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Abstract- This article presents an approach to embedding 
expert systems within an object oriented simulation environment. 
The basic idea is to create classes of expert system models 
that can be interfaced with other model classes. An expert 
system shell is developed within a knowledge-based design and 
simulation environment which combines artificial intelligence and 
systems modeling concepts. In the given framework, interruptible 
and distributed expert systems can be defined as components 
of simulations models. This facilitates simulation modeling of 
knowledge-based controls for flexible manufacturing and many 
other autonomous intelligent systems. Moreover, the structure 
of a system can be specified using a recursive system entity 
structure (SES) and unfolded to generate a family of hierarchical 
structures using an extension of SES pruning called recursive 
pruning. This recursive generation of hierarchical structures is 
especially appropriate for design of multilevel flexible factories. 
The article illustrates the utility of the proposed framework 
within the flexible manufacturing context. 

I. INTRODUCTION 

OMPUTER simulation is one of the most widely used C techniques in manufacturing systems study [ 11-[3]. 
Rapid modeling of such systems can play a significant role in 
supporting timely determination of optimal manufacturing 
strategies in response to changing market requirements. 
However developing simulation models of large-scale complex 
systems is an arduous, time-consuming task. 

Simulation modeling of manufacturing and other systems 
has become even more demanding due to the incorporation 
in recent years of intelligent knowledge-based elements into 
their control functions. For example, expert systems have been 
developed for solving problems of varying complexities in 
areas such as planning, scheduling, controlling, maintenance 
and fault diagnosis [3]-[7]. Such knowledge-based systems 
present a host of specific requirements on an environment to 
aid the simulation model builder. Such issues include: 

Communication Links: Expert and knowledge-based con- 
trol elements have to interact efficiently with the manufac- 
turing or other processes they control. This requires that 
there be a systematic way of establishing communication 
links between expert system elements and other model 
components for rapid and valid model development. 
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Distributed Expert Systems: Expert systems may be spa- 
tially and functionally distributed. This requires the ca- 
pability to represent multiple expert system model com- 
ponents, often copies of the same prototypes, within the 
same simulation environment. 
ZnterrzqtibiZity: Often, due to cost and resource limi- 
tations, only one expert system agent is available to 
handle requests from multiple sources. In this case, the 
inferenicing has to be interrupted to process more urgent 
requests first. Also inferencing may have to pause while 
waiting for needed process data. Such interruptlresume 
behavior should be representable in the simulation model. 
Hierarchical Modular Construction: Expert systems 
should be treated no differently from other simulation 
models in building complex models from components in 
a model base [SI-[lo]. 

These requirements must be satisfied in order to efficiently 
develop simulation models with embedded expert systems in 
a timely, cost-effective and valid manner [ 111. 

To address these issues, this article presents a framework for 
embedding expert systems within an object oriented simulation 
environmenit. The basic idea is to create classes of expert 
system models that can be interfaced with other model classes. 
An expert system shell for the simulation environment is 
developed and implemented in the DEVS-Scheme knowledge- 
based design and simulation environment. This framework 
combines artificial intelligence, system theory, and modeling 
formalism concepts [SI-[lo], [12]. We show how this frame- 
work S U P P I D ~ ~ S  the construction of interruptible distributed 
experl. systems as modular components of simulations models. 
We also show how fractal (recursive) architectures for flexible 
manufacturing that have been previously proposed [ 131 can 
be specified using a recursive system entity structure concept 
in DEVS-Scheme. We remark that the framework extends 
well beyond manufacturing to support simulation modeling 
of knowledge-based control in many other high autonomy 
systems [ 141. 

11. BACKGROUND 
There has been an increasing volume of research that 

attempts to combine artificial intelligence (AI) and simulation 
in the last several years [15]-[18]. Expert or knowledge- 
based systems have been applied to simulation to support the 
modell building process, express behaviors of intelligent agent 
components, and aid the modeller to execute and interpret 
simulation runs [ 191. 
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ENTITIES 

KNOWLEDGE-BASES INFERENCE-ENGWES 
I inference-engine 

SYNTHESIS-KB CLASSIFICATION-KB SYNTHESIS-IE CLASFICATIOME 

ROBOT-IE 

Fig. 1. Class hierarchy of DESE 

Several knowledge-based simulation shells have been de- 
veloped. The Knowledge Based Simulation System (KBS) 
[20j uses expert systems to assist the simulationist during 
the entire simulation process. Simulation Craft [21] offers the 
services of three basic experts embedded in the system: Model 
Building Expert, Model Execution Expert, and Model Analysis 
Expert. The behaviors of the objects created for simulation are 
expressed by production rules in ART-ROSS [22]. 

DEVS-Scheme [9], [lo], [12] is a knowledge-based shula-  
tion environment that allows a modeller to keep models in an 
organized library in modular form, thus supporting the hierar- 
chical synthesis required in investigating design alternatives. 
The DEVS-Scheme environment is based on two formalisms: 
discrete event-system specification (DEVS) and system entity 
structure. The DEVS formalism [8] is a theoretical, well 
grounded means of expressing hierarchical, modular discrete- 
event models. In DEVS, a system has a time base, inputs, 
states, outputs, and functions. The system functions determine 
next states and outputs based on the current states and inputs 
[SI, [9], [23]. The system entity structure ( S E 8  directs the 
synthesis of models from components in a model base. The 
SES is a knowledge representation scheme that combines de- 
composition, taxonomic, and coupling relationships 191, [ 101. 
Due to its object-oriented multiple inheritance capabilities, 
subclasses of existing classes can be readily added to DEVS- 
Scheme as desired. The reader is assumed to be familiar with 
the basic concepts of DEVS and SES as expounded in the 
growing literature in the area [lo]. 

In the next section we show how to program expert systems 
in an object oriented language and how such expert systems 
are embedded in DEVS models. 

111. EXPERT SYSTEM SHELL FOR SIMULATION ENVIRONMENT 
The Distributed Expert System Environment (DESE) is de- 

signed and implemented in SCOOPS (Scheme Object Oriented 
Programming System) [24 j. Distributed expert systems (DES) 
can have distributed control (inference engines) and data bases 
(rules and facts). DESE is a software package consisting of 
object classes, methods and other utility functions for modeling 
distributed expert systems. The DES models created under 
the DESE are instances of generic classes developed so as 
to exploit the benefits of object oriented programming such as 
the ease of reuse, modularity, and extensibility [25]-[27]. 

ENTITIES 

* test-condition 
* execute-action 

router-rules 0 0 0 

- : class or instance variable 
* :method 

Fig. 2. Class hierarchy of rules. 

ENTITIES 

I 
PARAMETERS - threshold - triple 

* test-triple 
ROUTER-FACTS 

- : class or instrance variable 
*: method 

Fig. 3. Class hierarchy of facts. 

Our framework is based on the distributed expert system 
classes shown in Fig. 1. The most general class is entities 
which provides utilities for manipulating instances (objects) 
for its subclasses. The class entities can be shared among 
all subclasses which belong to their own problem domain. 
The highest level classes (most general classes) in DES are 
knowledge-bases and inference-engines. The class knowledge- 
buses is further specialized into synthesis-kb and classijication- 
kb to distinguish between synthesis expert systems [28] and 
classification expert systems [29], [30], two main types of 
expert systems and inferencing methods. The corresponding 
two inference engine classes are synthesis-ie and classijication- 
ie. As expert systems for new applications are developed, new 
classes may be added to the existing classes shown in Fig 
1. For example, a class robot-ie required in modeling au- 
tonomous robots was developed by inheriting and augmenting 
the features of classijication-ie. 

Rules and facts have their own class specialization hierar- 
chies. As shown in Figs. 2 and 3, the leaf nodes represent 
some example classes created for modeling of expert systems 
which make decisions for routing transportation devices within 
the fractal architecture model to be discussed later. The class 
parameters provides uncertainty management utilities based 
on [31j. 
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TABLE I 
INSTANCE VARIABLES OF CLASSES IN DESE 

kb-mmp. name of the instance of the knowledge base component 

which is the same as the DES’s name 

it-ie points to an inference table which stores the 

inferencine state I 

The objects involved in the definitions of a DES are 
instances of knowledge-base, inference-engine, rules and fact 
classes. An inference-engine instance does not directly access 
rules and facts. Instead, it refers to an associated knowledge- 
base which has links to the relevant rules and facts. In this 
way, the inferencing methods of the class inference-engines 
or its subclasses are generic (i.e., can be used for rules and 
facts stemming from a variety of classes). 

Fig. 1 also shows the instance variables of each class. 
The roles of instance variables are explained in Table I. The 
instance variable local-memory-name is used when a copy of a 
DES is made. This copy can access its own list of facts which 
is an independent copy of the original DES’s list of facts (this 
enables the engine to keep track of the distinct inferencing 
states). The instance variable it-ie points to the inference 
table which stores the current inferencing information about a 
DES including fired rules, goal state, attribute list, etc., where 
the initial value of the attribute lists represents the current 
dynamic status of the model components being controlled. 
These (fired rules, goal state, attribute list, etc.) are the 
contents of the information that should be sent between expert 
system elements and model components. It is the it-ie or 
inference table that establishes the static communication links 
between expert system elements and model components being 
controlled. The nature of the communication links are static 
since the model components to be controlled by particular 
expert system elements are predefined at system design level. 
When there are multiple sets of expert system elements in the 
model as the fractal architecture model presented in Section 
VI, each set of expert system elements can have its own static 
communication links to corresponding model components. 

A. InterJacing DESE and DEVS-Scheme: 
Atomic-Expert-Models 

The interface of DESE to DEVS-Scheme is accomplished 
by creating classes called atomic-expert-models. This class 
(multiply) inherits methods and variables from the classes 
knowledge-bases and atomic-models (Fig. 4). Thus, as illus- 

KNOWLEDGIE-BASES ATOMIC-MODELS 

- inference-engine - objeet-classea 
-rUle-class 

* inference * new-ohjeets * make-new-expert 

I * * *  

- ind-vim (sigma phase) - int-transfn - a t - t m i n  - outputfn - We-advancefn 
* make-copy 

ATOMIC-EXPERT-MODELS - ind-vars (expert-core) 
make-copy 

- : instance-variables 
: method 

Fig. 4. Interface of DES to DEVS-scheme. 
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Fig. 5. Composition of atomic-expert-model. 

trated in Fig. 5, an instance of class atomic-expert-models 
has both a1 DES (called as expert-core) and an atomic-model 
(called as DEVS component). These models can be dupli- 
cated by invoking the make-copy method which produces 
isomorphic copies [32]. 

When a copy of atomic-expert-model is created, the state 
variables of expert-core are initialized to the original model’s 
expert-cone name which is extended by the duplicated model 
name (in order to access different expert system component). 
The newly created copies of fact instances have names which 
are extensions of the name of the original model. Rules are 
not copied. Instead, each copy of the model has pointers to 
the original rules. 

Besides the utilities just presented, all the methods and 
utilities of DEVS-Scheme remain applicable. In this way, 
inheritance of methods is exploited to extend hierarchical, 
modular dliscrete-event model construction and simulation to 
include distributed expert system components. 

B. Interruptibility of Expert System Models 
Recall that an important requirement for embedding expert 

systems in a simulation environment is to provide intenupt- 
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Fig. 6.  System entity structure for recursive pruning. 

ibility of the DES models. The interrupt capability is needed 
when an urgent or high priority task arrives while the inference 
engine is processing a less urgent one. When processing of 
the current task is interrupted, its state is saved for use when 
inferencing is resumed later. The nature of saved states .are 
the value of parameters (or facts of rules) just before the 
inferencing is interrupted. The values of parameters change as 
the inferencing process proceeds toward goal states from initial 
states through several intermediate states. Since these states are 
represented by different values of parameters, the saved state is 
the value of parameters of an intermediate state.To implement 
this behavior, there is transfer of control from the expert-core 
to the DEVS component after the end of each basic inference 
cycle. A check is done to see if a high priority external input 
event has been buffered by the DEVS component since the 
last check was made. This is similar to cyclic polling of an 
operating system interrupt. In this context however, the basic 
inference cycle can be defined as the user desires, for example, 
as the firing of a single rule, firing of a given number of nules, 
passage of a predefined simulation time, or the attainmelit of 
an inferencing subgoal. The cost of interruption lies in two 
aspects. The first aspect is in computer computation time. 
Whenever the interrupt occurs, all the values must be saved 
so that the resuming inferencing process can start from the 
interrupted states. The second aspect is in simulation time, 
i.e., the actual delay time of the system due to the interruption 
of the current process. This delay occurs, however, ma:y be 
compensated by improved performance, which is the reason 
for providing interrupt capability. 

IV. RECURSIVE PRUNING 
The system entity structure (SES) directs the synthesis of 

models from components in a model base [9], [lo]. The 
SES is a knowledge representation scheme that combines the 
decomposition, taxonomy, and coupling relationships. This 
section presents a design technique for generating recursive 
system entity structures, where substructures may contain 
copies of themselves. An operation called recursive pruning is 
applied to the SES for generating hierarchical model structures 
with properties similar to fractals. For example, Fig. 6 shows 

I 
A @level-lwo 

I 
AB @ level-th ree 

ABOlevel-n 
I 

C6level-n A 6  level-n 

Fig. 7. PES with recursive pruning. 

an SES which specifies the recursive structure of model AB. 
AB consists of A and B, where B is specialized into C or 
AB, the root model itself. If we select C at B-spec node in 
the pruning process, the model AB will have A and C as its 
subcomponents and no recursive structure is generated. 

On the other hand, truly recursive pruning is invoked when 
AB is selected at E-spec node. As in a context free grammar, 
recursion can be continued to an arbitrary desired depth. 
Fig. 7 represents the PES resulting from n layers of recursion 
terminated by the final selection of C from the B-spec node. 
The figure also shows how a level-matched name extension 
is generated each time the E-spec node is encountered during 
pruning process. This enables self-similar models in different 
levels to be distinguished. Fig. 8 illustrates the hierarchical 
model represented by the PES in Fig. 7. 

When there are several recursions in pruning process, it 
gets more complicated. To alleviate such complexity, we 
can prune in more easily managed, reusable stages. In delay 
pruning, decisions can be delayed for later pruning sessions. 
For example, Fig. 9 shows an intermediate stage in which only 
the number of recursions of AB and the selection at the A- 
spec node of level one were decided. The remaining A-spec 
nodes were left undecided and delayed for later pruning. This 
intermediate PES was further pruned, eventually to take the 
form of the PES at the left lower side of the figure. Here all 
possible selections have been made and the PES is ready for 
transformation to simulatable form. 

Delay Pruning is useful in constructing several similar 
model architectures where only relatively small differences in 
subsequent pruning are needed. This will be further illustrated 
in the flexible manufacturing system example to be discussed 
next. 

v. FRACTAL ARCHITECTURE MODEL 

This section describes the application of DES models and 
recursive pruning to the fractal architecture for flexible manu- 
facturing introduced by Tirpak et al. [13]. The purpose of this 
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Fig. 8. Model AB pruned to have a recursive structure. 

example is not to achieve a fully algorithmic development but 
to provide a framework for showing the utility of the just 
presented simulation concepts. 

The fractal architecture to be considered includes multiple 
expert systems in a family of modular, hierarchically con- 
structed DEVS models. Although this example considers only 
a limited aspect of the manufacturing process (transporter 
routing), it generalizes readily to all phases of the manufac- 
turing process. Since expert system components are treated no 
differently than other DEVS models, once the SES and model 
base have been constructed, it is relatively easy to generate 
alternative model architectures. 

A. SES Representation of Fractal Architectures 

Typically, a flexible manufacturing system (FMS) consists 
of a hierarchy of several workcells, each containing one or 
more transporters, sub-cells, etc. Managing the flow of infor- 
mation and control across this hierarchy can be quite complex. 
Tirpak et. a1 [13] argue that, cast in a fractal, i.e., recursive 
form, a model of an FMS admits of a natural hierarchical 
decomposition of highly decoupled units with similar structure 

SES -7 

I A B 0 l w d - o ~  

I AiBIed-n CBlevel-n 

A 
A i  U 

I 

Fig. 9. Dehy pruning. 
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85 
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Fig. 10. Basic fractal unit architecture. 

and control. The objective of such structuring is to manage the 
structural icomplexity and coordination of an FMS hierarchy by 
maximizing local functionality and minimizing global control. 
Moreover. the recurring components can be designed within 
the object-oriented paradigm so as to maximize reuse across 
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Fig. 11. Fractal architecture pruned to have five BFU's. 

levels. Thus the FMS fractal architecture model represents a 
hierarchical structure built from elements of a single basic 
design called a basic fractal unit (BFU). The design of the 
BFU incorporates a set of pertinent attributes that can fully 
represent any level in the hierarchy [13]. 

Fig. 10 depicts a BFU specifically designed to embody 
the elements which fully describe the structure of any level 
in the model hierarchy. Included within a BFU is a set 
of lower layer BFU's whose internal detail is hidden. The 

routing controller (transporter router) sees these units as 
stations to which transfer batches should be delivered. It is 
the responsibility of transporter routers within the lower layer 
BFU's to subsequently route the received batches. 

For illustration, the structure of one of the pruned mod- 
els constructed for simulation is shown in Fig. 11 (detailed 
function of each model is described in [14]). The top of 
the hierarchy is a factory. The factory is composed of two 
shop floors. The first shop floor (shopfloorl) in turn has 
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Fig. 12. Classes in the construction of the expert router. 

two workstations, workstation1 and workstation2. Whereas, 
the second shop floor has two machines without having any 
workstation. Workstation1 has two machines and workstation2 
has just one machine. 

The transporter router is an expert system model which 
controls routing of transporters in each BFU. It routes trans- 
porters among the lower layer BFU’s, output buffer and input 
buffer. There are total of five such DES models (one for each 
BFU) whose inferencing is based on their own sets of facts, 
responding to the different dynamic conditions encountered at 
each level (Fig. 11). The router and the rules used by its expert 
system are depicted in Fig. 12 and Appendix A. 

B. Fractal Architecture Modeling 

The recursive SES for the fractal architecture is shown 
in Fig. 13. The root of the SES, b e !  which represents the 
model as being composed of BFU and ef, experimental frame 
consisting of genr (generator model) and transd (transducer 
model). Generator provides inputs to BFU, and transd collects 
the outputs from BFU for the calculation of output statistics. 
The BFU is specialized into two models, the nl (next lower 
layer) and ma (machine). The component nl is decomposed 
into div (transfer batch job divider), routerm (transporter 
router), io (input/output buffer), transps (transporters) and 
BFU’s, where transps and BFU’s are broadcast-models, for 
which the number of components can be selected during 
pruning. The io is again decomposed into in-io (input buffer) 
and out-io (output buffer). 

The fractal SES is pruned to yield a desired model archi- 
tecture such as shown in Fig. 11. During recursive pruning, 
recursion stops when a machine ma is selected. Fig. 14 shows 
the PES for the architecture in Fig. 11. This architecture is 
just one of many possible that can be generated from the SES 
(Fig. 13). We can decide on an arbitrary number of hierarchi- 
cal levels in constructing an architecture by terminating the 
recursion at the desired depth. Actually the depth need not be 
uniform. For example, the PES in Fig. 14 has three layers of 
recursion for the left side and two layers for the right side. 
The coupling at the BFU level is depicted in Fig. 15. 
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nl bfuTspec ma genr transd 
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div rOUterm io transps bfus 
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transp bfu 
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pu : processing unH 
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transp : bansporter 
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Fig. 13. 
frame) architecture. 

System entity structure for bef (basic fractal unit with experimental 

I I 
I IranapOBfac 

I I  
I rn 

rnaoestl mal est1 I 

Fig. 14. Pruned system entity structure of BFU. 

The PES in Fig. 14 does not show the experimental frame 
part of the architecture. There are five BFU’s in this ar- 
chitecture. The root is BFU@fuc (BFU for factory level). 
The modells at the second level (shop floor level) BFU’s 
are BFU@lsJD and BFU@sfl. The models BFU@wsO and 
BFU@wsl are workstation BFU’s within BFU@sfO. There 
are two transporters in BFU @sfl. All other BFU’s have just 
one transporter. Self-similar models within different BFU’s are 
distinguished by the extension attached after the “@” symbol, 
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Fig. 15. DEVS BFU model. 

e.g., div@fac, div@s@, d ives f l ,  and so on. These extensions, 
which are generated during the pruning process, reflect the 
level and the module they belong to. 

VI. DISCUSSION AND CONCLUSION 
The interruptibility feature developed for the DES envi- 

ronment is well illustrated by the transporter routing expert 
system. The current positions and velocities of all transporters 
within a BFU must be known when the transporter controller 
(router) makes its routing decisions. This position infomation 
is used to decide the departure time (in addition to the 
destination) of a transporter. By controlling their departure 
times collisions among the transporters can be avoided. When 
necessary, the router model interrupts the inferencing process 
and sends position and velocity query messages to all the 
transporters. After obtaining the needed position information 
it resumes the inferencing process. Not all expert system 
shells offer this interrupt capability. However, its utility as 
demonstrated through simulation should suggest the need to 
include it in real world applications. 

Alternate structures (reconfigured structures) of the fractal 
architecture model can be generated through the recursive 
pruning process. The alternate structures can have different 
hierarchical levels and different numbers of sub-BFU’s and 
transporters within a BFU. After pruning, the details of an 
architecture model can be conveniently initialized prior to 
simulation. Such rapid prototyping should greatly enhance 
the ability to investigate alternative architectural solutions to 
manufacturing problems in a timely manner. 

VO PORTS: message contents 

INPUT PORTS 

irpair that ccf&ts of a model requesting muting and a jobinfo 

M :transperter model name for signalinme current trnnspn ia done 
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e.g. tmnsplOwsl 

OVTPUT PORTS 

cut: ajob-info 

Job-W : Uob-rype, Job-id, botch-size, scherbrlc) 
where zhe scherbrle Is Im Of model Mmes 

Fig. 16. 
model. 

U0 ports and corresponding message contents of transporter router 

All he  component models in the fractal architecture model 
base are reusable. Since these models are modular and stand- 
alone components, reusability is achieved by specifying their 
desired coupling in an SES for a given application. To aid 
the user in understanding the models for valid reuse, complete 
documentation should be provided of the U 0  ports of models, 
the message structures on on these ports, and the behavioral 
description of models (Figs. 16, 17 and the Appendix illustrate 
such documentation.) 

In conchsion, we have presented an approach to embedding 
expert systems within an object-oriented simulation environ- 
ment that facilitates the creation of classes of expert system 
model elements that can be interfaced with other model com- 
ponents. We have shown how interruptible distributed expert 
systems can be defined as modular components of simulations 
models. Their usefulness in fractal architectures for flexible 
manufacturing, as proposed in the literature, was illustrated. 
Simulation results forthis study are available in [14]. Finally, 
we showed how such an architecture can be specified using a 
recursive system entity structure. This recursive generation of 
hierarchical structures is especially appropriate for design of 
multilevel flexible factories using fractal architecture concepts. 
However, the framework given in this paper extends well 
beyond manufacturing to support simulation modeling of 
knowledge-based control in many other systems for which 
high autonomy is the desired objective. 

APPENDIX 
DESCRIPTION OF TRANSPORTER ROUTER MODEL 

The model gets a routing request and sends the routing 
decision after inferencing the router rules. This router model 
can control more than one transporters. 

A. Model Behavior 
Initially the model is at passive state. When a inferencing 

request comes from io model at input port in the model goes 
to inferencing state. If routerm is at inferencing state when 
a routing request arrives the routing request is placed in the 
queue. The inferencing result is sent to a transporter through 
output port out. The model returns to passive state when 
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Fig. 17. State transition diagram of transporter router model. 

inferencing is done and the queue is empty (if queue is not 
empty it inferences the next request and remains in inferencing 
state). When the transporter finishes transporting the batch it 
sends a done signal to routemz at input port in-t. The forward 
chaining inferencing is performed for inferencing router rules. 

B. Rule Description 

The rules are written for rule-ordering combined with 

The highest priority rule has the smallest rule number.The 
context limited conflict resolution strategy. 

parameter “request” is used for context limiting. 

C. Rule Priorities 

1) Route the continuing batches first (continuing batch is 
the second batch). 

2) If there are more than one batches waiting in the queue, 
route the one at the place where a transporter exists. 

3) If there is no continuing batch where a transporter 
exists, route by FCFS base. In routing FCFS base, if 
there is a noncontinuing batch (the first batch) whose 
destination (a place the batch should be delivered) is 
same as the place of selected continuing batch then route 
this noncontinuing batch also in routing the selected 
continuing batch. This case is called as extra-pickup. 

4) If there is no continuing batch then route the noncontin- 
uing batch at the place a transporter exists. 

5) If there is no noncontinuing batch at the place a trans- 
porter exists then route based on FCFS. 

6 )  The destination of selected batch is waiting for the 
second batch (continuing batch) to come then try the 
next one in the queue. If there is none in the queue then 
wait until a new routing request arrives. 

When there are more than one transporters for a router to 
control in a BFU the router inferences on each transporter 
based on the above priorities. A single inferencing result is 
selected based on the following priorities. 

1) Select a inferencing result whose requested position is 
the same as the transporter’s position (if more than one 
choose the first returned inferencing result). 

2) Select the one whose extra-pickup condition is true. 
3) I f  none of above then select the first re turned inferencing 

result. 
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