transporter router

All he component models in the fractal architecture model
base are reusable. Since these models are modular and stand-
alone components, reusability is achieved by specifying their
desired coupling in an SES for a given application. To aid
the user in understanding the models for valid reuse, complete
documentation should be provided of the U 0 ports of models,
the message structures on on these ports, and the behavioral
description of models (Figs. 16, 17 and the Appendix illustrate
such documentation.)

In conchsion, we have presented an approach to embedding
expert systems within an object-oriented simulation environ-
ment that facilitates the creation of classes of expert system
model elements that can be interfaced with other model com-
ponents. We have shown how interruptible distributed expert
systems can be defined as modular components of simulations
models. Their usefulness in fractal architectures for flexible
manufacturing, as proposed in the literature, was illustrated.
Simulation results forthis study are available in [14]. Finally,
we showed how such an architecture can be specified using a
recursive system entity structure. This recursive generation of
hierarchical structures is especially appropriate for design of
multilevel flexible factories using fractal architecture concepts.
However, the framework given in this paper extends well
beyond manufacturing to support simulation modeling of
knowledge-based control in many other systems for which
high autonomy is the desired objective.

APPENDIX
DESCRIPTION OF TRANSPORTER ROUTER MODEL

The model gets a routing request and sends the routing
decision after inferencing the router rules. This router model
can control more than one transporters.

A. Model Behavior
Initially the model is at passive state. When a inferencing

request comes from io model at input port in the model goes
to inferencing state. If routerm is at inferencing state when
a routing request arrives the routing request is placed in the
queue. The inferencing result is sent to a transporter through
output port out. The model returns to passive state when

ZEIGLER et al.: KNOWLEDGE-BASED SIMULATION ENVIRONMENT 89

passive

I
inference

I
t
0

Fig. 17. State transition diagram of transporter router model.

inferencing is done and the queue is empty (if queue is not
empty it inferences the next request and remains in inferencing
state). When the transporter finishes transporting the batch it
sends a done signal to routemz at input port in-t. The forward
chaining inferencing is performed for inferencing router rules.

B. Rule Description

The rules are written for rule-ordering combined with

The highest priority rule has the smallest rule number.The
context limited conflict resolution strategy.

parameter “request” is used for context limiting.

C. Rule Priorities

1) Route the continuing batches first (continuing batch is
the second batch).

2) If there are more than one batches waiting in the queue,
route the one at the place where a transporter exists.

3) If there is no continuing batch where a transporter
exists, route by FCFS base. In routing FCFS base, if
there is a noncontinuing batch (the first batch) whose
destination (a place the batch should be delivered) is
same as the place of selected continuing batch then route
this noncontinuing batch also in routing the selected
continuing batch. This case is called as extra-pickup.

4) If there is no continuing batch then route the noncontin-
uing batch at the place a transporter exists.

5) If there is no noncontinuing batch at the place a trans-
porter exists then route based on FCFS.

6) The destination of selected batch is waiting for the
second batch (continuing batch) to come then try the
next one in the queue. If there is none in the queue then
wait until a new routing request arrives.

When there are more than one transporters for a router to
control in a BFU the router inferences on each transporter
based on the above priorities. A single inferencing result is
selected based on the following priorities.

1) Select a inferencing result whose requested position is
the same as the transporter’s position (if more than one
choose the first returned inferencing result).

2) Select the one whose extra-pickup condition is true.
3) I f none of above then select the first re turned inferencing

result.

REFERENCES

[l] M. L. Law and W. D. Kelton, Simulation Modeling & Analysis. New
York McGraw-Hill, 2d ed., 1991.

[2] R. G. Pukin and C. R. Standridge, Modeling and Analysis of Manufac-
turing Systems. New York Wiley, 1993.

[3] H. Pierjreval and H. Ralamboundrainy, “A simulation and learing tech-
nique for generating knowledge about manufacturing systems behavior,”
Artificial Intelligence in Operational Research, G. I. Doukidis and R. J.
Paul, Eds. New York: Macmillan, 1992.

[4] S. D. Wu, “Artificial intelligence and scheduling applications,” Artificial
Intelligence; Manufacturing Theory and Practice, S. T. Kumara, Ed.
Norcross, GA: Industrial Engineering and Management Press, 1989.

[5] A. Kuaiak, “Expert systems and optimization in automated manu-
facturin.g systems,” Artificial Intelligence; Manufacturing Theory and
Practic,e, S. T. Kumara, Ed. Norcross, GA: Industrial Engineering and
Management Press, 1989.

[6] H. Matwo, J. S. Shang and R. S. Sullivan, “A knowledge-based system
for stacker crane control in a manufacturing environment,” IEEE Trans.
Syst. Man Cyber., vol. 19, no. 5, 1989.

[7] P. J. O’Grady and K. H. Lee, Intelligent Cell Control System for
Automasted Manufacturing. New York Taylor & Francis, 1989.

[8] B. P. Zeigler, Theory of Modeling and Simulation. New York Wiley,
1976.

[9] -, Multifacetted Modeling and Discrete Event Simulation, Orlando,
E: Academic, 1984.

[lo] -, Object-Oriented Simulation with Hierarchical, Modular Models,
San Diego, CA: Academic, 1990.

[111 S. Narayanan, D. Bodner, U. Sreekanth, T. Vovindaraj, L. McGinnis and
C. Mitchell, “Research in object-oriented manufacturing simulations:
An ass’essment of the state of the art,” Personal Communication of
Manuscript, 1993.

[12] J. W. Rozenblit, J. W. Hu, T. G . Kim and B. Zeigler, “Knowledge-based
design ;and simulation environment (KBDSE): Foundation concepts and
implementation,” J. Oper. Res. Soc., vol. 41, no. 6, 1990.

[13] T. M. Tirpak, S. M. Daniel, J. D. LaLonde and W. J. Davis, “A note on a
fractal ;architecture for modeling and controlling flexible manufacturing
systems,” IEEE Trans. Syst. Man Cyber., vol. 22, pp. 564-567, June
1992.

[141 T. Cho, “A hierarchical, modular simulation environment for flexible
manufacturing system modeling,” Ph.D. Dissertation, University of
Arizona, Tucson, 1993.

[15] J. G. Vaucher, “Views of modeling: Comparing the simulation and AI
approaches,” in Proc. SCS Multicon$ ArtiJicial Intelligence, Graphics,
and Sinwlation, pp. 3-7, 1985.

[16] T. I. Oren and B. P. Zeigler, “Artificial intelligence in modeling and
simulation: Directions to explore,” Simulation, vol. 48, no. 4, pp.
131-134, 1987.

[17] S. G. Tzafatas, “Knowledge engineering approach to system modeling,
diagnosis, supervision and control,” Simulation of Control Systems,
Selected Papers from the IFAC Symposium, pp. 15-22, 1987.

[18] C. Tsatsoulis, “A review of artificial intelligence in simulation,” SIGART
Bulletin, vol. 2, no. 1, 1991.

[19] R. O’Keefe, “Simulation and expert systems-A taxonomy and source
examples,” Simulation, vol. 46, pp. 10-16, 1986.

[20] Y. V. R. Reddy and M. S. Fox, “The knowledge-based simulation
system,” IEEE Software, vol. 3, pp. 26-37, Mar. 1986.

[21] V. B. Rax and J. B. Baskaran, “Simulation craft: An artificial intelligence
approach to the simulation life cycle,” in Proc. Summer SCS Con$, pp.

[22] M. E. McFall and P. Klahr, “Simulation with rules and objects,” in Proc.
1986 Winter Simulation Con$, pp. 470-473, 1986.

[23] A. I. Concepcion and B. P. Zeigler, “The DEVS formalism: Hierarchical
model ‘development,” IEEE Trans. Software Eng., vol. 14, no. 2, pp.
228-241, 1988.

[24] Texas Instruments, Austin, Texas, USA, PC-Scheme Manual, 1987.
[25] A. Yonezawa and M. Tokoro, Object-Oriented Concurrent Program-

ming.
[26] S. E. Kkene, Programming in Common Lisp Object-Oriented Systems,

Norwell, MA: Addision-Wesley, 1988.
[27] S. R. Alpert, S. W. Woyak, H. J. Shrobe and L. F. Arrowood, “Object-

oriented programming,” IEEE Expert, pp. 6-7, 1990.
[28] D. MclDermott, “RI: A rule-based configurer of computer systems,”

Art$ Intell., vol. 19, no. 1, 1982.
[29] B. G. IBuchanan and E. H. Shortliffe, Rule-Based Expert-Based Pro-

grams: The MYCIN Experiments of the Stanford Heuristic Programming
Project. Reading, MA: Addison-Wesley, 1984.

[30] R. Lindsay, B. G. Buchanan, E. A. Feigenbaum and J. Lederberg, Appli-
cation of Artificial Intelligence for Chemical Inference: The DENDRAL
Project. New York McGraw-Hill, 1980.

[31] B. P. Zeigler, “Some properties of modified dempster-shafer operators
in rule based inference systems,” Znt. J. General Systems, vol. 14, pp.
345-356, 1988.

773-778, 1986.

Cambridge, MA: MIT Press, 1987.

90 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART A SYSTEMS AND HUMANS, VOL. 26, NO. 1, JANUARY 1996

[32] T. G. Kim, “A knowledge-based environment for hierarchical modeling
and simulation,” Ph. D. Dissertation, University of Arizona, Tucson,
1988.

Bernard P. Zeigler (M 87SM87-F’94) received
the B. Eng. Phys. fromMcGil1 University, Montreal,
QuBbec, Canada, in 1962, the M.S.E.E. from the
Massachusetts Institute of Technology, Cambridge,
in 1964, and the Ph.D. from the University of
Michigan, Ann Arbor, in 1969.

He is currently Professor of Electrical and Com-
puter Engineering, University of Arizona, Tucson.
He has published over 200 journal and confer-
ence articles in modeling and simulation, knowledge
based systems and high autonomy systems. His

first book, Theory of Modeling and Simulation (Wiley, 1976) is regarded as
one of the foundational works in the field. A second book, MuZrifacetied
Modeling and Discrete Event Simulation (Academic Press, 1984), was given
the outstanding simulation publication award by TIMS College on Simulation
in 1988. Concepts developed in earlier works are implemented in the DEVS
simulation environment and applied to high autonomy issues in the latest book,
Object-oriented Simulation with Hierarchical, Modular Models: Iarelligenr
Agents and Endomorphic Systems (Academic Press, 1990). Dr. Zeigler’s
research has been supported by federal agencies, including NSF, NASA,
USAF, and the U.S. Army, as well as industrial sponsors, including Siemens,
McDonnell Douglas, and Motorola. He is currently heading a multidisciplinary
team to demonstrate an innovative approach to massively parallel simulation of
large scale ecosystem models within NSF‘s HPCC Grand Challenge initiative.

Tae Ho Cho received the Ph.D. degree in electrical
and computer engineering from the University of
Arizona, Tucson, in 1993, and the B.S. and M.S. de-
grees in electrical engineering from Sungkyunkwan
University, Seoul, Korea, and the University of
Alabama, Tuscaloosa, respectively.

He is an Assistant Professor in the Department of
Computer Science, Kyungnam University, Masan,
Korea. His research interests are in the areas of
modeling and simulation, factory automation, intel-
ligent control, artificial intelligence for simulation

methodology.

Jerzy W. Rozenblit (M’90) is an Associate Profes-
sor in the Department of Electrical and Computer
Engineering, University of Arizona, Tucson.

He specializes in modeling and computer sim-
ulation, knowledge-based system design, and arti-
ficial intelligence. His principal research activities
focus on the development of expert, computer-
based environments for engineering design support.
Dr. Rozenblit serves as Associate Editor of ACM
Transactions on Modeling and Computer Simulation
and a reviewer for National Science Foundation,

Research Council of Canada, and Australia. His research in design has been
supported by NSF, SRC, Siemens, McDonnell Douglas Corporation, and U.S.
Army Research Laboratories, where he was a Research Fellow. In 1994.1995,
he was Fulbright Senior Scholar and Visiting Professor at the Institute of
Systems Science, Johannes Kepler University, Austria.

