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This paper proposes a means to unify the burgeoning
variety of modelling and knowledge representation
formalisms that are entering into practical use for
intelligent systems design. Conceptual frameworks
for intelligent system design recognise the critical
role of models to structure knowledge representation
and utilisation in such systems. However, they do
not provide support for employing the great variety
of formalisms available for this purpose. We propose
principles for unifying the various formalisms within
a systems theoretic framework whose implementation
is supported by the object-oriented paradigm. In this
approach, models can be developed as instances
of formalism-based classes of dynamic systems.
Moreover, such an approach facilitates combining
formalisms so that multiformalism models can be
constructed.

Keywords: Combined simulation; Intelligent system
modelling; Multiformalism modelling; Object-
oriented programming

1. Introduction: Systems, Models and
Cast

Systems theory owes its utility to the fact that real
systems can obey the same ‘system’ laws and show
similar patterns of behaviour although they are
physically very different [1]. This potential isomorpy
makes it possible to employ common representations
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to treat different real systems in a uniform manner
[2]. Various systems theories have been developed
[3-5] to provide such integrative frameworks. Pro-
gress in hardware and software technologies has
fostered the development of computer-based tools
to implement such systems theory frameworks. The
goal of a new field called Computer Aided Systems
Theory (CAST) [3,6] is to ‘bundle’ system theoretical
problem solving techniques into user-friendly, easy-
to-handle and easy-to-learn packages, thereby
increasing their accessibility to the practising engin-
eer.

This paper considers the role of CAST in support-
ing the design of intelligent systems. The dis-
tinguishing issue in designing such systems is how
to endow them with the knowledge required to
perform their missions. A great variety of modelling
and knowledge representation formalisms are
entering into practical use for this purpose. To
name a few: discrete event dynamic systems [7],
fuzzy logic [8] and neural nets [9] are being heavily
investigated in the control field, as are genetic
algorithms [10], qualitative simulation [11], case-
based planning [12,13], reasoning under uncertainty
[14] and non-monotonic logic [15] in artificial
intelligence.

Conceptual frameworks for intelligent system
design [16-18] recognise the critical role of models
to structure knowledge representation and utilisation
in such systems. However, they do not provide
guidance in employing the great variety of formalism
just enumerated for this purpose. Intelligent system
design requires a methodology for task decompo-
sition, assignment of engines to subtasks and the
integration of engines into execution hierarchies
matching the task decompositions. From the model-
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based architecture perspective, the task-performing
engines should have two components: an interpreter
that is specialised for tasks of a particular type and
a model that supplies the interpreter with the
specifics of the environment in which the task is to
be performed [19]. Such models are expressed in
the formalisms that have been enumerated above.
However, if the great variety of formalisms is to
be marshalled for systems design in this manner,
the systems designer must be able to gain access to
them in an organised way.

Computer simulation offers an attractive alterna-
tive to develop and test intelligent systems in
comparison to real test bed environments [20,
21]. To support such design, an ideal simulation
environment would enable the designer to exper-
iment with a variety of formalisms and models
expressed within them. This requires first, a simul-
ation environment that can accommodate new
formalisms, and second, a means of embedding and
integrating formalisms into it.

We propose principles for unifying the various
formalisms within a systems theoretic framework
whose implementation is supported by the object-
oriented paradigm. In this approach, models can
be developed as instances of formalism-based classes
of dynamic systems. Moreover, such an approach
facilitates combining formalisms so that multiformal-
ism models can be constructed. We present an
outline of this approach before describing it in
detail.

There are three basic formalisms for dynamic
systems: differential equations, discrete time and
discrete event system specifications (DESS, DTSS
and DEVS, respectively) [22]. We consider the
following ways to develop new formalisms based
on these fundamental ones:

1. Specialisation: restrict a formalism so that it
encompasses a narrower class of systems.

2. Generalisation: expand a formalism to encompass
a more inclusive class of systems.

3. Multiformalism combination: combine formal-
isms together into a new formalism.

These three kinds of processes arise in more specific
ways:

1. Embedding: interpret a new (relative to dynamic
systems) formalism as a specialisation of an
existing one. For example, we can formulate
Petri nets as special kinds of DTSS or DEVS.
This enables the new formalism to be employed
within the simulation environment in the same
manner that it would be employed outside it.

2. Closure under coupling: define a means of
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coupling systems expressed in a multiformalism
combination and generalise the constituent for-
malisms so that the result is closed under
coupling. Prachofer [23] has provided a very
useful example of this possibility. He defined
a scheme appropriate for coupling together
components from the basic DESS and DEVS
formalisms, and introduced the DEV&DESS
formalism to represent the closure under coupling
of the multiformalism.

The operations just outlined offer a powerful
means of expanding the expressive capabilities of
modelling and simulation environments within the
CAST framework. In the sequel we review the
background of systems and simulation theory needed
to develop tools to support such formalism exten-
sions. We then proceed to discuss our approach to
developing such tools based on object-oriented
implementation concepts.

2. Review of Systems Theory

Although a generally accepted definition of ‘system’
does not exist, we adopt the following definition: a
dynamical system is any formal construct which
provides general modelling concepts for various
kinds of disciplines [2,22,24]. We distinguish such
a mathematical object from any reality that it may
represent, using the term real system for the latter.

A real system can be represented at varying levels
of abstraction. According to the abstraction level,
the system manifests itself in different ways and we
use different terms to speak about it. By system
behaviour we denote the way the system appears
on its boundary, i.e. how it reacts to inputs by
producing outputs. The interior of a system is
described by the system state and the system dynamic.
The system state represents the condition the system
is in at a particular time and the system dynamic
governs the way this state changes over time. When
the state is represented by one or more variables
we speak of state variables. The dynamic of the
system can be determined by a state transition
function which depends on the input and the state
itself. How the state and current input appear as
output is determined by the outpur function.

When we identify several elements corresponding
to parts of the real world we speak of system
elements and the state of each of the elements is
represented by the system element state. The
interdependencies of these elements contributing to
the system dynamic is called the system structure.
When we go further and represent parts of the
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system by systems themselves and their interdepen-
dencies by coupling these parts, we speak of system
components and system couplings. Such a system is
called multicomponent system or coupled system.

2.1. Levels of System Description

Zeigler [22] defines a hierarchy of levels of system
descriptions stratified according to their level of
abstraction.

Each level introduces more concreteness into the
description of the internal structure of a system. In
the following we review this hierarchy, starting from
the most abstract level and proceeding to the most
concrete level of description.

Level 0. Observation Frame O = (T, X,Y). Using
an observation frame O we just define the system
boundary. The set X is the input interface in the
form of a set of inputs and Y is the output interface
in form of a set of outputs. The set T is called the
time base. It is used to order events and represents
the observation times, i.e. points in time when we
are able to define system behaviour and system
dynamic. Usual time bases are the real numbers
(the continuous time base) or the integers (a discrete
time base).

Level 1: Relation Observation IORO = (T, X,0,Y,
R). The relation observation IORO defines the
behaviour of the system using a relation R of
possible input values at particular times and their
possible output values. Hence there is not an
unequivocal mapping of input values to outputs but
for a particular input there can be several different
outputs.

Level 2: Function Observation I0FO = (T, X,0,Y,
F). This level is equal to level 1 with the only
difference being that the relation R is partitioned
into a set F of functions f and each function defines
a unique output response for a particular input
segment. Hence, when we have knowledge of the
function f, we have knowledge of the ‘initial state’
to get a unique output response.

Level 3: An I/O System (or Dynamical System) 10S
= (T,X,02,0Q,Y,8\). Whereas in level 0 to 2 it only
was possible to represent the system boundary and
the system behaviour, in this level we are able now
to model the interior of the system. For that we
use the set of states Q. The global state transition
function 8 realises the dynamic of the system. The
output function X is used to model how the current
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state manifests at the output interface. Level 3
incorporates our most important modelling concept
for simulation modelling and therefore we also
denote an I/O system dynamical system.

Level 4: Structured 1/0 System SIOS = (T, X, 0, 0,
Y,8,M). A structured I/O system is an I/O system
where the set of inputs, outputs and states are
multivariable sets, i.e. we are able to identify several
input, output and state variables.

Level 5: Coupled System CS = (T, X,Y, Components,
Coupling). In a coupled system the interior of
the system is represented by identifying several
component systems and the couplings between
them. The coupling defines how the coupled system
inputs and the component system outputs are
mapped into component system inputs and coupled
system outputs. The state of the coupled system is
built up by the states of all component systems.
The system dynamic is built up by the dynamic of
the components and the coupling scheme. To qualify
as a system, a coupled system has to have a
description at level 3, i.e. there must be a way to
associate with it a dynamical system description
(see [22] for details on how this is done).

3. System Formalisms

Systems theory affords an integrative view of the
diversity of formalisms. Indeed, it regards formalism
as a modelling language used to define (actually
select) a subset of systems. Once the subset is
identified, a formalism need express only those
features that distinguish a particular system from
others in the same subset [25]. In this sense, a
system formalism can be regarded as a short-hand
means of system specification.

Basic system formalisms are differential equation
system specifications (DESS), discrete time system
specifications (DTSS), and discrete event system
specifications (DEVS). The levels of system descrip-
tions and the system formalisms build a crossproduct
relation where every combination of system formal-
ism and system level represents a possible modelling
concept. Table 1 depicts the constraints imposed
by the system formalisms at level 3, the input/output
system level. The formalisms impose appropriate
constraints on the time base, input, output and
state sets, and input, output and state trajectories.
Such constraints circumscribe the systems that can
be members of the subset specified by a formalism.
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Table 1. Constraints imposed by system formalisms at
the input/output system level.

B. P. Zeigler et al.

Table 2. Constraints imposed by system formalisms at
the coupled system level.

Differential Discrete Discrete Differential Discrete Discrete
equations time event equations time event
systems systems systems systems
Time base Continuous  Discrete Continuous Time base Continuous  Discrete Continuous
T reals integers reals T reals integers reals
Basic sets Real vector  Arbitrary Arbitrary Basic sets Real vector  Arbitrary Arbitrary
X, Y,0 spaces X, Y, Q spaces
Input Piecewise Sequences Discrete Input Piecewise Sequences Discrete
segments constant event segments constant event
segments segments
State Continuous  Sequences Piecewise Components Differential  Discrete Discrete
trajectories constant equation time event
Output Continuous  Sequences Piecewise systems systems systems
trajectories constant Couplings No No No direct
algebraic algebraic feedbacks
cycles cycles

4. Modular, Hierarchical Model
Construction

Level 5 of the above hierarchy provides a powerful
means of constructing models. This is to build them
from simpler component models using coupled
system specifications [22,26]. However, it is not
always the case that coupling component models
results in a well-defined system (i.e. one having a
level 3 description). This motivates us to consider
subsets of systems that support convenient coupled
system construction and to further elaborate existing
definitions [22] for this purpose.

We say that a subset of systems supports coupling if
any coupled system specification, whose components
are all members of the subset, has a description at
level 3. A subset of systems is closed under coupling
if it supports coupling and the coupled system,
described at level 3, is a member of that subset as
well.

In explanation, a subset of systems that supports
coupling has the property that coupled models built
from its members can be themselves employed as
components in larger coupled systems. This property
makes it possible to construct hierarchical systems.

A subset of systems that is closed under coupling
has the useful property that all hierarchical models
constructed from it are members of the subset as
well. This makes it possible to design engines, such
as abstract simulators [25], that uniformly handie
such hierarchical models.

Table 2 summarises the constraints imposed by
system formalisms at the coupled system level of
description. Note that in addition to constraints on
the elements introduced at level 3, there are
constraints on the components as weill as on the
couplings. These constraints are necessary to ensure

that the formalisms are closed under coupling. (If
the components and couplings in a coupled model
adhere to the restrictions imposed by the formalism,
then the coupled model will itself fall within the
subset delineated by the formalism.) Since the
subsets are characterised by the formalism, the only
way to prove that such closure holds for a formalism
is to demonstrate that an arbitrary coupled model
adhering to the constraints is ‘equivalent’ to a
system specified in the formalism (see [22,25] for
details).

5. SES Representation for System
Specification Formalisms

The system entity structure (SES) [27] is a means
to represent a system to be modelled within a
certain choice of system boundary. It is a tree-like
graph that encompasses the boundaries, decompo-
sitions and taxonomic relationships that have been
perceived for the system being modelled. In the
graph we distinguish three kinds of nodes: entity,
aspect and specialisation. An entity signifies a
conceptual part of reality. An aspect names a
possible decomposition of an entity. A specialisation
node facilitates the representation of variants of an
entity and has similar semantics to the concept of
specialisation in the object programming paradigm.
Each of these nodes can have attached variables.
Typically, the SES is employed to specify families
of design or simulation models, generated by pruning
a master SES, for a given application domain. Here,
we employ SES concepts to provide the knowledge
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representation structure needed to manage system
specification formalisms.

An SES-based knowledge-representation scheme
to facilitate management of system specification
formalisms is shown in Fig. 1.

The root entity of this SES, called the canonical
SES, represents a system specification S ~ either an
atomic or a multicomponent one. The constituents of
S are sets and functions. Sets can be classified into
Input, Output, Time and State as well as sets of
component names or other, modeller-defined
objects (e.g. an initial state in a finite state machine
specification). Each set can be characterised by the
type of its elements, e.g. reals, integers, etc.
In addition, by selecting the system-specification
variant from the Set entity, we can include a set of
system specifications as elements of the system
specification §. This recursive representation affords
the construction of formalisms for multicomponent
systems. (Note that we must relax the strict hierarchy
SES axiom as in Cho [28] in order to facilitate such
a process.)

The functions are: Transition, Output, and Seg-
ment, /O Translation, or Other (i.e. modeller-
defined functions, for example, a rate of change,
or time advance function). Each function has an
attribute type which characterises its properties, e.g.
step, piecewise continuous, piecewise differentiable,
etc.

In a system design process, the canonical SES of
system specifications is used in conjunction with
an SES for an application domain. Pruning the
application SES generates a composition tree for the
system model specification. The model composition
tree is a tree whose leaf nodes are system specifi-
cations. These are atomic components which are
coupled in a hierarchical manner. In the next
section, we show how both atomic and coupled
level specification can be constructed based on the
composition tree and canonical SES representations.

As an example, Fig. 2a depicts a composition
tree of a two component system. Assume, that the
two subsystems S, and S, are connected in series
as shown in Fig. 2b.

The resultant is the system S whose formal
specification should now be derived. Let us illustrate
this process at both atomic and the coupled system
level. !

5.1. Atomic System Specification

To generate a formal specification for the atomic
components S; and S,, design constraints and
requirements as well as physical characteristics of
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the model’s counterpart (i.e. real system) are
analysed. This is done in order to determine
appropriate types of sets and functions needed to
characterise dynamic behaviour of the components
under consideration.

Assume that both subsystems exhibit an inherently
discrete behaviour. The modeller may prune the
canonical SES so that the DEVS formalism is
selected for formalism-type. Since DEVS is formal-
ism that will be known to the system, its constituent
slots will be automatically retrieved leaving only
their values to be supplied by the modeller. Such
a selection might be presented in the form of a
frame as follows.

Pruned Canonical SES for an Atomic Specification
(DEVS)

FRAME §,
System Specification Type: Atomic
Constituents: Sets, Functions
Sets:
Time: Type of Elements: Reals
Input X: Type of Elements: Discrete
Events
Output Y: Type of Elements: Reals
State S: Type of Elements: Nonnega-
tive Integers
System Specification: None
Component: None
Other: None
Functions
Transition:
Internal: 8,: S—§
External: §.,. QX X—>S
where Q) is given by:
Q = {(s,e)lsES,0=<e=ta(s)}
Output: \:S—Y
Other: Time advance function:
1a:5—R, ..
Input-to-Output Translation: None
Segment: None

Choosing a DEVS atomic model for component
S, a frame S, is developed similar to that of frame
S1. We now proceed to illustrate how to construct
a coupled level system specification.

5.2. Coupled System Specification

The specification of the system § can be obtained
by coupling the specifications of its components.
Since the DEVS formalism is closed under coupling,
the modeller may prune the canonical SES to select
the DEVS formalism for the multicomponent level
specialisation.
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S
S, S;
a
S
[ |
I—-PS, 1 S, I
- ]

Fig. 2. a A simple composition tree. b System $ as a coupling
of subsystems S, and §,.

Pruned Canonical SES for a Multicomponent Speci-
fication (DEVS)
FRAME §
System Specification Type: Multicomponent
Discrete Event Network
Constituents: Sets, Functions
Sets:
Component:
D - component names S,, S,
I - influences: S, : {}, S>: {$;}
System Specifications:
Frame §,
Frame S,
Functions:
Coupling (Input-to-Output
Translation):
Zy3t Yi—X, defined as the identity
mapping
Other:
Select: 2°—D, defined by linear
order
(1,2)

Note that in environments such as DEVS-Scheme
[20] and STIMS [29] the slots in the above frames
can be filled in a manner that is user-oriented yet
very close to their ‘pure’ mathematical forms.

Note also that constraints such as those given in
Table 2 must be added to the SES to ensure the
compatibility of component formalisms with the
coupled system formalism at the next higher level.

6. Object-Oriented Implementation of
the Canonical SES

We have now shown how the canonical SES can
structure modelling formalisms. Thus we are ready to
show how the implementation of the multiformalism
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modelling and design environment can be supported
by the object-oriented programming paradigm. We
show how the SES-based knowledge representation
scheme can be mapped to CLOS [30] employing its
class definitions, multiple inheritance, and methods
of different method roles.

In a realisation of the multiformalism modelling
and design framework outlined above, we must
represent the following:

System formalisms

Constituents of a formalism (sets and functions)

Formalism specialisation hierarchy

Constraints and restrictions defined for the for-

malism and its constituents

® Dynamic characteristics of the formalisms (its
simulation algorithm in a multiformalism
framework)

® Operations defined for the formalisms.

6.1. System Formalisms

Mapping of system formalisms and models to an
object-oriented environment is straightforward. The
formalisms can be represented by class definitions,
the models of the different formalisms are realised
by instances of the particular formalism classes.

6.2. Constituents of the Formalism

The constituents of the models are defined by slot
(also called instance variable) definitions. Oper-
ations on these slots in the different formalism
classes can be unified by the generic function
concept of CLOS. Here the polymorphism of
methods in the object-oriented paradigm shows its
usefulness. Operations can have different realis-
ations in different formalisms. For example, comput-
ing a state transition can be represented by one
generic function having a different method
implementation in each formalism class. This has
the advantage that the model specification is always
done through a well defined interface. Also the
actual implementation of the system formalisms and
their constituents is hidden from the user and may
be subject to change without affecting the user
interface.

6.3. Formalism Specialisation Hierarchy

To represent the specialisation relationship of the
different formalisms, the object-oriented paradigm
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offers the concept of class hierarchy with multiple
inheritance. However, due to the diversity of the
formalisms and their great variety of interrelations,
such a representation proves to be difficult. Mittel-
mann and Praehofer [31] proposed a knowledge
representation scheme where the constituents of
system formalisms are implemented by abstract
classes whereas the actual formalisms are defined
through dynamic class definitions multiply-inheriting
from the appropriate constituent classes. They also
provide an algorithm to set up an inheritance
hierarchy which minimises the duplication of slots

B. P. Zeigler et al.

inner classes are abstract classes used to hold
common slots and methods of subclasses. The real
classes can be created by dynamic class definitions
as outlined in [31], i.e. not all combinations of
abstract classes defining coupling and type specific
features have to be created in advance, but can be
created on demand.

The class hierarchy developed in this way can be
reflected in the structure of the canonical SES, so
that pruning the latter results in a set of superclasses
that combine to compose a dynamic class.

b e Tt e e ke

and methods in a complex specialisation hierarchy, .

an objective of any object-oriented implementation. ~ 6-4. Defining Formalism-Specific Constraints .

This approach (see Appendix) works by listing all .

the classes together with all their slots and methods. ~ Methods can also be used to implement the con- .

Then from this set of all slots and methods, common  straints defined on the constituents of system {

slots and methods of different classes are identified  formalisms. This will be outlined in the following. ¢

and they are taken out to be implemented in Meyer [32] discusses the use of assertions that 1

common abstract superclasses only once and then  check the situation before and after method invo- i

inherited to all the classes needing the slot or  cations. The precondition expresses the assumptions ’

method. This algorithmic approach has been  that are required to hold whenever the method is f

employed in the design of the formalism class  called. The postcondition describes the properties €

hierarchy of the STIMS modelling and simulation  that must hold after the method has been executed. t

environment [29] with great success. STIMS is In CLOS, so-called “before™ and “after” methods r

an environment implementing DEV&DESS-based  can be employed to specify pre- and postconditions. C

multiformalism modelling and simulation. Itsformal- ~ In particular, before methods can express precon- t
ism class system constitutes of about 40 classes  ditions to check the fulfilment of the constraints on

organised in a complex inheritance hierarchy. With  formalism constituents. Since before methods are 6
the algorithmic approach the handling of the class  specified independently from the primary method,

inheritance has become manageable. the specifications of the preconditions can be 1

Figure 3 shows part of an example formalism class  distributed in the class hierarchy and implemented it

hierarchy implementing several different coupled in the most appropriate abstract class. Also since it

system formalisms. Actual system formalism classes ~ before methods are not shadowed (in other words si

are the classes at the bottom of the hierarchy. The  are unconditionally inherited) and are called in a

! tl

coupled model . !

| oo

- coupling scheme . . ; «

xplicit~coupled-model-i-___~ dynamic class definitions T 0
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ernel-model Yo ] e

cellular model A ; -

hypercube-model t::devs—explicit-coupled-model i a

= ’ {
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—— type-specialization _,_-—"’ 3 .

x ; si

devs-coupled-model ' 1 4 ty

dess-coupled-model :___,-” dev&dess-explicit-coupled-m j g|

dtss-coupled-model s : W

"" fc

dev&dess-coupled-model < i
t

Fig. 3. Example system formalism implementation employing dynamic class definitions. ) a
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most-specific-first order, it is guaranteed that all
constraints which apply to a particular formalism
are tested before the primary method is called.

For example, the function to specify a coupling
in a multiformalism coupled model consists of a
primary method which actually stores the coupling.
Of course, this primary method is specialised on
the class implementing the coupling, e.g. in class
explicit-coupled-model in the formalism class hier-
archy above. However, formalism-specific con-
straints apply for couplings. For example, in a
multiformalism coupled model, a coupling from a
continuous port to a discrete port is not allowed.
Therefore, a before method specialised to the class
dev&dess-coupled-model checks for this constraint
violation. As a second example, recall that direct
feedback loops are not allowed around discrete
event models. This constraint is tested in a before
method specialised on class devs-coupled-model and
is also inherited by coupled dev&dess-coupled-
model. Hence, before calling the primary method
for adding a coupling to a model of class dev&dess-
expliciticoupled-model, the two just-mentioned
before methods would be called to check their
respective constraint preconditions. Only when these
checks are passed, would the primary method add
the coupling.

6.5. Simulation Algorithms

The separation of the knowledge base from the
inference engine is a commonly accepted practice
in Al programming. In systems modelling and
simulation, the separation of the model specification
and the simulation engine is accomplished by
the abstract simulator concepts for DEVS models
introduced in [25] and its multiformalism extensions
introduced in [23] and [33]. The abstract simulator
for modular hierarchical models is a composition
of objects reflecting the structure of the model.
Coordinators are associated with the coupled mod-
els, simulators are associated with the atomic
models. In [33] special coordinators and simulators
are introduced to do the numerical integration of
continuous states. The simulation task is carried
out by passing messages between these objects.

Object-oriented implementation of the abstraction
simulator concepts is straightforward. The various
types of coordinators and simulators associated with
different model formalisms, are implemented by
class definitions. In CLOS, a generic function
with method implementations specialised on the
formalism class of the model can be used to create
the appropriate simulator or coordinator object for
a particular component model.
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Simulation execution by message passing is
implemented by generic function calls. The polymor-
phism of generic functions efficiently supports the
simulation of multiformalism-coupled models. In
simulation of a multiformalism-coupled model, the
coordinator of the multiformalism-coupled model
sends and receives messages to and from its
subordinate simulators and coordinators. Due to
the uniformity of interface, it does not have to know
the types of the subordinates in this interchange. Of
course, this requires that the subordinate simulator
and coordinators adhere to the same generic function
interface, i.e. they have to send and receive the
same generic functions. Of course the reaction of
the subordinates to the different messages received
will depend on the type of the simulator or
coordinator as expressed in the different method
implementations in the simulator and coordinator
classes. This scheme is a typical example of task
delegation often employed in object-oriented pro-
gramming. The sending coordinator does not want
to know what the subordinates actually do with the
messages, only that they will react appropriately.

6.6. Integration of New Formalisms

We now outline how an object oriented implemen-
tation designed according to the above principles
supports the integration of a new formalism into an
existing multiformalism framework. To accomplish
this, we have to implement the new formalism with
all its constituents and operations as a class and
integrate this class into the existing formalism class
hierarchy. In addition, we have to provide the
simulation concepts to allow models of the new
formalism as components in a multiformalism simul-
ation model.

The first task can be accomplished when the
inheritance hierarchy is designed employing the
approach of [31] (and reviewed in Appendix A).
All slots and methods of the new formalism class
have to be listed. Discovering its common slots and
methods, the new formalism will find its appropriate
place in the inheritance hierarchy. Its place will
reflect its relations to the other formalisms. The
difficulty of this task is greatly reduced when the
to-be-integrated formalism can be embedded into
an existing atomic model formalism. This means that
a mapping is provided to translate the constituents of
the new formalism into the constituents of the
existing one. In this case, many of the new slots
employed in the existing atomic model formalism
may be inherited by the new formalism and only
those which must be specialised to represent the
embedding need be redefined for the new formalism.
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To accomplish the second task, special simulation
classes have to be implemented. These classes have
to realise the special behaviour of the formalism
models in a multiformalism-coupled model. They
have to be able to react to the same messages as
all other component simulators or coordinators.

Formally, this requires that the expanded set of.

systems (specified by the existing and newly added
formalism) be closed under coupling. Once again,
the task is simplified for the case where a formalism
is embedded in an existing atomic model formalism.
In this case, only the simulator for atomic models
of the new class need be designed - the coordinator
for the superior multiformalism coupled model need
not be changed. An example of such proof of
closure and the associated coordinator design is that
developed for the DEV&DESS formalism and is
discussed in detail elsewhere [23,29].

7. Conclusions

This paper has demonstrated the utility of adopting
the formal systems approach to integrating classes
of systems formalisms within a modelling and design
environment. Especially when applied to intelligent
system design, the number of formalisms being
proposed by researchers is growing tremendously.
Our approach is intended to make such formalisms
attractive to researchers, in the first instance, and
eventually to designers of an integrated environ-
ment. An alternative approach, the multimodelling
framework suggested by Fishwick [34], is to provide
an environment that allows the integration of
different formalisms at different levels of abstraction.
Such an environment, however, attempts to unify
the various formalisms and support multiformalism
modelling, viz. the ability to employ different
formalisms within different components of the same
model. Although we have not provided a working
prototype of such an environment in this paper, we
have cited some that exist, and we have demon-
strated that the conceptual principles and the object-
oriented programming environments to implement
them are at hand.
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Appendix A. Organisation of
Inheritance Hierarchies

In the following we will outline an approach to set
up an inheritance hierarchy and to avoid code
redundancies introduced in [31]. The approach solves
the following problem: a set of classes and all their
features are given. Find the optimal inheritance
hierarchy so that common features of different classes
are only implemented once. Definitions:

® Real classes are classes from where instances
should be created.

® Abstract classes are classes from where no
instances are created. These classes are intended
to hold common features of real classes.

Features are slots and methods defined for a class.
The algorithm works as follows in six steps:

1. Determine the set rC = {r,r,,...,r,,} of real
classes.

2. For each real class r; determine the set
F,; = {f1,....fn} of features fi, f,, ..., f, for the
class.

3. Compute the transitive closure K of F,q, ..., F,,

with respect to the intersection operation N, i.e.
with all F,; pairwise and groupwise compute the
intersection until no new sets are gained.
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F‘ig. A.1. Graph of subset relation.

4. Each element of K must be implemented in one
class.

5. The inheritance hierarchy is determined by the
subset relation.

6. Draw a diagram of the inheritance hierarchy and
remove all features which already are inherited
from a superclass.

In the following, an example is shown to clarify
the idea.

1. W, X, Y and Z denote our real classes.
2. These classes own the following features:

W Fy = {abc}) X: Fy = {abe} Y : Fy =
{b,e,f} Z: FZ = {b’f}

3. The transitive closure K : FyNFy = {a,b),
meFyz {b}, meFZ = {b}, FXnFy:= {b,e},
FXﬂFZ = {b}, FyﬂFZ = {b,f}.

K =
{{a,b.c}.{a.be},{b.e.f},{ab}.{b} (be},{b.f}}

4. Besides W, X, Y and Z, we need three more
classes to implement the subsets {ab},{b},{be}.

5. Figure A.1shows a diagram of the class hierarchy
where inheritance relation is determined by the
subset relation.

6. Remove all features which are already inherited
from any superclass to obtain the final class
hierarchy (Fig. A.2). The remaining features are
the features which have to be implemented in
the class.

{b}

{a/ {!} \{f}=z
NSNS

=W {}=X {1=Y
Fig. A.2. Optimal inheritance hierarchy.



