
Expert Systems With Applications, Vol. 3, pp. 329-342, 1991 0957-4174/91 $3.00 + .00
Printed in the USA. © 1991 Pergamon Press plc

Reducing the Validation Bottleneck with a Knowledge-Based,
Distributed Simulation Environment

BERNARD P. ZEIGLER, JERZY W. ROZENBLIT, ERIC R. CHRISTENSEN

The University of Arizona, Tucson

Abstract--This paper reviews the concepts of a theory of modelling and simulation that relate to the
validation enterprise. The theory provides a vocabulary, concepts, and mathematically rigorous tools
with which to tackle problems in simulation model validation. We have implemented a hierarchical,
distributed, object-oriented, and knowledge-based modelling and simulation environment in Ada.
The environment, DEVS-Ada, provides portability, a standard model specification language, the
means to manage a model repository, the ability to reuse models, and distributed simulation. We
show how DEVS-Ada can exploit the parallelism intrinsic in the multiple execution of simultaneous
experiments required for model validation. Faster execution of such a computationally intensive
process reduces the bottleneck that validation imposes in the model development process and enables
greater confidence to be achieved in the results. We also discuss the desirability of a more global view
of validation which requires parallel symbolic analysis of a newly created model relative to existing
models in a model base.

1. INTRODUCrlON

SIMULATION MODEL validation entails a multidimen-
sional set of issues (Bald & Sargent, 1984; Oren, 1984;
Sargent, 1984) whose difficulty poses hard challenges
for computerized support of the validation process
(Oren, 1986; Sargent, 1986). Due to its dimculty, such
support has greatly lagged behind the explosive growth
of model development tools. The discrepancy is even
more remarkable if one includes CASE tools in the
latter--indeed, the situation is endemic: We can now
build much more sophisticated systems than we can
be sure of working. Yet simulation is expected to play
an ever increasing role in system design, and the rec-
ognition has grown that the credibility of a simulation
model is a t the core of any recommendations or con-
clusions based on it. Indeed, such recognition has been
formulated in requirements by government for ac-
crediting models as part of all simulation-based tasks.
So that while the issues involved are difficult, the need
is urgent for greatly enhanced computerized support
of validation.

This paper takes the position that computerized
support of validation is achievable only on the foun-
dation of a firm framework of formal concepts offering

Supported by NSF Grant DCR 8714148 Intelligent Simulation En-
vironments for Advanced Computer Architectures.

Requests for reprints should be sent to: Bernard P. Zeigler, AI
and Simulation Group, Department of Electrical and Computer En-
ginecrinf, The University of Arizona, Tucson, AZ 85721.

a standard vocabulary and definition. Such a frame-
work need not capture all the dimensions of the prob-
lemwindeed, reality is forever beyond such formali-
zation. However, such a framework must characterize
the core of the validation enterprise and offer a set of
standards to guide top-down development of computer-
based support tools for this core.

We have implemented a hierarchical, distributed,
object-oriented, and knowledge-based modelling and
simulation environment (KBMSE) in Ada. The envi-
ronment, a migration ofDEVS-Scheme (Zeigler, 1990)
to Ada, provides portability, a standard model speci-
fication language, the means to manage a model re-
pository, the ability to reuse models, and distributed
simulation. The DEVS (Discrete Event System Spec-
ification) and SES (System Entity Structure) formalisms
provide methods for identifying the parallelism inher-
ent in the system model which may be exploited by
the mapping of model subcomponents to different
physical processors. To maximize the exploitation of
the identified parallelism a combination of the DEVS
formalism and Time Warp (TW) mechanism is used.

In this paper, we first review the Theory of Modelling
and Simulation (Zeigler, 1976) as it relates to model
validation. Then we discuss the concepts and imple-
mentation of DEVS-Ada. Two kinds of validation pro-
cedures are then considered, local and global. We show
how DEVS-Ada can exploit the parallelism intrinsic
in the multiple execution of simultaneous experiments
required for local validation. Faster execution of such
a computationally intensive process reduces the bot-
tleneck it imposes in the model development process

329

330 B. P. Zeigler et al.

and/or enables greater confidence to be achieved in the
results. We also show how global validation requires
parallel symbolic analysis of a new model relative to
the models in a model base. Parallel computing may
render such validation feasible--where it is currently
noticeable by its absence.

2. REVIEW OF THE THEORY OF
MODELLING AND SIMULATION

Since the 1970s progress has been made on a theory
of modelling and simulation (Zeigier, 1976) in which
core concepts of model validity were formulated. In
subsequent development, key validation concepts were
clarified and formalized (Zeigler, 1984). Recently, an
operational environment was completed which imple-
ments the theoretical framework and can serve as a
test-bed for design and evaluation of automated vali-
dation tools (Zeigier, 1990).

The core validation concepts of the theory take off
from a point similar to the informal characterization
of the validation process given in the call for papers
for a recent conference on simulation validation (Zeig-
ler & Christensen, 1990):
1. identification of the variables to compared or pre-

dicted;
2. definition of the metric by which goodness of fit of

prediction and reality are to be evaluated and the
uncertainty of the goodness of fit;

3. identification of the domain of applicability of the
simulation.
This concept of validity is in accord with the most

basic level of validity identified by the theory--repli-
cative validity, employing observable input/output be-
havior. In the following, we briefly summarize the con-
cepts of the theory of relevance to validation.

The modelling and simulation enterprise concerns
three basic objects (Fig. 1):
• the real system, in existence or proposed, which is

regarded as fundamentally a source of data;
• the model, which is a set of instructions for generating

data comparable to that observable in the real system.

modelling Simulation

FIGURE 1. Entities and relations in simulation.

The structure of the model is its set of instructions.
The behavior of the model is the set of all possible
data that can be generated by faithfully executing the
model instructions;

• the simulator which exercises the model's instruc-
tions to actually generate its behavior.

The basic objects are related by two relations:
• the modelling relation, linking real system and model,

defines how well the model represents the system or
entity being modelled. In general terms a model can
be considered valid ifthe data generated by the model
agrees with the data produced by the real system in
an experimental frame of interest;

• The simulation relation, linking model and simu-
lator, represents how faithfully the simulator is able
to carry out the instructions of the model.
There is a crucial element which has been brought

into this picture--the experimental frame. This cap-
tures how the modeller's objectives impact on model
construction, experimentation, and validation.

An experimental frame specifies the limited cir-
cumstances under which a model is to be applied and/
or experimented with. We separate the experimental
frame from the model itself and require that the ex-
perimental frame provide a model-independent spec-
ification of the certain elements of the validation pro-
cess. As rationale for the separation, consider that it
should be possible to compare two models or a model
and its real system counterpart under the same inde-
pendently specified conditions--given by an experi-
mental frame. As a consequence it is possible to con-
sider the behavior of a model within more than one
experimental frames.

Separation of models and experimental frames ne-
cessitates the ability to combine them together so that
the behavior of a model in a frame is well defined.
Prior to this we need to be able to ascertain when a
model-frame combination can work: we call this the
"applicability" relation. Based on mathematical sys-
tems theory, the theory of modelling and simulation
provides the mathematical apparatus to characterize
such applicability and the behavior of model-frame
pairs where the frame is applicable to the model.

An experimental frame is given a mathematical
structure as in Figure 2. It specifies:
• input variables--which will be stimulated in any

model which accommodates the frame (i.e., to which
the frame is applicable);

• output variables--which will be observed in a frame-
applicable model;

• run control variables--which will also be observed
but are there for experimentation control rather than
output behavior observation;

• input segments: the allowable sequences (time seg-
ments) of inputs that will be sent to the model;

• run control segments: constraints of the combina-
tions of run control variables (including temporal
constraints) which capture the domain of operation

Knowledge-Based, Distributed Simulation Environment 331

required by the frame. Input-output behavior of a
model in this frame is accepted only so long as the
run control constraints are not violated;

• summary mappings: statistical and other aggrega-
tions of the input-output behavior into reduced and
manageable spaces.
The elements of an experimental frame are derived

from the objectives of the modeHer in relation to a
frame-applicable model. For example, what input
variables are we requiring that the model have? how
are they to be stimulated? what output variables should
the model have? what summary statistics are of interest?
what is the domain of operation required? Often run=
control variables in a frame are identified with state
variables in a frame-applicable model, and run control
constraints therefore formalize, in a model-independent
manner, the "domain of validity" required of a frame-
applicable model. This is because such a domain of
validity specifies the operating region in which the
model is valid. The frame specifies a required operating
region. The applicability definition is such that a frame
is applicable to a model only if the model has the req-
uisite run control (state) variables. A model which is
valid with respect to a real system in the frame (see

below) will therefore match the real system's behavior.
in the operating domain required by the frame--this
will be its domain of validity.

Using the formal definitions of Figure 2 and the
underlying systems theory notions, (Zeigier, 1984)
characterized the applicability relation and the I/O (in=
put/output) behavior of a model/frame pair. Other
concepts are developed for this purpose including the
"derivability" partial order on frames and the "scope
frame" of a model (the most inclusive frame in the
derivability order applicable to a model).

Experimental frames are given concrete form as il=
lustrated in Figure 3. A frame is realized by a system
that is a coupling of three kinds of components:
• generator: generates the input segments sent to a

model;
• acceptor: continually tests the run control variables

for satisfaction of the given constraints (in other
words, makes sure that the model is not straying from
the intended operating region;

• transducer: collects the input-output data and com-
putes the summary mappings
In the DEVS simulation environment (Zeigier,

1990) such frame components are constructed using

An E x p e r i m e n t a l F r a m e is a S t r u c t u r e

< T, I, O, C, f21,f~C, SU >

w h e r e

T t ime b a s e

I i n p u t va r i ab l e s :

O

w h i c h wil l be s t i m u l a t e d in a n y model w h i c h
a c c o m m o d a t e s the f r a m e (i.e., to wh ich the
f r a m e is appl icable) .

o u t p u t v a r i a b l e s : wh ich will be o b s e r v e d in a f r a m e - a p p l i c a b l e
mode l

C r u n con t ro l va r i ab le s : w h i c h wil l also be o b s e r v e d b u t are t h e r e
for e x p e r i m e n t a t i o n cont ro l r a t h e r t h a n
o u t p u t b e h a v i o r o b s e r v a t i o n

i n p u t s egmen t s : the a l lowable s e q u e n c e s (t ime s e g m e n t s) of
inpu t s t h a t wil l b e sen t to the model

~2C r u n con t ro l segments :

SU s u m m a r y mappings :

c o n s t r a i n t s of t he c o m b i n a t i o n s of r u n
con t ro l v a r i a b l e s (inc lud ing t e m p o r a l
cons t r a in t s) w h i c h c a p t u r e t he d o m a i n of
o p e r a t i o n r e q u i r e d b y t he f rame. I n p u t -
o u t p u t b e h a v i o r of a model in this f r a m e is
accepted on ly so long as the r u n con t ro l
c o n s t r a i n t s are no t v io la ted .

s ta t i s t ica l and o t h e r aggrega t ions of the
i n p u t = o u t p u t b e h a v i o r in to r educed and
m a n a g e a b l e spaces.

FIGURE 2. Mathematical slbructure of experimental frame.

332 B. P. Zeigler et al.

Experimental Frame

, . . . - - Transducer I .

FIGURE 3. DEVS experimental frame components.

the same apparatus as are the models. This provides a
powerful operational basis for maximal exploitation of
the concepts.

The theory distinguishes three types of validity:
• replicative: I/O behavior of model in frame agrees

with that of the real system in frame;
• predictive." model can be initialized to state corre-

sponding with real system so that subsequent I/O
behaviors agree;

• structural: morphism between structures of real sys-
tem and model
As indicated above, replicative validity is the starting

point for validation. To determine agreement of be-
haviors we need to specify goodness-of-fit metrics with
a tolerance for judging agreement. Thus the experi-
mental frame concept includes specification of output
variables and domain of validity but goodness-of-fit
criteria are considered part of a comparison process.
Zeigler (1984) shows how these types of validity form
a hierarchy of increasing difficulty.

In practice the complete infinite set of system and
model behaviors cannot be compared. An actual test
plan can obviously deal with only a finite subset. The
larger this subset, the more confidence that might be
had that the result of a test plan is the same as would
be obtained from the infinite full complement of be-
havior sets. Statistical validation procedures, narrower
interpretations of the above, provide operational mea-
sures of such confidence measures.

This computationally intensive requirement for in-
creasing validation confidence begs for high perfor-
mance computer architectures. In the sequel, we discuss
how distributed simulation can help.

3. CONCEPTS AND IMPLEMENTATION
OF DEVS-ADA

We begin with a brief review of concepts needed for
our discussion of distributed validation.

3.1. System Entity Structure Formalism

A SES represents the specific decomposition, taxo-
nomic, and coupling knowledge for a system necessary

to direct model synthesis (Rozenblit, 1985a; Zeigler,
1987). Formally, a SES is defined as a labelled tree with
attached variable types that satisfies five axioms: alter-
nating mode, uniformity, strict hierarchy, valid broth-
ers, and attached variables. A detailed description of
the axioms is given in Zeigier (1984). There are three
types of nodes in an SES---entity, aspect, and special-
ization, which represent the three types of structural
knowledge. The entity node which may have several
aspects and/or specializations corresponds to a model
component which represents a real world object. The
aspect node (single vertical line in the labeled tree of
Fig. 4) represents one decomposition, out of many
possible, of an entity. The children of an aspect node
are entities, distinct components of the decomposition.
The specialization nodes (a double vertical arrow in
the labeled tree of Fig. 4) represent ways that a general
entity may be categorized into special entities. As
shown in Figure 4, attached to an aspect node is a
coupling scheme, and to the specialization node a se-
lection constraint. The coupling scheme specifies ex-
ternal input, external output, and internal couplings
of the system and its components; the selection con-
straint designates the rules to select a specialized entity
from a generalized one in the pruning process. The
coupling scheme is necessary to carry out the hierar-
chical synthesis of the simulation model.

A multiple entity is a special entity that consists of
a collection of homogeneous components. These com-
ponents are called a multiple decomposition of the
multiple entity. The aspect of such a multiple entity is
called a multiple aspect (the triple vertical line in the
labeled tree of Fig. 4). The representation of such a
multiple entity is as follows. A multiple entity Battal-
ions and its component battalions are represented by
Battalions, three vertical lines, and Battalion from the
top down. Notice, instead of presenting all Battalions
for Battalions' components, only one Battalion is

Mechanized
Infantry Brigade

Brigade
Head Quarters B i r n s

Coupling
Scheme

Selection B a l r li°n
.~ 3attalion-Spec Constraint

I I
Mechanized Armor

Infantry Battalion
Battalion

FIGURE 4. System entity structure.

Knowledge-Based, Distributed Simulation Environment 333

placed in the labeled tree. The number of Battalions is
specified by a variable, which is attached to the multiple
aspect node.

Through the use ofa"prune" operation, a substruc-
ture of the SES may be extracted by selecting one aspect
and/or one specialization for each entity in the SES.
The modeller using the "prune" operation for example,
could reduce the SES shown in Figure 4 to a compo-
sition tree containing the structure information nec-
essary to model a Mechanized Infantry Brigade. By
using the selection constraint rules the appropriate
mixture of Mechanized Infantry and Armor Battalions
would be selected. The "transform" operation synthe-
sizes a model hierarchically from the components in a
model base. The details of DEVS-Scheme including
hierarchical model structuring operations, reusability
of structures, and other facilities may be found in Kim
(1988).

3.2. Discrete Event System Specification Formalism

The Discrete Event System Specification (DEVS) For-
malism provides methods for specifying systems in a
modular and hierarchical manner (Zeigler, 1976,
1984). The specification of modular discrete event
models requires the adoption of a different view than
that supported by traditional simulation languages. As
with modular specifications in general, the model must
be viewed as possessing input and output ports through
which all interactions with its environment must pass.
In the discrete event case, events determine the values
which appear on the ports. To be more specific, when
external eventsarising outside the model are received
on its input ports, the system specification must define
how it responds to them. Additionally, internal events
arising within the model change its state, as well as
manifest themselves as events on the output ports to
be transmitted to other model components. The DEVS
formalism requires the specification of (1) basic models
from which larger ones are built, and (2) how these
models are to be coupled together in a hierarchical
manner.

3.3. DEVS Abstract Simulators

The simulation of DEVS models is based upon the
abstract simulator concepts developed as a part of the
DEVS theory (Zeigler, 1984). The abstract simulator
concepts are implemented by three specialized classes
of processors: Simulators, Coordinators, and Root-co-

Processors

Root-Co-Ordinators Co-Ordinators
FIGURE 5. Abstract simulator classes.

M 0

I M1 M 2

FIGURE 6. Multicomponent model structure.

ordinators as shown in Figure 5. The root-coordinator
is the manager of the overall simulation process and
is linked to the coordinator of the highest level coupled-
model. Simulators and Coordinators are used to handle
the atomic-models and coupled-models respectively.
The simulation process is managed by passing messages
between the s ~ processors. The messages carry
internal event, external event, and synchronization in-
formation.

We now illustrate the abstract simulator concept in
more detail. Assume that a multicomponent model
Mo as presented in Figure 6 is expressed in DEVS for-
malism. An abstract simulator of Mo takes the form
depicted in Figure 7, where both Sm and $2 are abstract
simulators and Co is a coordinator. The simulators S~
and $2 interpret the dynamics of model components
M~ and M2, respectively. The coupling of S,, $2 and
the coordinator Co is itself an abstract simulator that
simulates model Mo. As we can see there is a one-to-
one correspondence between the structure of a model
and that of the simulator. We now briefly characterize
the principles underlying the operation of the abstract
simulator and coordinator. The reader is referred to
(Zeigler, 1984, 1990) for further details.

The operation of an abstract simulator involves
handling four types of messages: (., t), (x, t), (o, t), and
(y, t). In each case the right hand element is the global
clock time of the simulated DEVS. When the simulator
receives a (., t) message it undergoes its internal state
transition and sends a (y, t) message to its coordinator
as an output. When it receives an (x, t) message, it
undergoes external event-generated transition. The
message (o, t) causes the simulator to send its output
as a (y, t) message to its coordinator.

A coordinator carries out its task by mediating three
types of messages sent to and from the parent coor-
dinator (Fig. 8); denoted (., t), (x, t), and (o, t), where
the right hand element is the global clock time of the

Coordtnm(x 1

51 $2 I

FIGURE 7. Abstract Simulator for model Mo.

334 B. P. Zeigler et al.

(* 1

I *) (*)

RGURE 8. Propagation of (,, t) and (o, t) messages.

simulated DEVS. The (,, t) message indicates that the
node should be activated, that is, an internal event
should be executed in the DEVS at the node. When a
(., t) message is received by a coordinator, it is trans-
mitted to the subordinate representing the imminent
component DEVS. When (,, t) is received by a leaf
simulator, it carries out the internal transition function
of the associated DEVS. Upon receipt of a (., t), a
coordinator also transmits (o, t) messages to each of
its subordinates requesting that each returns the output
corresponding to its associated DEVS.

Finally, the (x, t) message indicates that an external
event x is arriving at the global time t. When received
by a coordinator, it consults its external-to-internal
coupling table to generate appropriate (x, t) messages
to the subordinates influenced by the external event.
When (x, t) is received by a leaf simulator, it directly
executes the external transition of the associated DEVS.

Although, an (x, t) message may originate from the
environment external to the overall model, it may also
be generated within the hierarchy. The latter occurs
when the outputs received by an activated coordinator
in response to its (o, t) request, are collected together
using its internal-to-external coupling table. The re-
suiting (y, t) message is sent to the parent coordinator
for distribution as (x, t) messages to the subordinates
influenced by the activated coordinator.

3.4. Time Warp

The Time Warp Mechanism is a synchronization
strategy based upon the virtual time paradigm (Jeffer-
son, 1985). An event in Time Warp is defined as a set
of input messages which arrive for a specific object at
a particular simulation time. Time Warp ensures that
all causally linked events are eventually executed in
the proper sequence. An event is considered to be
causally linked if it is dependent upon the occurrence
of another event earlier in time. However, events that
are not causally linked may be executed in any order.
If two causally linked events are initially executed out
of order, the mechanism will undo all erroneous side
effects and redo the events in the correct sequence.
Thus, Time Warp embodies the optimistic synchro-
nization approach relying upon process rollback as the

fundamental synchronization tool for distributed sim-
ulation (Hontalas, Jefferson & Presely, 1989). Rollback
is implemented using negative messages to undo the
erroneous events.

3.5. Classic-Aria

The DEVS Formalism and its associated abstract sim-
ulator concepts have been implemented in Classic-Ada
(Christensen, 1990). Classic-Ada provides the Ada
programming language the ability to support inheri-
tance, message passing, and dynamic binding, which
in addition to the data abstraction and information
hiding features already present creates a complete ob-
ject-oriented programming environment (Bach, 1989;
Cox, 1986; SPS, Inc., 1989; Stroustrup, 1988). Classic-
Ada incorporates the semantics and syntax of Ada and
adds the necessary language constructs to support dy-
namic binding and inheritance. The output of the
Classic-Ada Processor is pure Ada which may be corn-
pried using any validated Ada compiler.

3.6. The Distributed Simulation Environment

The DEVS formalism as mentioned earlier provides a
very powerful method of decomposing large-scale sys-
tems into hierarchical and modular components and
identifying parallelism inherent in the simulation
models. However, the DEVS abstract simulator does
not provide the means to exploit all the parallelism
during simulation. The Time Warp mechanism pro-
rides means for the parallel execution of simulations
but does not offer the modeller any support in decom-
posing a system into the required logical processes nor
for identifying the parallelism in the system. By ex-
ploiting the strengths of DEVS and Time Warp an ef-
ficient, portable, knowledge-based distributed model-
ling and simulation environment has been imple-
mented.

The combination of DEVS and Time Warp uses the
DEVS formalism for model behavior specification, the
SES formalism for model structure specification, and
the abstract simulator concepts for simulation man-
agement on the physically distinct processors. The
Time Warp mechanism implemented using Ada task-
ing is used to manage the global distributed simulation
process, interprocessor communications and processor
synchronization (Christensen, 1990).

4. MODEL VALIDATION IN DEVS-ADA

As indicated above, our concept of validation is a
triadic relation: model M is valid with respect to real
system R in experimental frame E. We shall further
distinguish between local and global validation pro-
cedures. A local validation procedure works only with
a triple M,R,E. This is the classical concept of vali-

Knowledge-Based, Distributed Simulation Environment 335

dation as discussed by Sargent (1986) for example. A
global validation procedure works not only with a single
model, hut potentially, with all the models in the model
base that have been developed for the real system. It
is therefore sensitive not only to the direct relationship
of a model to a real system but also to its consistency
with the other models that have been previously vali-
dated for, perhaps many different facets of, the real
system.

4.1. Local Validation Procedures

Recall that there are three basic levels of validity: rep-
licative, predictive, and structural. The real system R
is a source of data either given by a historical data base
or by a potentiality to generate such data (under ex-
perimental observation) or both. For purposes of the
following discussion we replace R by a model B (for
base model) that represents it. For historical data, this
replacement merely supposes a means to "replay" time.
indexed data records. For an existing technical system,
it supposes a means by which the system can be con-
nected to the simulation on-line so that it appears to
the latter as an internal model. Nontechnical systems,
such as ecosystems, that cannot be coupled on-line are
excluded. With this assumption, validity concerns the
holding of ternary relations:

M is (replicatively, predictively, structurally) valid wrt. B in
frame E.

Testing of replicative or predictive validity involves,
in principle, generation and comparison of an infinite
number of input/output pairs. An actual test plan can
obviously deal with only a finite subset. The larger this
subset, the more confidence that might be had that the
result of a test plan is truly representative of an ideal
test plan based on infinite full complement of behavior
sets.

The proposal in this paper is that a knowledge-based,
distributed simulation environment such as DEVS-
Ada, can greatly speed-up execution of a test plan and
thereby ameliorate a major computation-intensive
bottleneck in the model development process (the val-
idation process is an inner loop with respect to an it-
erative process of successive approximation whereby a
model is created and tuned to reality).

There are two parts to our claim: 1) the knowledge.
based level of model specification provides user-
friendly, fast and secure set up of multiple concurrent
experiments, and 2) that the distributed simulation en-
gine exploits the inherent parallelism in such set-ups
to achieve significant speed-up.

The SES in Figure 9a represents a typical structure
for replicative validation. Here an arbitrary number of
versions of M are individually coupled to copies of E.
Such versions of M might be distinguished by their

Replicath~. Validation

I I
M-ES B-ES

m Ill
M-E B-E

E M E B

r-4--] i,lJ, !
M 1 --- M N B 1 --- B N

I
c8

m
C

:
:

.

. . . -)

e~g~

CS

FIGURE 9. (a) Replicative validation system entity structure;
(b) reldicat~ v n i i d e t i o n ~ .

distinct initial states, as might be the case in a stochastic
process where pseudo random number generator com-
ponents of M are placed into different initial states
(seeds). Similarly an arbitrary number of versions of B
(perhaps due to initial seed assignment) are individually
coupled with copies of E. Note that copying of model
objects can be performed by the environment regardless
of the complexity of the original (when such models
are hierarchical compositions, the copies are also com-
positions of copies with appropriate hierarchically
structured names). The ou~uts of the M-ES and B-ES
component models are fed to a comparator, C which
does the actual computing of the goodness-of-fit and
a measure of confidence in the result of the test plan
(Law & Kelton, 1982).

Figure 9b portrays a simulation model in DEVS-
Aria that would be created from the SES by the trans-
form procedure. The obviously large amount of con-
currency in such a model is readily exploited by the
DEVS-Ada optimi.~tic simulation approach. Indeed, all
the model-frame experiments will be executed con-
currently (given sufficient numbers of processors) with
the comparator now being the computation bottle-

336 B. P. Zeigler et al.

neck (it too could be decomposed so as to increase
speed up).

Figure 10 provides an SES and transformed model
for the case of predictive validity. Versions of the model
M and base model B are paired together and receive
the same input with their outputs compared for agree-
ment. This is appropriate since for predictive validity

we assume that the model can be synchronized to start
in the "same" initial state as the real system. Thus each
pairing of M and B represents a different initial state
assignment. The outputs of the individual comparators.
are then combined to yield an overall measure of the
goodness-of-fit. Comments similar to those made in
the case of replicative validity relating to potential
speed-up are applicable here as well.

I
M

Predictive Validation

I
I

M-B-E-CS

I!1
M-B-E-C

I

I I
M I " ' " M N

I I
B 1 - - - B N

I
Overall

Comparator

!1
E C

G A T

: 0 ,

I ~ :
n
D
m

.... ? ,

0
, i] ~ V

e
f

a

I
I

C
0

r n

0
a

f
a

t

f

FIGURE 10. (a) Predictive validation system entity structure;
(b) predictive validation simulation configuration.

4.2. Local Validation Experimental Results

To illustrate the potential speed-up that may be
achieved when using DEVS-ADA, we will use the rep-
licative validation of a model of a single server without
queue (Fig. 11). The job interarrival times are normally
distributed, as is the service time. Each local transducer
monitors for each job, the arrival and departure times,
the number of new jobs, the number of jobs solved,
and the number of jobs lost. This transducer calculates
the average of the turn-around times, the standard de-
viation of the turn-around times, and the server
throughout at user specified observation intervals. The
global transducer receives the averaged turn-around
times, and throughputs from the local transducers. The
global transducer then estimates the mean turn-around
time, mean throughput, and confidence intervals for
these statistics after receiving all of the local transducer
outputs at the end of each observation interval.

The single server model/experimental frame pair
and their associated abstract simulators are encapsu-
lated in an Ada task type. The use of an Ada task type
allows the creation of an arbitrary number of task cop-
ies. The copies will all have the same structure but
separate and distinct states. Since a single copy of the
global transducer is needed, the global transducer and
its associated abstract simulators are encapsulated by
an Ada task, instead of an Ada task type. It should be
noted that the assignment of models to Ada tasks par-
allels the assignment of models to physical processors
such that all Ada model tasks could be executed in
parallel given a number of processors equal to the
number of tasks. This ability to assign models to tasks/
processors facilitates the exploitation of the external
and internal event parallelism identified by the DEVS
formalism. The assignment of models to tasks/proces-
sors is dependent upon the system decomposition and
the interaction between the models.

The potential for speed-up was measured by exe-
cuting a number of configurations of size N where N
ranged from 1 to 80. This was done on a SUN 3/60
workstation having an Ada compiler. The results (Figs.
12a and 12b) indicate that the amount of overhead to
execute N model pairs is approximately linear in N.
Due the experimental setup (Fig. 11) the linear increase
(Fig. 12a) shows that the distributed implementation
of DEVS-Ada is exploiting the noninteraction of the

Knowledge-Based, Distributed Simulation Environment

I Global Virtual
Time Task

Communications
Manager Task

337

Messenger
Agent Task

Type

I/0 Buffer Task Type

Aria Task Type

Architecture

Single Server
W'~hout Queue

,lip.a, . T _ . _ _ _ _ ' Transducer
Generator

Accepter II Local Transducer

Ada Task

I I I l l l

Y O Buffer Task Type

Ada Task Type r

Single Server EF
Architecture

Single Server
Without Queue

Experimental Frame

" L I O'n--'= I

Replication 1 Replication N

FIGURE 11. Repllcatlve validation of single server without queue.

model-frame pairs. In this linear range, the execution
of N models on N processors should take the same
time as executing a single model on a single processor
(this assumes the tasking overhead of the multiproces-
sor environment is the same as that for a single pro-
cessor). The upward knee in the curve represents the
bottleneck due to sequentiallism in the global trans-
ducer which starts to take effect as the number of feeder
inputs increase. To defer the onset of the upward knee,
the global transducer can be decomposed into a net-
work of subcalculation transducers (for more detail,
see Christensen, 1990).

5. A FRAMEWORK FOR HIERARCHICAL,
DISTRIBUTED VALIDATION

This section extends the definition of experimental
frame and discusses a framework for frame specifica-
tion in a distributed DEVS simulation environment.
So far, w e have coupled models and experimental
frames only at the highest level, that is, without taking
into account the hierarchical structure of the model.
Now, we present an approach to distributing an ex-
perimental frame within a hierarchical model. This
means that we can attach frames to both atomic and
coupled subcomponents of a hierarchical model. Dis-

tributing frames in this manner offers a means of fur-
ther exploiting parallelism and modularity in distrib-
uted simulation (Rozenblit, 1985b). The DEVS ab-
stract simulator is a basis of our considerations. We
assume that an experimental frame is expressed in the
DEVS form and we define model/frame coupling
mechanisms for support of atomic and coupled model
validation. Implementation of these concepts in DEVS-
Ada has not yet been attempted. However, a prototype
of has been built in DEVS-Scheme (Duh, 1988).

5.1. Hierarchical Specification of Experimental
Frames

To illustrate the ensuing discussion, let us assume that
a model consist of two atomic submodels as illustrated
in Figure 6. The abstract simulator for such a model
has the structure depicted in Figure 7. We now describe
how an experimental frame module can be synthesized
and coupled with the model's abstract simulator. The
basic experimental frame/model coupling results in the
architecture depicted in Figure 13. We now proceed to
specify how such a coupling is defined.

Recall from the definition of the experimental frame
realization that each component of the system SE (Fig.
13) (i.e., generator, acceptor, and transducer) is a DEVS

338 B. P. Zeigler et al.

A W

~160

~ 1 5 0
C
0 ~ 140

o~-130 I1:

~ 120,

11o2
~1oo,
g 90, x

U. I

70:
o

~" 100000

OD

 oooo,

1000

.=_ 1 oo

k-

¢ 11 '
x

I -B - Estimated Distributed I .,/J I

r II I I I II I I II I I I I I I I II I I I II I I II I I I I I I I II II I I I I I II II I t l I I II II I I I I I I I I I I II I I I I I I I I I

10 -20 30 40 50 60 70 80
Number of Model Replications

(a)

_ _ , , : : :

t - 4 - Estimated Distributed

- 0 - Non-DisVibuted

1 / I II I I I I I II I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I II II I I I I I II I I I I I I I II II II I I I II I I II I I I II

0 10 20 30 40 50 60 70 80
Number of Model Replications

(b)
FIGURE 12. (a) Compadson of average model execution times
in the non-distributed and distributed environments of DEVS-

Ada; (b) Disbtbuted validation speed-up potential.

model and thus may be realized as a hierarchical cou-
pling of systems. At this point several alternatives for
experimentation control arise. In the centralized ar-
chitecture as illustrated in Figure 13, control is con-
centrated within the master experimental frame mod-
ule SE whereas the simulators $1, $2 are responsible
for execution of model component dynamics.

The coupling of the frame module SE and the ab-
stract model simulator S is defined as follows: the gen-
erator So originates the messages (x,t) that are received
by the root coordinator Co as external events to the
model. The output statistics are gathered by collecting
the (y, t) message from the root coordinator. This mes-
sage defines an input signal to the frame transducer
St. It carries the information about changes of output
variables in each subordinate DEVS model simulator.

The realization of experimentation control requires
that the coordinator of each abstract simulator be ex-
tended as follows: upon receipt of a (,, t) or (x, t) signal,

a coordinator transmits (m, t) messages to its subor-
dinates requesting that each return the message (c, t)
corresponding to a change (if any) of control variables'
values of an associated DEVS model component. The
global message (c, t) is collected by the root coordinator
and processed by the frame acceptor SA which deter-
mines whether or not the run control segments lie
within the admissible range.

Such a centralized architecture involves a single ex-
perimental frame module directly linked to the global
coordinator. One possible manner in which this mode
of experimentation in a distributed simulation envi-
ronment can be realized and executed is to use the
blackboard framework (Hayes-Roth, 1985; Nil, 1986).
The experimental frame module would be a blackboard
structure containing objects (data) from the solution
space (simulators). These objects could be hierarchi-
cally organized into levels of analysis, for example, in-
put data, partial solutions and final solutions. Thus,
the function of the blackboard would be to hold com-
putational and solution-state data needed by and pro-
duced by the knowledge sources, that is, models.

In the blackboard framework, the domain knowl-
edge needed to solve a problem is partitioned into
Knowledge Sources (KSs) that are kept separate and
independent. In our methodology, each model can be
interpreted as a knowledge source. The KSs respond
to changes on the blackboard. A set of control modules
are used to monitor the changes on the blackboard and
decide which actions to take next. This could be ac-
complished by the coordinator modules of DEVS sim-
ulators.

Although the blackboard framework provides a set
of concepts for carrying out a simulation experiment
in a distributed environment, the realization of the
components So, SA and Sr might prove very compli-
cated due to the complexity of the functions they ex-
ecute. We propose that the components of experimen-
tal frames be distributed in a manner that corresponds
to the hierarchical, distributed structure of models they
are applicable to. This requirement has been stipulated
in the literature by Dekker (1984) (the concept of a
cosystem), Oren (1984) (GEST implementation oflocai
frame segments), and Biles (1985) (distributed evalu-
ation of a network of microprocessors).

In order to specify a distributed experimental frame,
we first establish the scheme for its top-down decom-
position. First, we consider the input generation pro-
cess. Assume that at any given level of the model com-
position tree (hierarchy of model decomposition) a
model Mi has constituent models Mi, i Mi, k. In
the centralized mode of experimentation, a generator
for this model, G, has to be defined and coupled to Mi
through its input ports. In order to realize Gi as a cou-
pling of subeomponentmpossibly less complexmgen-
erators, we have to identify the structure of the input

Knowledge-Based, Dis t r ibu ted S imu la t ion Env i ronmen t 339

S~nu~tor

S
¥

I Co

. [

(X, t)

I lc, t)

I

(y,t)

Frmne

FIGURE 13. Centralized experimentation in distributed simulation.

segments received by the model M~. In the most general
case, we can assume that an input segment is decom-
posed into mutually independent segments co~,t
Wi,k that are applied directly to model components M~,~
through Mi,k and the segment ~0t,0 which accounts for
input to their coupling, that is, Mr. In other words Gi
generates segments co = (¢Oi,o, co~.~ ~0i, k). We de-
compose G~ into generators G,,o, G~,~ Gi/~, and
couple them with their respective model simulators.
The coupling is accomplished by a parallel composition
of DEVS-speciiied models that realize the generators
Gi,o, Gi,~ Gi~k. T h e parallel coupling of component
generators is a DEVS in a modular form in which no
component influences another component.

Notice that any model component may itself be
composed of submodels. Then, its corresponding gen-
erator is decomposed in the manner described above.
Such a process is carried out recursively down to the
leaf nodes of the model composition tree.

The decomposition process of the output transducer
is similar to that of the input generator. The transducer
T~ collects global output segments p = (pi,o, p~,~
pij,) where p~,o may represent correlated output of the
components M,.~ M,.k while Pi, l Pi,k, are

mutually independent, local output segments. We carry
out the decomposition of the output transducer as fol-
lows: Ti is decomposed into Ti,o, Ti, I Ti~ that are
coupled to their respective model components M~,M,. ~,
. . . . , M i , k .

Notice that the above specification establishes ob-
servation frames at any two subsequent levels of the
system composition tree and that the process of asso-
ciating transducers with model components can be
carried out recursively down to the leaf nodes of the
tree.

The run control acceptor A for the model Mi is de-
composed in exactly the same way as the output trans-
ducer. The component acceptors A~,o, Ai , k A i , k

monitor the run control trajectories mi,0, mi,~
mi, k, respectively. Conceptually, Ai,0 checks for accep-
tance of the global run control segment pertaining to
M,. while the components acceptors monitor the control
segments local to Mj, k M~,K. Once a~ain this es-
tablishes the specification framework for any two sub-
sequent levels of the composition tree and this proce~
is recursive with respect to the number o f levels in the
tree. The hierarchical specification of the run control
acceptor is analogous to the specification of the trans-
ducer.

We now proceed to describe how an experimental
frame is mapped onto a distributed architecture of a
DEVS simulator.

5.2. Mapping Hierarchical Specification of
Experimental Frames onto the DEVS
Abstract Simulator

The design of a methodology for mapping the decen-
tralized frame specification onto the corresponding ab-
stract distributed simulator should satisfy the following
requirements:
• The coupling of the simulator and frame must be

closed, that is, it must result in an abstract simulator.
• The degree of decentralization of experimentation

should be maximal. In other words, a means of as-
signing an experimental frame local to each model
component should be provided.
Motivated by the above guidelines, we suggest the

following procedure for establishing the frame/abstract
simulator mapping: At the level (0 of the model com-
position tree, a DEVS simulator of a model component
must simulate the model with a pertinent experimental
frame. Recall that the frame components are defined
as DEVS systems and thus can be realized by an ab-
stract simulator as well. However, coordination is re-
quired between the simulators of the model, generator,

340 B. P. Zeigler et aL

acceptor and transducer. To assure such coordination,
we introduce a model/frame coupler (MFC).

An MFC is a coordinator defined in the same way
as a coordinator of the abstract simulator. It performs
the following functions: At the level local to its frame
and model, the MFC invokes the frame generator
which in turn send its output back to the coupler. This
message is forwarded by the coupler to the model's
simulator. The simulator interprets the message as an
external event. Output messages generated by the sim-
ulator are forwarded by the MFC to the local frame
transducer. Control messages (c, t) are sent to the ac-
ceptor. The coupler also serves as a communication
port with the parent coordinator specified at level (i
- 1) of the simulator hierarchy. Its function as an i/o
port consists in transducing the (., t), (x, t), (o, t) and
(m, t) signals to (from) the parent coordinator from
(to) the simulator of the model component at the sub-
ordinate level. A detailed description of the MFC cou-
pler concept is given in the Appendix. A comprehensive
example of a simple operating system with a distributed
experimental frame, implemented in DEVS-Scheme,
is presented in Duh (1988).

To ensure consistency in attaching a frame to a sim-
ulator we verify that the frame-simulator/model-sim-
ulator coupling relations are valid. More specifically,
the input segments produced by the generator must
apply to the input ports of the model, the output ports
of the model must match the input ports of the trans-
ducer, and the variables monitored by the acceptor
must match those designated as the run control vari-
ables. The MFC module checks if the above require-
ments are met.

The proposed mapping results in an abstract sim-
ulator that simulates the combined model/frame
DEVS. Since each experimental frame module is a
special form of a DEVS simulator, that is, a DEVS-
generator, acceptor, and transducer, the coupling of
frame and model simulators results in a DEVS simu-
lator. The correctness of simulation is then ensured by
the correctness of the DEVS simulator (for a formal
proof of DEVS simulator correctness see Zeigler 1984).

Since a means for coupling of an experimental frame
to a model component at any level of the hierarchy
are provided, it is apparent that the maximum decen-
tralization of the experimentation can be achieved. In
future research, we intend to employ DEVS-Ada to
study the utility of framework just presented for dis-
tributed simulation.

6. GLOBAL VALIDATION PROCEDURES

Local validation procedures may be severely limited
in their application. For example, historical data does
not exist in system design where the real system does

not yet exist and cannot serve as validation standard.
More generally, local validation is of limited potential
where access to real system data is restricted. In such
cases, local validation (to the extent it is possible) should
be supplemented with consistency checking of the new
model with relevant models in the model base. For
example, assumptions made in constructing the new
model should not contradict those made in construct-
ing other existing models. Also, while a system under
design does not yet exist, many of the components from
it is built may exist and have validated models in the
model base. Such comparison of features of one model
simultaneously with a (potentially, large) number of
others, is once again a situation that lends itself to par-
allel processing. To our knowledge, there is a nonex-
istent literature on such global validation procedures.
We believe that they may become feasible within an
environment such as DEVS-Ada, and that they would
therefore seem to warrant increased attention.

7. CONCLUSION

The theory of modelling and simulation provides a
vocabulary, concepts, and mathematically rigorous
tools with which to tackle problems in simulation
model validation. Accepted as a standard, such a
framework would greatly facilitate the design of much
needed computer-based environments to support the
validation process. The distributed knowledge-based
modelling and simulation environment, DEVS-Ada,
provides portability, a standard model specification
language, the means to manage a model repository, the
ability to reuse models, and distributed simulation.
DEVS-Ada combines the DEVS Formalism and its as-
sociated abstract simulators with the Time Warp
mechanism. In particular, this article shows how
DEVS-Ada can exploit the external and internal event
parallelism intrinsic in the multiple execution of si-
multaneous experiments required for local model val-
idation. Faster execution of such a computationally
intensive process reduces the bottleneck it imposes in
the model development process and/or enables greater
confidence to be achieved in the results. The article
also presents two areas in need of further research: dis-
tributed experimental frames and global validation.
Distributing frames among hierarchical model com-
ponents offers a means of exploiting further parallelism
and modularity in distributed simulation. We also
showed how global validation requires parallel sym-
bolic analysis of a new model relative to the models in
a model base. Parallel computing may render such val-
idation feasibleDwhere it is currently noticeable by its
absence. The DEVS-Ada environment appears to pro-
vide a useful platform to study these issues.

Knowledge-Based, Distributed Simulation Environment 341

REFERENCES

Bach, W.W. (1989). RADA: An object-oriented language. Journal
of PASCAL, ADA and MODULA-2, March/April, 19-25.

Balci, O. & Sargent, R.G. (1984). Bibliography on the credibility,
assessment and validation of simulation and mathematical mod-
els. Simuletter, 15(3), 15-27.

Biles, W., Daniels, C. M., & O'Donnell, T. J. (1985). Statistical con-
siderations in simulation of a network of microcomputers. Pro-
ceedings of the 1985 Winter Simulation Conference (pp. 388-
393).

Christensen, E.R. (1990). Hierarchal optimistic distributed simulation:
Combining DEVS and Time Warp. Doctoral Dissertation, Uni-
versity of Arizona, Tucson, AZ.

Christensen, E.R. & Zeigler, B.P. (1990). Hierarchical, distributed,
object-oriented, and knowledge-based modelling and simulation.
58th Military Operations Research Society Symposium, U.S. Na-
val Academy, Annapolis, MD.

Cox, BJ. (1986). Object-Oriented Programming: An Evolutionary
Approach. Reading, MA: Addison-Wesley.

Dekker, L. (1984). Concepts for an advanced parallel architecture.
T.I. Oren, B.P. Zeigler, & M.S. Elzas (Eds.), Simulation and model-
based methodologies: An integrative view, (pp. 235-289). New
York: Springer-Verlag,

Duh, J. (1988). DEVS-Scheme implementation of a distributed ex-
perimentalfiame architecture. Master Thesis, University of Ar-
izona, Tucson, AZ.

Hayes-Roth, B. (1985). A blackboard architecture for control. Arti-
ficial Intelligence 26(3), 251-321.

Hon*ala~ P., Jefferson, D., & Presely, M. (1989). Time warp operating
system version 2.0. Users manual. Pasadena, CA: Jet Propulsion
Laboratory.

Jefferson, D.R. (1985). Virtual time. ACM Transactions on Pro-
gramming Languages and Systems 7(3), 404-425.

Kim, T.G. (1988). A knowledge-based environment for hierarchical
modelling and simulation. Doctoral Dissertation, University of
Arizona, Tucson, AZ.

Law, A.M. & Kelton, W.D. (1982). Simulation modeling and analysis.
New York: McGraw-Hill.

Nii, H.P. (1986). Blackboard systems: The blackboard model of
problem solving and the evolution of blackboard architecture. AI
Magazine, 7(2).

Oren, T.I. (1984). GEST--A modelling and simulation language
based on system theoretic concepts. In T.I. Oren, B.P. Zeigler,
M.S. Elzas (Eds.), Simulation and model-based methodologies:
An integrative view, (pp. 281-336). New York: Springer-Verlag,

Oren, T.I. (1984). Quality assurance in modelling and simulation: A
taxonomy, S. In T.I. Oren, B.P. Zeigler, & M.S. Elzas (Eds.),
Simulation and model-based methodologies: An integrative view,
(pp. 477-517). New York: Springer-Verlag,

Oren, T.I. (1986). Artificial intelligence in quality assurance of sim-
ulation studies, S. In M.S. Elzas, T.I. Oxen, & B.P. Zeigler (Eds.),
Modelling and simulation methodology in the artificial intelligence
era, (pp. 267-278). Amsterdam: North-Holland.

Rozenblit, J.W. (1985a). A conceptual basis for integrated, model-
based system design. Doctoral Dissertation, Department of
Computer Science, Wayne State University, Detroit, MI.

Rozenbfit, J.W. (1985b January). Experimental frames for distributed
simulation architectures. In Proceedings of the 1985 SCS MUl-
ticonference, Distributed Simulation, San Francisco, CA.

Rozenblit, J.W. & Zeigler, B.P. (1985 December). Concepts for
knowledge based system design environments. In Proceedings of
the 1985 Winter Computer Simulation Conference, San Diego,
CA.

Sargent, R.G. (1984). Simulation and model validation. In T.I. Oren,
B.P. Zeigler, & M.S. Elzas (Eds.), Simulation and model-based

methodologies: An integrative view (pp. 537-555). New York:
Springer-Verlag.

Sargent, R.G. (1986). An exploration of possibilities for expert aids
in model validation. In M.S. Elzas, T.I. Oren, & B.P. Zeigler
(Eds.), Modelling and simulation in the artificial intelligence Era,
(pp. 279-298). Amsterdam: North-Holland.

Software Productivity Solutions, Inc. (1989). Classic-Ada User Man-
ual. Indialantic, FL: Author.

Stroustrup, B. (1988). What is object-oriented programming? IEEE
Software 5(3), 10-20.

Zeigler, B.P. (1976). Theory of modelling and simulation. New York.
Wiley.

Zeigler, B.P. (1984). Multifacetted modelling and discrete event sim-
ulation. Orlando, FL: Academic Press.

Zeigler, B.P. (1987). Hierarchical, modular discrete-event modelling
in an object-oriented environment. Simulation, 49(5), 219-230.

Zeigler, B.P. (1990). Object-oriented simulation with hierarchical,
modular models: Intelligent agents and endomorphic systems. New
York: Academic Press.

Zeigler, B.P. & Christensen E.R. (1990). A formal framework as a
standard for simulation model validation. Military Operations
Research Society Simulation Validation Mini-Symposium, Al-
buquerque, NM.

A P P E N D I X : M A P P I N G D I S T R I B U T E D
E X P E R I M E N T A L F R A M E O N T O D E V S

S I M U L A T O R A R C H I T E C T U R E

This appendix explains the details of the frame mapping dis-
cussed in Section 5.2.

An MFC is a coordinator defined in the same way as a
coordinator of the abstract simulator, which performs the
following functions: at the level local to its frame and model
(i.e., the level (i), it sends the (. , t) message to the frame
generator. This message results in an internal transition of
the generator and a message (y, t) being output by the gen-
erator. This (y, t) message is sent back to the model/frame
coupler and forwarded directly as an external event (x, t) to
the simulator of the model component . The MFC also for-
wards a local (y, t) message generated by the model simulator,
to the local frame transducer and a (e, t) message to the local
acceptor, respectively. Notice that both, the transducer and
acceptor are passive DEVS systems. This significantly sim-
plifies the design of the MFC since it only has to schedule
the internal transitions of one active component , that is, the
generator. The coupler also serves as a communica t ion port
with the parent coordinator specified at level (i - 1) of the

.o Eo < MFOo 1'
M 0 &(E I&E 2)

(.Fc,) 1 (.Fo,

to;, :1 II; o2 H Z I

FIGURE 14. Abstract simulator of distributed model with ex-
perimental frames.

342 B. P. Zeigler et al.

simulator hierarchy. Its function as an i/o port consists in
transducing the (*, t), (x, t), (o, t), and (m, t) signals to (from)
the parent coordinator from (to) the simulator of the model
component at the subordinate level.

To exemplify the discussion let us consider the simulator
presented in Figure 7. (Fig. 14 shows a fully distributed frame
structure coupled with this simulator). The coupler MFC1
coordinates the simulator of the model component M, and
corresponding simulators of G~, TI and A~. It broadcasts
message (,, t) to the generator which responds by producing
an output signal (y, t). This output signal is in turn transduced
by MFC, to the simulator M~. The coupler collects the mes-
sages (y, t) and (c, t) from M~ and transduces them to T, and
A~, respectively. The composition ofMFCI, M~, G~, T~ and
A, constitutes the simulator for the component M~ with its
corresponding experimental frame El, denoted as M~E~. The

simulator M2E2 is realized in the same manner. Both simu-
lators are coupled by the standard (in the sense of Zeigler's
definition) coordinator Co. The role of MFC's in the coupling
is restricted to serving as input/output ports to the combined
model/frame simulators. They simply transduce the m ~ e s
between Co and MI and M2. Notice, however, that in spite
of the fact that Co is the root coordinator it is still necessary
to simulate the model Mo and its frame//70. To achieve this,
MFCo is created to coordinate the actions of the simulators
Mo, Go, To and Ao. This model/frame coupler is linked to
the root coordinator. The experimental frame/model coupling
resulting at this level is MoEo as shown in Figure 1 4. The
model/frame coupler transmits the generator's outputs as ex-
ternal event messages to the coordinator Co. It also receives
the global (y, t) output and (c, t) control messages. These
messages are sent to the transducer and acceptor, respectively.

