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Abstract--This paper reviews the concepts of a theory of modelling and simulation that relate to the 
validation enterprise. The theory provides a vocabulary, concepts, and mathematically rigorous tools 
with which to tackle problems in simulation model validation. We have implemented a hierarchical, 
distributed, object-oriented, and knowledge-based modelling and simulation environment in Ada. 
The environment, DEVS-Ada, provides portability, a standard model specification language, the 
means to manage a model repository, the ability to reuse models, and distributed simulation. We 
show how DEVS-Ada can exploit the parallelism intrinsic in the multiple execution of simultaneous 
experiments required for model validation. Faster execution of  such a computationally intensive 
process reduces the bottleneck that validation imposes in the model development process and enables 
greater confidence to be achieved in the results. We also discuss the desirability of a more global view 
of  validation which requires parallel symbolic analysis of a newly created model relative to existing 
models in a model base. 

1. INTRODUCrlON 

SIMULATION MODEL validation entails a multidimen- 
sional set of issues (Bald & Sargent, 1984; Oren, 1984; 
Sargent, 1984) whose difficulty poses hard challenges 
for computerized support of the validation process 
(Oren, 1986; Sargent, 1986). Due to its dimculty, such 
support has greatly lagged behind the explosive growth 
of model development tools. The discrepancy is even 
more remarkable if one includes CASE tools in the 
latter--indeed, the situation is endemic: We can now 
build much more sophisticated systems than we can 
be sure of working. Yet simulation is expected to play 
an ever increasing role in system design, and the rec- 
ognition has grown that the credibility of a simulation 
model is  a t  the core of any recommendations or con- 
clusions based on it. Indeed, such recognition has been 
formulated in requirements by government for ac- 
crediting models as part of all simulation-based tasks. 
So that while the issues involved are difficult, the need 
is urgent for greatly enhanced computerized support 
of validation. 

This paper takes the position that computerized 
support of validation is achievable only on the foun- 
dation of a firm framework of formal concepts offering 
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a standard vocabulary and definition. Such a frame- 
work need not capture all the dimensions of the prob- 
lemwindeed, reality is forever beyond such formali- 
zation. However, such a framework must characterize 
the core of the validation enterprise and offer a set of 
standards to guide top-down development of computer- 
based support tools for this core. 

We have implemented a hierarchical, distributed, 
object-oriented, and knowledge-based modelling and 
simulation environment (KBMSE) in Ada. The envi- 
ronment, a migration ofDEVS-Scheme (Zeigler, 1990) 
to Ada, provides portability, a standard model speci- 
fication language, the means to manage a model re- 
pository, the ability to reuse models, and distributed 
simulation. The DEVS (Discrete Event System Spec- 
ification) and SES (System Entity Structure) formalisms 
provide methods for identifying the parallelism inher- 
ent in the system model which may be exploited by 
the mapping of model subcomponents to different 
physical processors. To maximize the exploitation of 
the identified parallelism a combination of the DEVS 
formalism and Time Warp (TW) mechanism is used. 

In this paper, we first review the Theory of Modelling 
and Simulation (Zeigler, 1976) as it relates to model 
validation. Then we discuss the concepts and imple- 
mentation of DEVS-Ada. Two kinds of validation pro- 
cedures are then considered, local and global. We show 
how DEVS-Ada can exploit the parallelism intrinsic 
in the multiple execution of simultaneous experiments 
required for local validation. Faster execution of such 
a computationally intensive process reduces the bot- 
tleneck it imposes in the model development process 
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and/or enables greater confidence to be achieved in the 
results. We also show how global validation requires 
parallel symbolic analysis of a new model relative to 
the models in a model base. Parallel computing may 
render such validation feasible--where it is currently 
noticeable by its absence. 

2. REVIEW OF THE THEORY OF 
MODELLING AND SIMULATION 

Since the 1970s progress has been made on a theory 
of modelling and simulation (Zeigier, 1976) in which 
core concepts of model validity were formulated. In 
subsequent development, key validation concepts were 
clarified and formalized (Zeigler, 1984). Recently, an 
operational environment was completed which imple- 
ments the theoretical framework and can serve as a 
test-bed for design and evaluation of automated vali- 
dation tools (Zeigier, 1990). 

The core validation concepts of the theory take off 
from a point similar to the informal characterization 
of the validation process given in the call for papers 
for a recent conference on simulation validation (Zeig- 
ler & Christensen, 1990): 
1. identification of the variables to compared or pre- 

dicted; 
2. definition of the metric by which goodness of fit of 

prediction and reality are to be evaluated and the 
uncertainty of the goodness of fit; 

3. identification of the domain of applicability of the 
simulation. 
This concept of validity is in accord with the most 

basic level of validity identified by the theory--repli- 
cative validity, employing observable input/output be- 
havior. In the following, we briefly summarize the con- 
cepts of the theory of relevance to validation. 

The modelling and simulation enterprise concerns 
three basic objects (Fig. 1): 
• the real system, in existence or proposed, which is 

regarded as fundamentally a source of data; 
• the model, which is a set of instructions for generating 

data comparable to that observable in the real system. 

modelling Simulation 

FIGURE 1. Entities and relations in simulation. 

The structure of the model is its set of instructions. 
The behavior of the model is the set of all possible 
data that can be generated by faithfully executing the 
model instructions; 

• the simulator which exercises the model's instruc- 
tions to actually generate its behavior. 

The basic objects are related by two relations: 
• the modelling relation, linking real system and model, 

defines how well the model represents the system or 
entity being modelled. In general terms a model can 
be considered valid ifthe data generated by the model 
agrees with the data produced by the real system in 
an experimental frame of interest; 

• The simulation relation, linking model and simu- 
lator, represents how faithfully the simulator is able 
to carry out the instructions of the model. 
There is a crucial element which has been brought 

into this picture--the experimental frame. This cap- 
tures how the modeller's objectives impact on model 
construction, experimentation, and validation. 

An experimental frame specifies the limited cir- 
cumstances under which a model is to be applied and/ 
or experimented with. We separate the experimental 
frame from the model itself and require that the ex- 
perimental frame provide a model-independent spec- 
ification of the certain elements of the validation pro- 
cess. As rationale for the separation, consider that it 
should be possible to compare two models or a model 
and its real system counterpart under the same inde- 
pendently specified conditions--given by an experi- 
mental frame. As a consequence it is possible to con- 
sider the behavior of a model within more than one 
experimental frames. 

Separation of models and experimental frames ne- 
cessitates the ability to combine them together so that 
the behavior of a model in a frame is well defined. 
Prior to this we need to be able to ascertain when a 
model-frame combination can work: we call this the 
"applicability" relation. Based on mathematical sys- 
tems theory, the theory of modelling and simulation 
provides the mathematical apparatus to characterize 
such applicability and the behavior of model-frame 
pairs where the frame is applicable to the model. 

An experimental frame is given a mathematical 
structure as in Figure 2. It specifies: 
• input variables--which will be stimulated in any 

model which accommodates the frame (i.e., to which 
the frame is applicable); 

• output variables--which will be observed in a frame- 
applicable model; 

• run control variables--which will also be observed 
but are there for experimentation control rather than 
output behavior observation; 

• input segments: the allowable sequences (time seg- 
ments) of inputs that will be sent to the model; 

• run control segments: constraints of the combina- 
tions of run control variables (including temporal 
constraints) which capture the domain of operation 
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required by the frame. Input-output behavior of a 
model in this frame is accepted only so long as the 
run control constraints are not violated; 

• summary mappings: statistical and other aggrega- 
tions of the input-output behavior into reduced and 
manageable spaces. 
The elements of an experimental frame are derived 

from the objectives of the modeHer in relation to a 
frame-applicable model. For example, what input 
variables are we requiring that the model have? how 
are they to be stimulated? what output variables should 
the model have? what summary statistics are of interest? 
what is the domain of operation required? Often run= 
control variables in a frame are identified with state 
variables in a frame-applicable model, and run control 
constraints therefore formalize, in a model-independent 
manner, the "domain of validity" required of a frame- 
applicable model. This is because such a domain of 
validity specifies the operating region in which the 
model is valid. The frame specifies a required operating 
region. The applicability definition is such that a frame 
is applicable to a model only if the model has the req- 
uisite run control (state) variables. A model which is 
valid with respect to a real system in the frame (see 

below) will therefore match the real system's behavior. 
in the operating domain required by the frame--this 
will be its domain of validity. 

Using the formal definitions of Figure 2 and the 
underlying systems theory notions, (Zeigier, 1984) 
characterized the applicability relation and the I/O (in= 
put/output) behavior of a model/frame pair. Other 
concepts are developed for this purpose including the 
"derivability" partial order on frames and the "scope 
frame" of a model (the most inclusive frame in the 
derivability order applicable to a model). 

Experimental frames are given concrete form as il= 
lustrated in Figure 3. A frame is realized by a system 
that is a coupling of three kinds of components: 
• generator: generates the input segments sent to a 

model; 
• acceptor: continually tests the run control variables 

for satisfaction of the given constraints (in other 
words, makes sure that the model is not straying from 
the intended operating region; 

• transducer: collects the input-output data and com- 
putes the summary mappings 
In the DEVS simulation environment (Zeigier, 

1990) such frame components are constructed using 

An E x p e r i m e n t a l  F r a m e  is a S t r u c t u r e  

< T, I, O, C, f21,f~C, SU > 

w h e r e  

T t ime  b a s e  

I i n p u t  va r i ab l e s :  

O 

w h i c h  wil l  be  s t i m u l a t e d  in a n y  model  w h i c h  
a c c o m m o d a t e s  the  f r a m e  (i.e., to wh ich  the  
f r a m e  is appl icable) .  

o u t p u t  v a r i a b l e s :  wh ich  will  be  o b s e r v e d  in a f r a m e - a p p l i c a b l e  
mode l  

C r u n  con t ro l  va r i ab le s :  w h i c h  wil l  also be  o b s e r v e d  b u t  are  t h e r e  
for  e x p e r i m e n t a t i o n  cont ro l  r a t h e r  t h a n  
o u t p u t  b e h a v i o r  o b s e r v a t i o n  

i n p u t  s egmen t s :  the  a l lowable  s e q u e n c e s  ( t ime  s e g m e n t s )  of 
inpu t s  t h a t  wil l  b e  sen t  to  the  model  

~2C r u n  con t ro l  segments :  

SU s u m m a r y  mappings :  

c o n s t r a i n t s  of t he  c o m b i n a t i o n s  of r u n  
con t ro l  v a r i a b l e s  ( inc lud ing  t e m p o r a l  
cons t r a in t s )  w h i c h  c a p t u r e  t he  d o m a i n  of 
o p e r a t i o n  r e q u i r e d  b y  t he  f rame.  I n p u t -  
o u t p u t  b e h a v i o r  of a model  in this  f r a m e  is 
accepted  on ly  so long as the  r u n  con t ro l  
c o n s t r a i n t s  are  no t  v io la ted .  

s ta t i s t ica l  and  o t h e r  aggrega t ions  of the  
i n p u t = o u t p u t  b e h a v i o r  in to  r educed  and  
m a n a g e a b l e  spaces.  

FIGURE 2. Mathematical slbructure of experimental frame. 
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Experimental Frame 

, . . .  - -  Transducer I .  

FIGURE 3. DEVS experimental frame components. 

the same apparatus as are the models. This provides a 
powerful operational basis for maximal exploitation of 
the concepts. 

The theory distinguishes three types of validity: 
• replicative: I/O behavior of model in frame agrees 

with that of the real system in frame; 
• predictive." model can be initialized to state corre- 

sponding with real system so that subsequent I/O 
behaviors agree; 

• structural: morphism between structures of real sys- 
tem and model 
As indicated above, replicative validity is the starting 

point for validation. To determine agreement of be- 
haviors we need to specify goodness-of-fit metrics with 
a tolerance for judging agreement. Thus the experi- 
mental frame concept includes specification of output 
variables and domain of validity but goodness-of-fit 
criteria are considered part of a comparison process. 
Zeigler (1984) shows how these types of validity form 
a hierarchy of increasing difficulty. 

In practice the complete infinite set of system and 
model behaviors cannot be compared. An actual test 
plan can obviously deal with only a finite subset. The 
larger this subset, the more confidence that might be 
had that the result of a test plan is the same as would 
be obtained from the infinite full complement of be- 
havior sets. Statistical validation procedures, narrower 
interpretations of the above, provide operational mea- 
sures of such confidence measures. 

This computationally intensive requirement for in- 
creasing validation confidence begs for high perfor- 
mance computer architectures. In the sequel, we discuss 
how distributed simulation can help. 

3. CONCEPTS AND IMPLEMENTATION 
OF DEVS-ADA 

We begin with a brief review of concepts needed for 
our discussion of distributed validation. 

3.1. System Entity Structure Formalism 

A SES represents the specific decomposition, taxo- 
nomic, and coupling knowledge for a system necessary 

to direct model synthesis (Rozenblit, 1985a; Zeigler, 
1987). Formally, a SES is defined as a labelled tree with 
attached variable types that satisfies five axioms: alter- 
nating mode, uniformity, strict hierarchy, valid broth- 
ers, and attached variables. A detailed description of 
the axioms is given in Zeigier (1984). There are three 
types of nodes in an SES---entity, aspect, and special- 
ization, which represent the three types of structural 
knowledge. The entity node which may have several 
aspects and/or specializations corresponds to a model 
component which represents a real world object. The 
aspect node (single vertical line in the labeled tree of 
Fig. 4) represents one decomposition, out of many 
possible, of an entity. The children of an aspect node 
are entities, distinct components of the decomposition. 
The specialization nodes (a double vertical arrow in 
the labeled tree of Fig. 4) represent ways that a general 
entity may be categorized into special entities. As 
shown in Figure 4, attached to an aspect node is a 
coupling scheme, and to the specialization node a se- 
lection constraint. The coupling scheme specifies ex- 
ternal input, external output, and internal couplings 
of the system and its components; the selection con- 
straint designates the rules to select a specialized entity 
from a generalized one in the pruning process. The 
coupling scheme is necessary to carry out the hierar- 
chical synthesis of the simulation model. 

A multiple entity is a special entity that consists of 
a collection of homogeneous components. These com- 
ponents are called a multiple decomposition of the 
multiple entity. The aspect of such a multiple entity is 
called a multiple aspect (the triple vertical line in the 
labeled tree of Fig. 4). The representation of such a 
multiple entity is as follows. A multiple entity Battal- 
ions and its component battalions are represented by 
Battalions, three vertical lines, and Battalion from the 
top down. Notice, instead of presenting all Battalions 
for Battalions' components, only one Battalion is 

Mechanized 
Infantry Brigade 

Brigade 
Head Quarters B i r n s  

Coupling 
Scheme 

Selection B a l r  li°n 
.~ 3attalion-Spec Constraint 

I I 
Mechanized Armor 

Infantry Battalion 
Battalion 

FIGURE 4. System entity structure. 
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placed in the labeled tree. The number of Battalions is 
specified by a variable, which is attached to the multiple 
aspect node. 

Through the use ofa"prune"  operation, a substruc- 
ture of the SES may be extracted by selecting one aspect 
and/or one specialization for each entity in the SES. 
The modeller using the "prune" operation for example, 
could reduce the SES shown in Figure 4 to a compo- 
sition tree containing the structure information nec- 
essary to model a Mechanized Infantry Brigade. By 
using the selection constraint rules the appropriate 
mixture of Mechanized Infantry and Armor Battalions 
would be selected. The "transform" operation synthe- 
sizes a model hierarchically from the components in a 
model base. The details of DEVS-Scheme including 
hierarchical model structuring operations, reusability 
of structures, and other facilities may be found in Kim 
(1988). 

3.2. Discrete Event System Specification Formalism 

The Discrete Event System Specification (DEVS) For- 
malism provides methods for specifying systems in a 
modular and hierarchical manner (Zeigler, 1976, 
1984). The specification of modular discrete event 
models requires the adoption of a different view than 
that supported by traditional simulation languages. As 
with modular specifications in general, the model must 
be viewed as possessing input and output ports through 
which all interactions with its environment must pass. 
In the discrete event case, events determine the values 
which appear on the ports. To be more specific, when 
external eventsarising outside the model are received 
on its input ports, the system specification must define 
how it responds to them. Additionally, internal events 
arising within the model change its state, as well as 
manifest themselves as events on the output ports to 
be transmitted to other model components. The DEVS 
formalism requires the specification of (1) basic models 
from which larger ones are built, and (2) how these 
models are to be coupled together in a hierarchical 
manner. 

3.3. DEVS Abstract Simulators 

The simulation of DEVS models is based upon the 
abstract simulator concepts developed as a part of the 
DEVS theory (Zeigler, 1984). The abstract simulator 
concepts are implemented by three specialized classes 
of  processors: Simulators, Coordinators, and Root-co- 

Processors 

Root-Co-Ordinators Co-Ordinators 
FIGURE 5. Abstract simulator classes. 

M 0 

I M1 M 2 

FIGURE 6. Multicomponent model structure. 

ordinators as shown in Figure 5. The root-coordinator 
is the manager of the overall simulation process and 
is linked to the coordinator of the highest level coupled- 
model. Simulators and Coordinators are used to handle 
the atomic-models and coupled-models respectively. 
The simulation process is managed by passing messages 
between the s ~  processors. The messages carry 
internal event, external event, and synchronization in- 
formation. 

We now illustrate the abstract simulator concept in 
more detail. Assume that a multicomponent model 
Mo as presented in Figure 6 is expressed in DEVS for- 
malism. An abstract simulator of Mo takes the form 
depicted in Figure 7, where both Sm and $2 are abstract 
simulators and Co is a coordinator. The simulators S~ 
and $2 interpret the dynamics of model components 
M~ and M2, respectively. The coupling of S,, $2 and 
the coordinator Co is itself an abstract simulator that 
simulates model Mo. As we can see there is a one-to- 
one correspondence between the structure of a model 
and that of the simulator. We now briefly characterize 
the principles underlying the operation of the abstract 
simulator and coordinator. The reader is referred to 
(Zeigler, 1984, 1990) for further details. 

The operation of an abstract simulator involves 
handling four types of messages: (., t), (x, t), (o, t), and 
(y, t). In each case the right hand element is the global 
clock time of the simulated DEVS. When the simulator 
receives a (., t) message it undergoes its internal state 
transition and sends a (y, t) message to its coordinator 
as an output. When it receives an (x, t) message, it 
undergoes external event-generated transition. The 
message (o, t) causes the simulator to send its output 
as a (y, t) message to its coordinator. 

A coordinator carries out its task by mediating three 
types of messages sent to and from the parent coor- 
dinator (Fig. 8); denoted (., t), (x, t), and (o, t), where 
the right hand element is the global clock time of the 

Coordtnm(x 1 

51 $2 I 

FIGURE 7. Abstract Simulator for model Mo. 
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( * 1 

I * ) ( * ) 

RGURE 8. Propagation of (,,  t) and (o, t) messages. 

simulated DEVS. The (,, t) message indicates that the 
node should be activated, that is, an internal event 
should be executed in the DEVS at the node. When a 
(., t) message is received by a coordinator, it is trans- 
mitted to the subordinate representing the imminent 
component DEVS. When (,, t) is received by a leaf 
simulator, it carries out the internal transition function 
of the associated DEVS. Upon receipt of a (., t), a 
coordinator also transmits (o, t) messages to each of 
its subordinates requesting that each returns the output 
corresponding to its associated DEVS. 

Finally, the (x, t) message indicates that an external 
event x is arriving at the global time t. When received 
by a coordinator, it consults its external-to-internal 
coupling table to generate appropriate (x, t) messages 
to the subordinates influenced by the external event. 
When (x, t) is received by a leaf simulator, it directly 
executes the external transition of the associated DEVS. 

Although, an (x, t) message may originate from the 
environment external to the overall model, it may also 
be generated within the hierarchy. The latter occurs 
when the outputs received by an activated coordinator 
in response to its (o, t) request, are collected together 
using its internal-to-external coupling table. The re- 
suiting (y, t) message is sent to the parent coordinator 
for distribution as (x, t) messages to the subordinates 
influenced by the activated coordinator. 

3.4. Time Warp 

The Time Warp Mechanism is a synchronization 
strategy based upon the virtual time paradigm (Jeffer- 
son, 1985). An event in Time Warp is defined as a set 
of input messages which arrive for a specific object at 
a particular simulation time. Time Warp ensures that 
all causally linked events are eventually executed in 
the proper sequence. An event is considered to be 
causally linked if it is dependent upon the occurrence 
of another event earlier in time. However, events that 
are not causally linked may be executed in any order. 
If two causally linked events are initially executed out 
of order, the mechanism will undo all erroneous side 
effects and redo the events in the correct sequence. 
Thus, Time Warp embodies the optimistic synchro- 
nization approach relying upon process rollback as the 

fundamental synchronization tool for distributed sim- 
ulation (Hontalas, Jefferson & Presely, 1989). Rollback 
is implemented using negative messages to undo the 
erroneous events. 

3.5. Classic-Aria 

The DEVS Formalism and its associated abstract sim- 
ulator concepts have been implemented in Classic-Ada 
(Christensen, 1990). Classic-Ada provides the Ada 
programming language the ability to support inheri- 
tance, message passing, and dynamic binding, which 
in addition to the data abstraction and information 
hiding features already present creates a complete ob- 
ject-oriented programming environment (Bach, 1989; 
Cox, 1986; SPS, Inc., 1989; Stroustrup, 1988). Classic- 
Ada incorporates the semantics and syntax of Ada and 
adds the necessary language constructs to support dy- 
namic binding and inheritance. The output of the 
Classic-Ada Processor is pure Ada which may be corn- 
pried using any validated Ada compiler. 

3.6. The Distributed Simulation Environment 

The DEVS formalism as mentioned earlier provides a 
very powerful method of decomposing large-scale sys- 
tems into hierarchical and modular components and 
identifying parallelism inherent in the simulation 
models. However, the DEVS abstract simulator does 
not provide the means to exploit all the parallelism 
during simulation. The Time Warp mechanism pro- 
rides means for the parallel execution of simulations 
but does not offer the modeller any support in decom- 
posing a system into the required logical processes nor 
for identifying the parallelism in the system. By ex- 
ploiting the strengths of DEVS and Time Warp an ef- 
ficient, portable, knowledge-based distributed model- 
ling and simulation environment has been imple- 
mented. 

The combination of DEVS and Time Warp uses the 
DEVS formalism for model behavior specification, the 
SES formalism for model structure specification, and 
the abstract simulator concepts for simulation man- 
agement on the physically distinct processors. The 
Time Warp mechanism implemented using Ada task- 
ing is used to manage the global distributed simulation 
process, interprocessor communications and processor 
synchronization (Christensen, 1990). 

4. MODEL VALIDATION IN DEVS-ADA 

As indicated above, our concept of validation is a 
triadic relation: model M is valid with respect to real 
system R in experimental frame E. We shall further 
distinguish between local and global validation pro- 
cedures. A local validation procedure works only with 
a triple M,R,E. This is the classical concept of vali- 
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dation as discussed by Sargent (1986) for example. A 
global validation procedure works not only with a single 
model, hut potentially, with all the models in the model 
base that have been developed for the real system. It 
is therefore sensitive not only to the direct relationship 
of a model to a real system but also to its consistency 
with the other models that have been previously vali- 
dated for, perhaps many different facets of, the real 
system. 

4.1. Local Validation Procedures 

Recall that there are three basic levels of validity: rep- 
licative, predictive, and structural. The real system R 
is a source of data either given by a historical data base 
or by a potentiality to generate such data (under ex- 
perimental observation) or both. For purposes of the 
following discussion we replace R by a model B (for 
base model) that represents it. For historical data, this 
replacement merely supposes a means to "replay" time. 
indexed data records. For an existing technical system, 
it supposes a means by which the system can be con- 
nected to the simulation on-line so that it appears to 
the latter as an internal model. Nontechnical systems, 
such as ecosystems, that cannot be coupled on-line are 
excluded. With this assumption, validity concerns the 
holding of ternary relations: 

M is (replicatively, predictively, structurally) valid wrt. B in 
frame E. 

Testing of replicative or predictive validity involves, 
in principle, generation and comparison of an infinite 
number of input/output pairs. An actual test plan can 
obviously deal with only a finite subset. The larger this 
subset, the more confidence that might be had that the 
result of a test plan is truly representative of an ideal 
test plan based on infinite full complement of behavior 
sets. 

The proposal in this paper is that a knowledge-based, 
distributed simulation environment such as DEVS- 
Ada, can greatly speed-up execution of a test plan and 
thereby ameliorate a major computation-intensive 
bottleneck in the model development process (the val- 
idation process is an inner loop with respect to an it- 
erative process of successive approximation whereby a 
model is created and tuned to reality). 

There are two parts to our claim: 1) the knowledge. 
based level of model specification provides user- 
friendly, fast and secure set up of multiple concurrent 
experiments, and 2) that the distributed simulation en- 
gine exploits the inherent parallelism in such set-ups 
to achieve significant speed-up. 

The SES in Figure 9a represents a typical structure 
for replicative validation. Here an arbitrary number of 
versions of M are individually coupled to copies of E. 
Such versions of M might be distinguished by their 

Replicath~. Validation 

I I 
M-ES B-ES 

m Ill 
M-E B-E 

E M E B 

r-4--] i,lJ, ! 
M 1 ---  M N B 1 --- B N 

I 
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m 
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: 
: 

. . . . . .  . . . .  
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CS 

FIGURE 9. (a) Replicative validation system entity structure; 
(b) reldicat~ v n i i d e t i o n ~ .  

distinct initial states, as might be the case in a stochastic 
process where pseudo random number generator com- 
ponents of M are placed into different initial states 
(seeds). Similarly an arbitrary number of versions of B 
(perhaps due to initial seed assignment) are individually 
coupled with copies of E. Note that copying of  model 
objects can be performed by the environment regardless 
of the complexity of  the original (when such models 
are hierarchical compositions, the copies are also com- 
positions of copies with appropriate hierarchically 
structured names). The ou~uts  of the M-ES and B-ES 
component models are fed to a comparator, C which 
does the actual computing of the goodness-of-fit and 
a measure of confidence in the result of the test plan 
(Law & Kelton, 1982). 

Figure 9b portrays a simulation model in DEVS- 
Aria that would be created from the SES by the trans- 
form procedure. The obviously large amount of con- 
currency in such a model is readily exploited by the 
DEVS-Ada optimi.~tic simulation approach. Indeed, all 
the model-frame experiments will be executed con- 
currently (given sufficient numbers of  processors) with 
the comparator now being the computation bottle- 
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neck (it too could be decomposed so as to increase 
speed up). 

Figure 10 provides an SES and transformed model 
for the case of predictive validity. Versions of the model 
M and base model B are paired together and receive 
the same input with their outputs compared for agree- 
ment. This is appropriate since for predictive validity 

we assume that the model can be synchronized to start 
in the "same" initial state as the real system. Thus each 
pairing of M and B represents a different initial state 
assignment. The outputs of the individual comparators. 
are then combined to yield an overall measure of the 
goodness-of-fit. Comments similar to those made in 
the case of replicative validity relating to potential 
speed-up are applicable here as well. 
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FIGURE 10. (a) Predictive validation system entity structure; 
(b) predictive validation simulation configuration. 

4.2. Local Validation Experimental Results 

To illustrate the potential speed-up that may be 
achieved when using DEVS-ADA, we will use the rep- 
licative validation of a model of a single server without 
queue (Fig. 11). The job interarrival times are normally 
distributed, as is the service time. Each local transducer 
monitors for each job, the arrival and departure times, 
the number of new jobs, the number of jobs solved, 
and the number of jobs lost. This transducer calculates 
the average of the turn-around times, the standard de- 
viation of the turn-around times, and the server 
throughout at user specified observation intervals. The 
global transducer receives the averaged turn-around 
times, and throughputs from the local transducers. The 
global transducer then estimates the mean turn-around 
time, mean throughput, and confidence intervals for 
these statistics after receiving all of the local transducer 
outputs at the end of each observation interval. 

The single server model/experimental frame pair 
and their associated abstract simulators are encapsu- 
lated in an Ada task type. The use of an Ada task type 
allows the creation of an arbitrary number of task cop- 
ies. The copies will all have the same structure but 
separate and distinct states. Since a single copy of the 
global transducer is needed, the global transducer and 
its associated abstract simulators are encapsulated by 
an Ada task, instead of an Ada task type. It should be 
noted that the assignment of models to Ada tasks par- 
allels the assignment of models to physical processors 
such that all Ada model tasks could be executed in 
parallel given a number of processors equal to the 
number of tasks. This ability to assign models to tasks/ 
processors facilitates the exploitation of the external 
and internal event parallelism identified by the DEVS 
formalism. The assignment of models to tasks/proces- 
sors is dependent upon the system decomposition and 
the interaction between the models. 

The potential for speed-up was measured by exe- 
cuting a number of configurations of size N where N 
ranged from 1 to 80. This was done on a SUN 3/60 
workstation having an Ada compiler. The results (Figs. 
12a and 12b) indicate that the amount of overhead to 
execute N model pairs is approximately linear in N. 
Due the experimental setup (Fig. 11) the linear increase 
(Fig. 12a) shows that the distributed implementation 
of DEVS-Ada is exploiting the noninteraction of the 
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FIGURE 11. Repllcatlve validation of single server without queue. 

model-frame pairs. In this linear range, the execution 
of N models on N processors should take the same 
time as executing a single model on a single processor 
(this assumes the tasking overhead of the multiproces- 
sor environment is the same as that for a single pro- 
cessor). The upward knee in the curve represents the 
bottleneck due to sequentiallism in the global trans- 
ducer which starts to take effect as the number of feeder 
inputs increase. To defer the onset of the upward knee, 
the global transducer can be decomposed into a net- 
work of subcalculation transducers (for more detail, 
see Christensen, 1990). 

5. A FRAMEWORK FOR HIERARCHICAL, 
DISTRIBUTED VALIDATION 

This section extends the definition of experimental 
frame and discusses a framework for frame specifica- 
tion in a distributed DEVS simulation environment. 
So far, w e  have coupled models and experimental 
frames only at the highest level, that is, without taking 
into account the hierarchical structure of the model. 
Now, we present an approach to distributing an ex- 
perimental frame within a hierarchical model. This 
means that we can attach frames to both atomic and 
coupled subcomponents of a hierarchical model. Dis- 

tributing frames in this manner offers a means of fur- 
ther exploiting parallelism and modularity in distrib- 
uted simulation (Rozenblit, 1985b). The DEVS ab- 
stract simulator is a basis of our considerations. We 
assume that an experimental frame is expressed in the 
DEVS form and we define model/frame coupling 
mechanisms for support of atomic and coupled model 
validation. Implementation of these concepts in DEVS- 
Ada has not yet been attempted. However, a prototype 
of has been built in DEVS-Scheme (Duh, 1988). 

5.1. Hierarchical Specification of Experimental 
Frames 

To illustrate the ensuing discussion, let us assume that 
a model consist of two atomic submodels as illustrated 
in Figure 6. The abstract simulator for such a model 
has the structure depicted in Figure 7. We now describe 
how an experimental frame module can be synthesized 
and coupled with the model's abstract simulator. The 
basic experimental frame/model coupling results in the 
architecture depicted in Figure 13. We now proceed to 
specify how such a coupling is defined. 

Recall from the definition of the experimental frame 
realization that each component of the system SE (Fig. 
13) (i.e., generator, acceptor, and transducer) is a DEVS 
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Ada; (b) Disbtbuted validation speed-up potential. 

model and thus may be realized as a hierarchical cou- 
pling of systems. At this point several alternatives for 
experimentation control arise. In the centralized ar- 
chitecture as illustrated in Figure 13, control is con- 
centrated within the master experimental frame mod- 
ule SE whereas the simulators $1, $2 are responsible 
for execution of model component dynamics. 

The coupling of the frame module SE and the ab- 
stract model simulator S is defined as follows: the gen- 
erator So originates the messages (x,t) that are received 
by the root coordinator Co as external events to the 
model. The output statistics are gathered by collecting 
the (y, t) message from the root coordinator. This mes- 
sage defines an input signal to the frame transducer 
St.  It carries the information about changes of output 
variables in each subordinate DEVS model simulator. 

The realization of experimentation control requires 
that the coordinator of each abstract simulator be ex- 
tended as follows: upon receipt of a (,, t) or (x, t) signal, 

a coordinator transmits ( m, t) messages to its subor- 
dinates requesting that each return the message (c, t) 
corresponding to a change (if any) of control variables' 
values of an associated DEVS model component. The 
global message (c, t) is collected by the root coordinator 
and processed by the frame acceptor SA which deter- 
mines whether or not the run control segments lie 
within the admissible range. 

Such a centralized architecture involves a single ex- 
perimental frame module directly linked to the global 
coordinator. One possible manner in which this mode 
of experimentation in a distributed simulation envi- 
ronment can be realized and executed is to use the 
blackboard framework (Hayes-Roth, 1985; Nil, 1986). 
The experimental frame module would be a blackboard 
structure containing objects (data) from the solution 
space (simulators). These objects could be hierarchi- 
cally organized into levels of analysis, for example, in- 
put data, partial solutions and final solutions. Thus, 
the function of the blackboard would be to hold com- 
putational and solution-state data needed by and pro- 
duced by the knowledge sources, that is, models. 

In the blackboard framework, the domain knowl- 
edge needed to solve a problem is partitioned into 
Knowledge Sources (KSs) that are kept separate and 
independent. In our methodology, each model can be 
interpreted as a knowledge source. The KSs respond 
to changes on the blackboard. A set of control modules 
are used to monitor the changes on the blackboard and 
decide which actions to take next. This could be ac- 
complished by the coordinator modules of DEVS sim- 
ulators. 

Although the blackboard framework provides a set 
of concepts for carrying out a simulation experiment 
in a distributed environment, the realization of the 
components So, SA and Sr might prove very compli- 
cated due to the complexity of the functions they ex- 
ecute. We propose that the components of experimen- 
tal frames be distributed in a manner that corresponds 
to the hierarchical, distributed structure of models they 
are applicable to. This requirement has been stipulated 
in the literature by Dekker (1984) (the concept of a 
cosystem), Oren (1984) (GEST implementation oflocai 
frame segments), and Biles (1985) (distributed evalu- 
ation of a network of microprocessors). 

In order to specify a distributed experimental frame, 
we first establish the scheme for its top-down decom- 
position. First, we consider the input generation pro- 
cess. Assume that at any given level of the model com- 
position tree (hierarchy of model decomposition) a 
model Mi has constituent models Mi, i . . . . .  Mi, k. In 
the centralized mode of experimentation, a generator 
for this model, G, has to be defined and coupled to Mi 
through its input ports. In order to realize Gi as a cou- 
pling of subeomponentmpossibly less complexmgen- 
erators, we have to identify the structure of the input 
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FIGURE 13. Centralized experimentation in distributed simulation. 

segments received by the model M~. In the most general 
case, we can assume that an input segment is decom- 
posed into mutually independent segments co~,t . . . . .  
Wi,k that are applied directly to model components M~,~ 
through Mi,k and the segment ~0t,0 which accounts for 
input to their coupling, that is, Mr. In other words Gi 
generates segments co = (¢Oi,o, co~.~ . . . . .  ~0i, k). We de- 
compose G~ into generators G,,o, G~,~ . . . . .  Gi/~, and 
couple them with their respective model simulators. 
The coupling is accomplished by a parallel composition 
of DEVS-speciiied models that realize the generators 
Gi,o, Gi,~ . . . . .  Gi~k. T h e  parallel coupling of component 
generators is a DEVS in a modular form in which no 
component influences another component. 

Notice that any model component may itself be 
composed of submodels. Then, its corresponding gen- 
erator is decomposed in the manner described above. 
Such a process is carried out recursively down to the 
leaf nodes of the model composition tree. 

The decomposition process of the output transducer 
is similar to that of the input generator. The transducer 
T~ collects global output segments p = (pi,o, p~,~ . . . . .  
pij,) where p~,o may represent correlated output of the 
components M,.~ . . . . .  M,.k while Pi, l . . . . .  Pi,k, are  

mutually independent, local output segments. We carry 
out the decomposition of the output transducer as fol- 
lows: Ti is decomposed into Ti,o, Ti, I . . . . .  Ti~ that are 
coupled to their respective model components M~,M,. ~, 
. . . .  , M i , k .  

Notice that the above specification establishes ob- 
servation frames at any two subsequent levels of the 
system composition tree and that the process of asso- 
ciating transducers with model components can be 
carried out recursively down to the leaf nodes of the 
tree. 

The run control acceptor A for the model Mi  is de- 
composed in exactly the same way as the output trans- 
ducer. The component acceptors A~,o, Ai ,  k . . . . .  A i ,  k 

monitor the run control trajectories mi,0, mi,~ . . . . .  
mi, k, respectively. Conceptually, Ai,0 checks for accep- 
tance of the global run control segment pertaining to 
M,. while the components acceptors monitor the control 
segments local to Mj, k . . . . .  M~,K. Once a~ain this es- 
tablishes the specification framework for any two sub- 
sequent levels of the composition tree and this proce~ 
is recursive with respect to the number o f  levels in the 
tree. The hierarchical specification of the run control 
acceptor is analogous to the specification of the trans- 
ducer. 

We now proceed to describe how an experimental 
frame is mapped onto a distributed architecture of a 
DEVS simulator. 

5.2. Mapping Hierarchical Specification of 
Experimental Frames onto the DEVS 
Abstract Simulator 

The design of a methodology for mapping the decen- 
tralized frame specification onto the corresponding ab- 
stract distributed simulator should satisfy the following 
requirements: 
• The coupling of the simulator and frame must be 

closed, that is, it must result in an abstract simulator. 
• The degree of decentralization of experimentation 

should be maximal. In other words, a means of as- 
signing an experimental frame local to each model 
component should be provided. 
Motivated by the above guidelines, we suggest the 

following procedure for establishing the frame/abstract 
simulator mapping: At the level (0 of the model com- 
position tree, a DEVS simulator of a model component 
must simulate the model with a pertinent experimental 
frame. Recall that the frame components are defined 
as DEVS systems and thus can be realized by an ab- 
stract simulator as well. However, coordination is re- 
quired between the simulators of the model, generator, 
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acceptor and transducer. To assure such coordination, 
we introduce a model/frame coupler (MFC). 

An MFC is a coordinator defined in the same way 
as a coordinator of the abstract simulator. It performs 
the following functions: At the level local to its frame 
and model, the MFC invokes the frame generator 
which in turn send its output back to the coupler. This 
message is forwarded by the coupler to the model's 
simulator. The simulator interprets the message as an 
external event. Output messages generated by the sim- 
ulator are forwarded by the MFC to the local frame 
transducer. Control messages (c, t) are sent to the ac- 
ceptor. The coupler also serves as a communication 
port with the parent coordinator specified at level (i 
- 1) of the simulator hierarchy. Its function as an i/o 
port consists in transducing the (., t), (x, t), (o, t) and 
( m, t) signals to (from) the parent coordinator from 
(to) the simulator of the model component at the sub- 
ordinate level. A detailed description of the MFC cou- 
pler concept is given in the Appendix. A comprehensive 
example of a simple operating system with a distributed 
experimental frame, implemented in DEVS-Scheme, 
is presented in Duh (1988). 

To ensure consistency in attaching a frame to a sim- 
ulator we verify that the frame-simulator/model-sim- 
ulator coupling relations are valid. More specifically, 
the input segments produced by the generator must 
apply to the input ports of the model, the output ports 
of the model must match the input ports of the trans- 
ducer, and the variables monitored by the acceptor 
must match those designated as the run control vari- 
ables. The MFC module checks if the above require- 
ments are met. 

The proposed mapping results in an abstract sim- 
ulator that simulates the combined model/frame 
DEVS. Since each experimental frame module is a 
special form of a DEVS simulator, that is, a DEVS- 
generator, acceptor, and transducer, the coupling of 
frame and model simulators results in a DEVS simu- 
lator. The correctness of simulation is then ensured by 
the correctness of the DEVS simulator (for a formal 
proof of DEVS simulator correctness see Zeigler 1984). 

Since a means for coupling of an experimental frame 
to a model component at any level of the hierarchy 
are provided, it is apparent that the maximum decen- 
tralization of the experimentation can be achieved. In 
future research, we intend to employ DEVS-Ada to 
study the utility of framework just presented for dis- 
tributed simulation. 

6. GLOBAL VALIDATION PROCEDURES 

Local validation procedures may be severely limited 
in their application. For example, historical data does 
not exist in system design where the real system does 

not yet exist and cannot serve as validation standard. 
More generally, local validation is of limited potential 
where access to real system data is restricted. In such 
cases, local validation (to the extent it is possible) should 
be supplemented with consistency checking of the new 
model with relevant models in the model base. For 
example, assumptions made in constructing the new 
model should not contradict those made in construct- 
ing other existing models. Also, while a system under 
design does not yet exist, many of the components from 
it is built may exist and have validated models in the 
model base. Such comparison of features of one model 
simultaneously with a (potentially, large) number of 
others, is once again a situation that lends itself to par- 
allel processing. To our knowledge, there is a nonex- 
istent literature on such global validation procedures. 
We believe that they may become feasible within an 
environment such as DEVS-Ada, and that they would 
therefore seem to warrant increased attention. 

7. CONCLUSION 

The theory of modelling and simulation provides a 
vocabulary, concepts, and mathematically rigorous 
tools with which to tackle problems in simulation 
model validation. Accepted as a standard, such a 
framework would greatly facilitate the design of much 
needed computer-based environments to support the 
validation process. The distributed knowledge-based 
modelling and simulation environment, DEVS-Ada, 
provides portability, a standard model specification 
language, the means to manage a model repository, the 
ability to reuse models, and distributed simulation. 
DEVS-Ada combines the DEVS Formalism and its as- 
sociated abstract simulators with the Time Warp 
mechanism. In particular, this article shows how 
DEVS-Ada can exploit the external and internal event 
parallelism intrinsic in the multiple execution of si- 
multaneous experiments required for local model val- 
idation. Faster execution of such a computationally 
intensive process reduces the bottleneck it imposes in 
the model development process and/or enables greater 
confidence to be achieved in the results. The article 
also presents two areas in need of further research: dis- 
tributed experimental frames and global validation. 
Distributing frames among hierarchical model com- 
ponents offers a means of exploiting further parallelism 
and modularity in distributed simulation. We also 
showed how global validation requires parallel sym- 
bolic analysis of a new model relative to the models in 
a model base. Parallel computing may render such val- 
idation feasibleDwhere it is currently noticeable by its 
absence. The DEVS-Ada environment appears to pro- 
vide a useful platform to study these issues. 
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A P P E N D I X :  M A P P I N G  D I S T R I B U T E D  
E X P E R I M E N T A L  F R A M E  O N T O  D E V S  

S I M U L A T O R  A R C H I T E C T U R E  

This appendix explains the details of  the frame mapping dis- 
cussed in Section 5.2. 

An MFC is a coordinator defined in the same way as a 
coordinator of  the abstract simulator, which performs the 
following functions: at the level local to its frame and model 
(i.e., the level (i), it sends the ( . ,  t) message to the frame 
generator. This message results in an internal transition of  
the generator and a message (y, t) being output  by the gen- 
erator. This (y, t) message is sent back to the model/frame 
coupler and forwarded directly as an external event (x, t) to 
the simulator of the model component .  The MFC also for- 
wards a local (y, t) message generated by the model simulator, 
to the local frame transducer and a (e, t) message to the local 
acceptor, respectively. Notice that both, the transducer and 
acceptor are passive DEVS systems. This significantly sim- 
plifies the design of the MFC since it only has to schedule 
the internal transitions of  one active component ,  that is, the 
generator. The coupler also serves as a communica t ion  port 
with the parent coordinator specified at level (i - 1) of  the 
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FIGURE 14. Abstract simulator of distributed model with ex- 
perimental frames. 
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simulator hierarchy. Its function as an i/o port consists in 
transducing the (*, t), (x, t), (o, t), and ( m, t) signals to (from) 
the parent coordinator from (to) the simulator of the model 
component at the subordinate level. 

To exemplify the discussion let us consider the simulator 
presented in Figure 7. (Fig. 14 shows a fully distributed frame 
structure coupled with this simulator). The coupler MFC1 
coordinates the simulator of  the model component M, and 
corresponding simulators of G~, TI and A~. It broadcasts 
message (,, t) to the generator which responds by producing 
an output signal (y, t). This output signal is in turn transduced 
by MFC, to the simulator M~. The coupler collects the mes- 
sages (y, t) and (c, t) from M~ and transduces them to T, and 
A~, respectively. The composition ofMFCI, M~, G~, T~ and 
A, constitutes the simulator for the component M~ with its 
corresponding experimental frame El, denoted as M~E~. The 

simulator M2E2 is realized in the same manner. Both simu- 
lators are coupled by the standard (in the sense of Zeigler's 
definition) coordinator Co. The role of MFC's in the coupling 
is restricted to serving as input/output ports to the combined 
model/frame simulators. They simply transduce the m ~ e s  
between Co and MI and M2. Notice, however, that in spite 
of the fact that Co is the root coordinator it is still necessary 
to simulate the model Mo and its frame//70. To achieve this, 
MFCo is created to coordinate the actions of  the simulators 
Mo, Go, To and Ao. This model/frame coupler is linked to 
the root coordinator. The experimental frame/model coupling 
resulting at this level is MoEo as shown in Figure 1 4. The 
model/frame coupler transmits the generator's outputs as ex- 
ternal event messages to the coordinator Co. It also receives 
the global (y, t) output and (c, t) control messages. These 
messages are sent to the transducer and acceptor, respectively. 


