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A B S T R A C T  

This tutorial describes the features of DEVS- 
Scheme a knowledge based simulation environment for 
hierarchical, modular discrete event models. The at- 
tributes of DEVS-Scheme which distinguish it from con- 
ventional approaches are described in terms of a set of 
layers, each layer dependent on its predecessor to achieve 
its functionality. 

I N T R O D U C T I O N  

Hierarchical, modular specification of discrete event 
models offers a basis for reusable model bases and hence 
for enhanced simulation of truly varied design alter- 
natives. This tutorial summarizes the DEVS-Scheme 
environment, which implements the DEVS formalism 
for hierarchical, modular models. DEVS-Scheme is im- 
plemented in PC-Scheme, a powerful LISP dialect for 
microcomputers containing an object-oriented program- 
ming subsystem. Since both the implementation and the 
underlying language are accessible to the user, the re- 
sult is a capable medium for combining simulation mod- 
eling and artificial intelligence techniques. The environ- 
ment is developed in an object-oriented manner which 
lends itself to model base organization using the entity 
structure knowledge representation. It also serves as a 
medium for developing hierarchical distributed simula- 
tion models and architectures. 

The features of DEVS-Scheme can be better under- 
stood by organizing them within a set of layers that 
characterizes its software design structure. In Figure 1, 
Scheme ~nd SCOOPS, the Lisp-based, object-oriented 
programming system provides the foundation on which 
the system is built. The properties of this lowest layer 
make it possible to realize similar properties at the 
higher layers. For example, the ability to test the be- 
havior of an object in stand-alone fashion is responsible 
for the same testability property that obtains for model 
objects on Layer 1. The next layer, which supports sys- 
tems model construction, acquires many of its proper- 
ties from both Layer 0 and the systems concepts em- 
bodied in the DEVS formalism. Layer 2 relies on Layer 
1 to provide the ability to specify models which popu- 
late the model base that Layer-2 organizes. The highest 
layer, that of systems design, augments the system en- 

tity structure knowledge representation with knowledge 
related to model-based design. 

" : LAYERS OF DEVS-SCHEME ::~::: ~::i~::~:~i~i~:i~: ........... ::: 

Layer 3: Systems Design [ 

i: 

I ' I 
Layer 0: Lisp-Based. Object-Oriented Foundation [ 

Figurel Layers of DEVS-Scheme 

L a y e r - 0 :  L i s p - b a s e d ,  O b j e c t - O r i e n t e d  
F o u n d a t i o n  

Major features of the Layer-0 DEVS-Scheme are: 

Symbolic and Numeric Processing: Number crunch- 
ing ability is typically a requirement of traditional mod- 
els but symbol manipulation capability is essential to 
knowledge based simulation characterized by intelligent 
components and/or intelligent model manipulation. In 
contrast to many artificial intelligence studies, which 
stay at a high degree of abstraction, knowledge-based 
simulation, e.g., of robotic systems, must have effident 
substrates of both kinds of processing support. 

Software Design Attributes: The object concept em- 
bodies the fruits of software engineering research such 
as encapsulation (packaging of data and code together), 
abstraction (the objects behavior as seen through its 
methods), and information hiding (the structural detail 
it hides). 
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Environment Development Support: The symbol 
manipulat ion and object-oriented facilities of Scheme 
make i t  relatively easy to code complex structures and 
operations on them. Since Scheme is an interpretted lan- 
guage, it combines levels tha t  would be separated in the 
t ranslat ion and execution steps of compiled languages. 
Thus, like i ts parent,  LISP, Scheme is a "language to 
develop languages in". In it, an environment can be 
evolved in which tools are readily developed and inte- 
grated. In contrast  a compiled language can not as eas- 
ily support  such environment evolution since one must 
work at both the language and operating system levels 
to do this. 

Testability: An object can be tested against its be- 
havioral requirements specification (e.g., given in ax- 
iomatic form) by injecting sequences of messages and 
comparing the object ' s  response with that  expected. 

Extensibility: A software system can evolve incre- 
mentally by addition of new classes without disturbing 
previously writ ten code. 

Replicatability: Since object  structures are well de- 
fined by their class templates,  class specific methods can 
be written so that  objects, no mat ter  how complex, can 
be easily replicated (copied). 

Concurrent Implementation: It  is quite natural  to 
extend object  behavior so that  all objects are simultane- 
ously active; the parallelism in such concurrent object- 
oriented systems can then be exploited by mapping to 
multiprocessor architectures. 

Browsability: The ability allows a user to browse 
easily through the class hierarchy of a system, getting 
both global and local perspectives. Unfortunately, in 
contrast to SMALLTALK and LOOPS, this is not di- 
rectly available in SCOOPS. 

L a y e r - l :  S y s t e m s  M o d e l  S p e c i f i c a t i o n  

Major features of the Layer-1 DEVS-Scheme are: 

System Theoretic Formal Basis: The DEVS formal- 
ism for discrete event systems is directly implemented 
as the means of expression in DEVS-Scheme. This pro- 
vides a sound semantics for discrete event model repre- 
sentation and basis for mathematical  and other symbolic 
processing of model specifications. 

Model Specification Language: As a set theoretic 
construct,  the DEVS formalism by itself is not a prac- 
tical means of specifying models. However, DEVS- 
Scheme supports  the structure of the DEVS-formallsm 
with the underlying expressive power of Scheme, thus of- 
fering a combination of the best of both worlds: formal 
specification with ease of model development. 

Modularity: Model specifications are self-contained 
and have input  and output  ports through which all inter- 
action with the external world must take place. Models, 

as objects, have the software engineering a t t r ibutes  in- 
herited from Layer-O. In addition, ports  provide a level 
of delayed binding which needs to be resolved only when 
models are coupled together. 

Closure under Coupling: Models may be connected 
together by coupling of input  and output  ports  to create 
larger, coupled models, having the same interface prop- 
erties as the components. Hierarchical construction fol- 
lows as a consequence of modulari ty and closure under 
coupling; successively more complex models can be built 
by using, as building blocks, the coupled models already 
constructed. 

Stand-alone and Bottom-up Testability: Due to ob- 
ject  encapsulation and inpu t /ou tpu t  modularity,  models 
are independently verifiable at every stage of hierarchi- 
cal construction. This fosters secure and incremental 
bot tom-up synthesis of complex models. 

Experimental Frame/Model Separation: Experi- 
mental frames are independently realized as models of 
special kinds: generators, transducers,  acceptors. Hav- 
ing inpu t /ou tpu t  ports,  they can be coupled to models 
to which they are applicable. 

Isomorphic Replicatability: Copies can easily be 
made of complex, hierarchical models, with consistent 
name assignments, as components in homogeneous mod- 
els. Systems isomorphism concepts provide the formal 
basis for correctness of model replication. 

Hierarchical Distributed Simulation: As objects, 
models can be executed on concurrent object-based pro- 
cessors; however, using the abstract  simulator concepts, 
more advantageous hierarchical multiprocessor systems 
can be designed and hierarchical models mapped to 
them so that  maximum speed up is obtained. DEVS- 
Scheme provides timing measurements from its under- 
lying "virtual multiprocessor" simulation engine to sup- 
port  analysis for optimal multiprocessor mappings. 

System Manipulations: Derived from the formal 
Structure and system theoretic basis is the ability to 
implement systems operations such as structure trans- 
formations, tests for homomorphism, etc. 

Model Abstraction and Simplification: Systems 
model description, as rendered by the DEVS formal- 
ism, facilitates tool development for DEVS represen- 
tat ion of continuous systems which can be used for 
faster simulation and for event-based control. Simplifi- 
cation of DEVS multicomponent models (coupled mod- 
els) can be obtained by conversion to equivalent atomic- 
models, from which a homomorphic lumped model is 
constructed. The motivation is to obtain faster running 
lumped models that  can replace a component of a hi- 
erarchical model so that  i ts complement can be more 
efficiently run and tested. 

System Specification Formalisms within DEVS- 
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Scheme: The hierarchical, modular  modelling and sim- 
ulation concepts first developed in the DEVS formal- 
ism can be implemented in continuous and discrete-time 
formalisms and combined with DEVS to obtain multi- 
formalism simulation. 

Model specification extensibility: New kinds of 
model specification formats can be readily added as spe- 
cialized classes of atomic and coupled models 

Rule-based Modelling: The specialized class, 
forward-models provides the ability to specify models 
as sets of activities, which are have a rule-like character 
and combine symbolic and dynamic model specification. 

Granularity: Activities within forward-models pro- 
vide the most granual level of specification or knowledge 
representation in DEVS-Scheme. Sets of activities can 
be inherited and combined to form larger sets. 

L a y e r - 2 :  S y s t e m  E n t i t y  S t r u c t u r e / M o d e l -  
B a s e  

Major  features supported by the Layer-2 of DEVS- 
Scheme include: 

Axiomatic Specification: The system entity struc- 
ture is a treelike graph which is formally characterized 
in an axiomatic manner thus facilitating design and ver- 
ification of the complex operations that  are required to 
support  model generation and reuse. 

Synthesis Constraints: The system entity structure 
can be augmented with rules that  enforce constraints on 
selections from specializations. Such constraints can be 
of a global character where selections in various parts  of 
the SES must be correlated. They also can be sensitive 
to the context in which the selection is being made. This 
supports  coherence of the entity structure base. 

Model Synthesis via Pruning: Hierarchical models 
can synthesized by creating and transforming pruned 
entity structures. This requires only that  the lowest level 
atomic-models referenced by a pruned entity structure 
reside in the model base. 

Archivability: Models can be saved on disk in the 
form of model definition files or as pruned entity struc- 
ture files. The la t ter  form is preferred both for the con- 
venience of model construction afforded as well as for 
taking advantage of the automatic  cataloguing provided 
by the environment. 

Model-base Cataloguing: Pruned entity structures 
are given the name of their root entity together with 
a user supplied suffix so that  they can be identified as 
representing alternative models of the root entity. 

Reusability: Models developed for studying a partic- 
ular real system, archived in the model base and man- 
aged by the system entity structure, are retrievable for 

use as components in new models. Due to pruned en- 
t i ty  naming, hierarchical models expressed in the form 
of pruned entity structures are jus t  are reusable as those 
in the model base. This fosters accumulative growth of 
"off-the-shelf" reusable components.  

L a y e r - 3 :  S y s t e m s  D e s i g n  

The systems design layer supports  model-based de- 
sign. It is implemented by embedding the system entity 
structure in a richer frame-based knowledge representa- 
tion scheme called Frames and Rules Associated System 
Entity Structure (FRASES).  A great amount  of infor- 
mation can be at tached to nodes in the SES which can 
be used to drive the system design process. The fol- 
lowing briefly outlines features of system design in the 
DEVS-Scheme environment. 

Knowledge Acquisition by Representation (KAR): 
The FRASES organization consti tutes a set of hypothe- 
ses on what it  is important  for systems design. To 
the extent that  these hypotheses are correct and com- 
plete, capturing this knowledge can be facili tated using 
FRASES as a template  for conducting a dialog with a 
system design expert.  A sample dialog is i l lustrated in 
Figure 2. 

Goal Driven PruninT. Layer-3 helps users with de- 
sign model construction by providing guidance in prun- 
ing sensitive to their design goals. Rules are at tached 
to FRASES to represent selection and synthesis knowl- 
edge. Selection rules attached to specializations specify 
entity choices in terms of local design criteria. Synthesis 
rules at tached to decompositions constrain the plausable 
combinations of model components in decompositions. 
Different inference engines characterizing forward, back- 
ward, and weight-oriented chaining, were developed to 
facilitate the design reasoning process. 

Hierarchical Design Specification: Design require- 
ments including constraints,  objectives, and criteria 
preference can be specified and at tached to each cor- 
responding entity at different design abstract ion levels. 
This enables a hierarchical design specification. 

Automatic Performance Modeling: To help develop 
math-intensive models for measuring performance of de- 
sign models, Layer-3 of DEVS-Scheme supports  auto- 
matic generation of experimental  frames. By providing 
the algebraic expression of a defined performance index, 
atomic frames are extracted automatical ly and aggre- 
gated into an experimental  frame model which can be 
coupled to the design model for performance evaluation. 

Automated Design Evaluation and Ranking: Design 
models synthesized via pruning are automatical ly sub- 
jected to simulation evaluation in performance-relevant 
experimental  frames and ranked according to multi- 
criteria decision methods. FRASES attaches slots with 
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KAR/EXPERT INTERACTION 

KAR> w h a t  is your problem domain ? Distributed 
=> Distributed-Systems Systems 

KAR> What Mnd of static attributes do you want to add 
to the system? 

=> (designer Jeff) (date 4/19/89) (place UA) 

KAR> What Mnd of design parameters will be considered 
at this design level? 

=> cost size 

KAR> What kind of performance indices will be 
considered to evaluate a Distributed-System 

KAR> Can you classify a Distributed-System based on 
certain specialization? 

=>why 

KAR>->> This question is used to query how experts 
->> classify, the variants of the entity asked for. For 
->> example, a computer network can be clssified 
->> into RING, BUS, and TREE based on Topology. 

KAR> Can you classify a Distributed-System based on 
certain specializations? 

=>nil 
KAR> Can you decompose a Distributed-System 

based on certain aspecO 

=> module 

KAR> What are these subcomponents when you decompose 
a Distributed-System based on Module? 

=> Computer-Modules Message-Transfer-System (MTS) 

KAR>Does the number of Computing-Modules vary 

FRASES CONVERSION 

Distributed 
Systems 

Distributed 
Systems ~ 

I 
module 

Distributed 
Systems ~ 

I 
module 

I 
i I 

Computer MTS 
Modules 

Distributed 
Systems ~ - ]  

with design requirements? 

=> yes 
KAR> Specific the range for the number of 

Computing-Modules? 

=>064 

;;; multiple decomposition 

moc~ule 
] 

i i Computer 
Modules MTS 

I]] 
Computer 

Module 
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- c o n t i n u e d  - 

KAR> Can you rank the design priority for 
Processor, Memory, and I/O-Devices? 

=> Processor Memory I/O-Devices 

KAR>What kind of performance indices will be 
employed to evaluate a Computing-Module? 

=> response-time thruput 

KAR> Can you classify a processor based on 
certain specialization? 

=> nil 

KAR> Can you decompose a processor based 
on certain aspect? 

=> nil 

;;; sa t i s f i ed  w i t h  the  level  o f  d e s i g n  abs t rac t ion  
;;; f o r  p roces sor  

KAR> Can you classify a Message-Transfer-System 
based on certain specializations? 

=> technology 

KAR> What are the alternatives when you classify 
a Message-Transfer-System based on 
technology? 

=> IN LAN 

KAR> Can you specify selection rules that  
determine MTS technology? 

=>rl: if interaction between computing modules 
is high or resources sharing capability is 
required then select LAN. 

r2: if interaction between computing modules 
is low or resources sharing capability is 
not required then select IN. 

KAR> 

Distributed 
Systems 

moJule 

Computer MTS 
Modules 

Ill 
Computer 

Module 

CM-ele~nent 

] 
] I 

=> yes 

• • • 

Will the Distributed-Systems use a LAN or 
IN as the Message-Transfer-System (MTS) 
and consist of a variable number of 
computer modules? 

;;; v e r i f y ing  i n h e r i t a n c e  

Processor I/O 
Devices 

Memory 

Distributed 
Systems 

modlule 
I 

' I1 1 Computer 
Modules MTS 

'" li 
Computer technology 

~ Module 

I I ~ L A N  CM 
element 

i 
I i 

Processor I/O ~ 
Devices 

Memory 

Figure 2 Illustration of KAR with FRASES 
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nodes for specifications of performance indexes, the sys- 
tem measurements they are based on, the experimental 
frames that can acquire data for such measurements, 
and the trade-off criteria for ranking of alternatives. 

C O N C L U S I O N  

DEVS-Scheme was developed at the University of 
Arizona as a product of research funded by the National 
Science Foundation. It is currently being used to dee- 
sign autonomous robots for laboratory automation in 
a project sponsored by the AI Research Center, NASA 
Ames. The environment is available for academic and 
industrial use and is being commercialized by SIMEX, a 
corporation offering simulation methodology for knowl- 
edge based control. 
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