
Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

H ie r a r ch i ca l , M o d u l a r M o d e l l i n g in D E V S - S c h e m e

Bernard P. Zeigler, Jhyfang Hu, and Jerzy W. Rozenblit

Dept. of Electrical and Computer Engineering

University of Arizona

Tucson, AZ 85721

A B S T R A C T

This tutorial describes the features of DEVS-
Scheme a knowledge based simulation environment for
hierarchical, modular discrete event models. The at-
tributes of DEVS-Scheme which distinguish it from con-
ventional approaches are described in terms of a set of
layers, each layer dependent on its predecessor to achieve
its functionality.

I N T R O D U C T I O N

Hierarchical, modular specification of discrete event
models offers a basis for reusable model bases and hence
for enhanced simulation of truly varied design alter-
natives. This tutorial summarizes the DEVS-Scheme
environment, which implements the DEVS formalism
for hierarchical, modular models. DEVS-Scheme is im-
plemented in PC-Scheme, a powerful LISP dialect for
microcomputers containing an object-oriented program-
ming subsystem. Since both the implementation and the
underlying language are accessible to the user, the re-
sult is a capable medium for combining simulation mod-
eling and artificial intelligence techniques. The environ-
ment is developed in an object-oriented manner which
lends itself to model base organization using the entity
structure knowledge representation. It also serves as a
medium for developing hierarchical distributed simula-
tion models and architectures.

The features of DEVS-Scheme can be better under-
stood by organizing them within a set of layers that
characterizes its software design structure. In Figure 1,
Scheme ~nd SCOOPS, the Lisp-based, object-oriented
programming system provides the foundation on which
the system is built. The properties of this lowest layer
make it possible to realize similar properties at the
higher layers. For example, the ability to test the be-
havior of an object in stand-alone fashion is responsible
for the same testability property that obtains for model
objects on Layer 1. The next layer, which supports sys-
tems model construction, acquires many of its proper-
ties from both Layer 0 and the systems concepts em-
bodied in the DEVS formalism. Layer 2 relies on Layer
1 to provide the ability to specify models which popu-
late the model base that Layer-2 organizes. The highest
layer, that of systems design, augments the system en-

tity structure knowledge representation with knowledge
related to model-based design.

" : LAYERS OF DEVS-SCHEME ::~::: ~::i~::~:~i~i~:i~: :::

Layer 3: Systems Design [

i:

I ' I
Layer 0: Lisp-Based. Object-Oriented Foundation [

Figurel Layers of DEVS-Scheme

L a y e r - 0 : L i s p - b a s e d , O b j e c t - O r i e n t e d
F o u n d a t i o n

Major features of the Layer-0 DEVS-Scheme are:

Symbolic and Numeric Processing: Number crunch-
ing ability is typically a requirement of traditional mod-
els but symbol manipulation capability is essential to
knowledge based simulation characterized by intelligent
components and/or intelligent model manipulation. In
contrast to many artificial intelligence studies, which
stay at a high degree of abstraction, knowledge-based
simulation, e.g., of robotic systems, must have effident
substrates of both kinds of processing support.

Software Design Attributes: The object concept em-
bodies the fruits of software engineering research such
as encapsulation (packaging of data and code together),
abstraction (the objects behavior as seen through its
methods), and information hiding (the structural detail
it hides).

84

Environment Development Support: The symbol
manipulat ion and object-oriented facilities of Scheme
make i t relatively easy to code complex structures and
operations on them. Since Scheme is an interpretted lan-
guage, it combines levels tha t would be separated in the
t ranslat ion and execution steps of compiled languages.
Thus, like i ts parent, LISP, Scheme is a "language to
develop languages in". In it, an environment can be
evolved in which tools are readily developed and inte-
grated. In contrast a compiled language can not as eas-
ily support such environment evolution since one must
work at both the language and operating system levels
to do this.

Testability: An object can be tested against its be-
havioral requirements specification (e.g., given in ax-
iomatic form) by injecting sequences of messages and
comparing the object ' s response with that expected.

Extensibility: A software system can evolve incre-
mentally by addition of new classes without disturbing
previously writ ten code.

Replicatability: Since object structures are well de-
fined by their class templates, class specific methods can
be written so that objects, no mat ter how complex, can
be easily replicated (copied).

Concurrent Implementation: It is quite natural to
extend object behavior so that all objects are simultane-
ously active; the parallelism in such concurrent object-
oriented systems can then be exploited by mapping to
multiprocessor architectures.

Browsability: The ability allows a user to browse
easily through the class hierarchy of a system, getting
both global and local perspectives. Unfortunately, in
contrast to SMALLTALK and LOOPS, this is not di-
rectly available in SCOOPS.

L a y e r - l : S y s t e m s M o d e l S p e c i f i c a t i o n

Major features of the Layer-1 DEVS-Scheme are:

System Theoretic Formal Basis: The DEVS formal-
ism for discrete event systems is directly implemented
as the means of expression in DEVS-Scheme. This pro-
vides a sound semantics for discrete event model repre-
sentation and basis for mathematical and other symbolic
processing of model specifications.

Model Specification Language: As a set theoretic
construct, the DEVS formalism by itself is not a prac-
tical means of specifying models. However, DEVS-
Scheme supports the structure of the DEVS-formallsm
with the underlying expressive power of Scheme, thus of-
fering a combination of the best of both worlds: formal
specification with ease of model development.

Modularity: Model specifications are self-contained
and have input and output ports through which all inter-
action with the external world must take place. Models,

as objects, have the software engineering a t t r ibutes in-
herited from Layer-O. In addition, ports provide a level
of delayed binding which needs to be resolved only when
models are coupled together.

Closure under Coupling: Models may be connected
together by coupling of input and output ports to create
larger, coupled models, having the same interface prop-
erties as the components. Hierarchical construction fol-
lows as a consequence of modulari ty and closure under
coupling; successively more complex models can be built
by using, as building blocks, the coupled models already
constructed.

Stand-alone and Bottom-up Testability: Due to ob-
ject encapsulation and inpu t /ou tpu t modularity, models
are independently verifiable at every stage of hierarchi-
cal construction. This fosters secure and incremental
bot tom-up synthesis of complex models.

Experimental Frame/Model Separation: Experi-
mental frames are independently realized as models of
special kinds: generators, transducers, acceptors. Hav-
ing inpu t /ou tpu t ports, they can be coupled to models
to which they are applicable.

Isomorphic Replicatability: Copies can easily be
made of complex, hierarchical models, with consistent
name assignments, as components in homogeneous mod-
els. Systems isomorphism concepts provide the formal
basis for correctness of model replication.

Hierarchical Distributed Simulation: As objects,
models can be executed on concurrent object-based pro-
cessors; however, using the abstract simulator concepts,
more advantageous hierarchical multiprocessor systems
can be designed and hierarchical models mapped to
them so that maximum speed up is obtained. DEVS-
Scheme provides timing measurements from its under-
lying "virtual multiprocessor" simulation engine to sup-
port analysis for optimal multiprocessor mappings.

System Manipulations: Derived from the formal
Structure and system theoretic basis is the ability to
implement systems operations such as structure trans-
formations, tests for homomorphism, etc.

Model Abstraction and Simplification: Systems
model description, as rendered by the DEVS formal-
ism, facilitates tool development for DEVS represen-
tat ion of continuous systems which can be used for
faster simulation and for event-based control. Simplifi-
cation of DEVS multicomponent models (coupled mod-
els) can be obtained by conversion to equivalent atomic-
models, from which a homomorphic lumped model is
constructed. The motivation is to obtain faster running
lumped models that can replace a component of a hi-
erarchical model so that i ts complement can be more
efficiently run and tested.

System Specification Formalisms within DEVS-

85

Scheme: The hierarchical, modular modelling and sim-
ulation concepts first developed in the DEVS formal-
ism can be implemented in continuous and discrete-time
formalisms and combined with DEVS to obtain multi-
formalism simulation.

Model specification extensibility: New kinds of
model specification formats can be readily added as spe-
cialized classes of atomic and coupled models

Rule-based Modelling: The specialized class,
forward-models provides the ability to specify models
as sets of activities, which are have a rule-like character
and combine symbolic and dynamic model specification.

Granularity: Activities within forward-models pro-
vide the most granual level of specification or knowledge
representation in DEVS-Scheme. Sets of activities can
be inherited and combined to form larger sets.

L a y e r - 2 : S y s t e m E n t i t y S t r u c t u r e / M o d e l -
B a s e

Major features supported by the Layer-2 of DEVS-
Scheme include:

Axiomatic Specification: The system entity struc-
ture is a treelike graph which is formally characterized
in an axiomatic manner thus facilitating design and ver-
ification of the complex operations that are required to
support model generation and reuse.

Synthesis Constraints: The system entity structure
can be augmented with rules that enforce constraints on
selections from specializations. Such constraints can be
of a global character where selections in various parts of
the SES must be correlated. They also can be sensitive
to the context in which the selection is being made. This
supports coherence of the entity structure base.

Model Synthesis via Pruning: Hierarchical models
can synthesized by creating and transforming pruned
entity structures. This requires only that the lowest level
atomic-models referenced by a pruned entity structure
reside in the model base.

Archivability: Models can be saved on disk in the
form of model definition files or as pruned entity struc-
ture files. The la t ter form is preferred both for the con-
venience of model construction afforded as well as for
taking advantage of the automatic cataloguing provided
by the environment.

Model-base Cataloguing: Pruned entity structures
are given the name of their root entity together with
a user supplied suffix so that they can be identified as
representing alternative models of the root entity.

Reusability: Models developed for studying a partic-
ular real system, archived in the model base and man-
aged by the system entity structure, are retrievable for

use as components in new models. Due to pruned en-
t i ty naming, hierarchical models expressed in the form
of pruned entity structures are jus t are reusable as those
in the model base. This fosters accumulative growth of
"off-the-shelf" reusable components.

L a y e r - 3 : S y s t e m s D e s i g n

The systems design layer supports model-based de-
sign. It is implemented by embedding the system entity
structure in a richer frame-based knowledge representa-
tion scheme called Frames and Rules Associated System
Entity Structure (FRASES). A great amount of infor-
mation can be at tached to nodes in the SES which can
be used to drive the system design process. The fol-
lowing briefly outlines features of system design in the
DEVS-Scheme environment.

Knowledge Acquisition by Representation (KAR):
The FRASES organization consti tutes a set of hypothe-
ses on what it is important for systems design. To
the extent that these hypotheses are correct and com-
plete, capturing this knowledge can be facili tated using
FRASES as a template for conducting a dialog with a
system design expert. A sample dialog is i l lustrated in
Figure 2.

Goal Driven PruninT. Layer-3 helps users with de-
sign model construction by providing guidance in prun-
ing sensitive to their design goals. Rules are at tached
to FRASES to represent selection and synthesis knowl-
edge. Selection rules attached to specializations specify
entity choices in terms of local design criteria. Synthesis
rules at tached to decompositions constrain the plausable
combinations of model components in decompositions.
Different inference engines characterizing forward, back-
ward, and weight-oriented chaining, were developed to
facilitate the design reasoning process.

Hierarchical Design Specification: Design require-
ments including constraints, objectives, and criteria
preference can be specified and at tached to each cor-
responding entity at different design abstract ion levels.
This enables a hierarchical design specification.

Automatic Performance Modeling: To help develop
math-intensive models for measuring performance of de-
sign models, Layer-3 of DEVS-Scheme supports auto-
matic generation of experimental frames. By providing
the algebraic expression of a defined performance index,
atomic frames are extracted automatical ly and aggre-
gated into an experimental frame model which can be
coupled to the design model for performance evaluation.

Automated Design Evaluation and Ranking: Design
models synthesized via pruning are automatical ly sub-
jected to simulation evaluation in performance-relevant
experimental frames and ranked according to multi-
criteria decision methods. FRASES attaches slots with

86

KAR/EXPERT INTERACTION

KAR> w h a t is your problem domain ? Distributed
=> Distributed-Systems Systems

KAR> What Mnd of static attributes do you want to add
to the system?

=> (designer Jeff) (date 4/19/89) (place UA)

KAR> What Mnd of design parameters will be considered
at this design level?

=> cost size

KAR> What kind of performance indices will be
considered to evaluate a Distributed-System

KAR> Can you classify a Distributed-System based on
certain specialization?

=>why

KAR>->> This question is used to query how experts
->> classify, the variants of the entity asked for. For
->> example, a computer network can be clssified
->> into RING, BUS, and TREE based on Topology.

KAR> Can you classify a Distributed-System based on
certain specializations?

=>nil
KAR> Can you decompose a Distributed-System

based on certain aspecO

=> module

KAR> What are these subcomponents when you decompose
a Distributed-System based on Module?

=> Computer-Modules Message-Transfer-System (MTS)

KAR>Does the number of Computing-Modules vary

FRASES CONVERSION

Distributed
Systems

Distributed
Systems ~

I
module

Distributed
Systems ~

I
module

I
i I

Computer MTS
Modules

Distributed
Systems ~ -]

with design requirements?

=> yes
KAR> Specific the range for the number of

Computing-Modules?

=>064

;;; multiple decomposition

moc~ule
]

i i Computer
Modules MTS

I]]
Computer

Module

8'7

- c o n t i n u e d -

KAR> Can you rank the design priority for
Processor, Memory, and I/O-Devices?

=> Processor Memory I/O-Devices

KAR>What kind of performance indices will be
employed to evaluate a Computing-Module?

=> response-time thruput

KAR> Can you classify a processor based on
certain specialization?

=> nil

KAR> Can you decompose a processor based
on certain aspect?

=> nil

;;; sa t i s f i ed w i t h the level o f d e s i g n abs t rac t ion
;;; f o r p roces sor

KAR> Can you classify a Message-Transfer-System
based on certain specializations?

=> technology

KAR> What are the alternatives when you classify
a Message-Transfer-System based on
technology?

=> IN LAN

KAR> Can you specify selection rules that
determine MTS technology?

=>rl: if interaction between computing modules
is high or resources sharing capability is
required then select LAN.

r2: if interaction between computing modules
is low or resources sharing capability is
not required then select IN.

KAR>

Distributed
Systems

moJule

Computer MTS
Modules

Ill
Computer

Module

CM-ele~nent

]
] I

=> yes

• • •

Will the Distributed-Systems use a LAN or
IN as the Message-Transfer-System (MTS)
and consist of a variable number of
computer modules?

;;; v e r i f y ing i n h e r i t a n c e

Processor I/O
Devices

Memory

Distributed
Systems

modlule
I

' I1 1 Computer
Modules MTS

'" li
Computer technology

~ Module

I I ~ L A N CM
element

i
I i

Processor I/O ~
Devices

Memory

Figure 2 Illustration of KAR with FRASES

88

nodes for specifications of performance indexes, the sys-
tem measurements they are based on, the experimental
frames that can acquire data for such measurements,
and the trade-off criteria for ranking of alternatives.

C O N C L U S I O N

DEVS-Scheme was developed at the University of
Arizona as a product of research funded by the National
Science Foundation. It is currently being used to dee-
sign autonomous robots for laboratory automation in
a project sponsored by the AI Research Center, NASA
Ames. The environment is available for academic and
industrial use and is being commercialized by SIMEX, a
corporation offering simulation methodology for knowl-
edge based control.

R E F E R E N C E S

Hu, Jhyfang (1989), "Towards A Knowledge-Based De-
sign Support Environment For Design Automation and
Performance Evaluation", Ph.D. Dissertation, Univer-
sity of Arizona, Tucson, Arizona.

Kim, Tag Gon (1988), "A Knowledge-Based Environ-
ment for Hierarchical Modelling and Simulation", Ph.D.
Dissertation, University of Arizona, Tucson.

Rozenblit, J. W. (1985), "A Conceptual Basis for Model-
Based System Design", Ph.D. Dissertation, Wayne State
University, Detroit, MI.

Zeigler, B. P. (1976), "Theory of Modelling and Sim-
ulation", Wiley, NY. (Reissued by Krieger Pub. Co.,
Malabar, FL.

Zeigler, B. P. (1984), "Multifacetted Modelling and Dis-
crete Event Simulation", Academic Press, London and
Orlando, FL.

Zeigler, B. P. (1989), "Hierarchical Modular DEVS:
Model Knowledge and Endomorphy in Object-Oriented
Simulation", Academic Press, Boston.

Arizona in 1986 and 1989. His primary research inter-
ests include AI/CAD VLSI design and testing, object-
oriented database management, and expert systems for
design automation and performance evaluation. He is a
member of Eta Kappa Nu and IEEE Computer Society.

Jerzy W. Rozenblit is an assistant professor of Elec-
trical and Computer Engineering at University of Ari-
zona, Tucson. He received his Ph.D. degree in Computer
Science from Wayne State University in Detroit in 1986.
His research interests are in the area of modelling and
simulation, system design, and artificial intelligence. He
is a member of ACM, IEEE Computer Society, and So-
ciety of Computer Simulation.

A u t h o r s ' B i o g r a p h i e s

Bernard P. Zeigler is a professor of Electrical and
Computer Engineering at the University of Arizona.
He is author of "Hierarchical Modular DEVS: Model
Knowledge and Endomorphy in Object-Oriented Sim-
ulation", Academic Press, 1989, "Multifacetted Mod-
elling and Discrete Event Simulation", Academic Press,
1984, and "Theory of Modelling and Simulation", John
Wiley, 1976. His research interests include artificial in-
telligence, distributed simulation, and expert system for
simulation methodology.

Jhyfang Hu received his M.S. and Ph.D. degrees in
Electrical and Computer Engineering from University of

89

