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Abstract—The behavior of an organization may be inferred
based on the behavior of its members, their contacts, and
their connectivity. One approach to organizational analysis is
the construction and interpretation of a social network graph,
where entities of an organization (persons, vehicles, locations,
events, etc.) are nodes, and edges represent varying kinds of
connectivity between entities. This paper describes a transfor-
mation based approach to the extraction of a social network
graph, where the original data comprising (partial) observation
of the organization are embedded on a graph with a different
ontology, and with many entities and edges that are unrelated
to the organization of interest. Social network extraction allows
the inference of implied relationships, and the selection of
relationships relevant for intended analysis techniques. The
analysis of the resulting social network graph is based on
organizational and individual analysis, in order to permit an
advanced user to draw conclusions regarding the behavior of
the organization, based on established social network graph
metrics. The results of the paper include a discussion of the
complexity of analysis, and how the observation data graph is
pruned in order to scale the application of analysis algorithms.

Keywords-Social Networking; Network Analysis; Graph
Translation

I. INTRODUCTION

Social networking sites are growing in popularity, and

have rapidly become a fixture in popular culture. Interest-

ingly, the dynamics of criminal organizations have long been

investigated by understanding the connectivity of key and

peripheral players in the organization. In the case of inferring

the behavioral dynamics of an organization, as well as all

realistic scenarios, only partial observation of the social

network is possible.

The key to all techniques that provide some understanding

of the dynamics of an organization based on the social net-

work approach is the type of connectivity between entities.

This motivates a domain-specific consideration of the graphs

used for analysis: namely that the ontology (or, metamodel)

used for the analysis should formalize the necessary classi-

fications for the nodes and edges of the graph. The resulting

social network graph—suitable for analysis—is a colored

multigraph, which can be considered as conforming to a

metamodel.

Once the social network graph is created, it is possible to

perform two fundamental kinds of analysis: organizational-

level analysis, and individual-level analysis. Organizational-

level analysis provides insight into the form, efficiency,

and cohesion of the organization. Individual-level analysis

characterizes the members of an organization, in order to

identify key individuals.

Source data, however, may be distributed across multiple

databases, and use ontologies not intended for graph-based

analysis. Therefore, it is necessary to develop techniques to

transform well-formed data from the source ontologies, to

the destination ontology, preserving as much information as

possible along the way, and inferring missing information.

This work assumes that the magnitude of the source data

may exceed the ability of a single analyst to comprehend

the connections between entities. Under this assumption, it is

imperative that tools exist to scope the source and destination

graph structures, such that intelligent growth of the datasets

(due to successive queries, for example) is possible. This

motivates tools and techniques to explore the large network

of connections to find relevant nodes and edges.

This paper describes a transformation-based approach to

the extraction of a social network graph. The original data

are assumed to be gathered in varying degrees of fidelity, to

be a partial observation of the entire organization of interest,

and to include significant amounts of data that are irrelevant

to the organization of interest. Further, the original data are

encoded in an ontology that is not designed for analysis of

organizational dynamics.

The key contribution of this paper is the collection of

techniques for extraction and analysis of a database not

originally intended to be considered as a social network. The

paper first describes the matching of an existing dataset’s

ontology to an ontology suitable for social network analysis.

Then, algorithms used for organizational- and individual-

level analyses are presented, along with their computational

complexity, and the methods used to scale the performance

of these analysis techniques on large datasets. Finally, the

paper discusses results on the dynamics of the network with

respect to time, by showing changes in network density.
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II. BACKGROUND

Analysis of social network graphs is a domain-specific

application of general graph algorithms to a specific coloring

of a graph.

A. Established Social Network Graph Practice

Recent military manuals (e.g., Petreaus) [1] describe how

military analysts use the notion of social network graph to

describe organizations of interest as part of an insurgency.

An important observation is that the organizational expert is

responsible for determining graphs and patterns of interest: it

is not possible to infer graphs and patterns of interest based

solely on large example datasets, due to problems of partial

observation. Inference must be used at some point, and such

inference must be validated by the expert.

The metrics and algorithms that this paper will discuss

are as follows:

• Social Network Extraction

• Clustering

• Closeness Centrality

• Degree Centrality

• Betweenness Centrality

• Information Brokers

• Central Players

• Peripheral Players

These metrics are based chiefly on their definition in [1],

and in that reference, the structure used to express the social

network has a specific ontology. This paper later discusses

how to transform various data sources into such an ontology

for analysis.

B. Examples of Realistic Data Sources

The research in this paper is focused on providing tools

to analyze large intricately connected networks. Fortunately,

social media websites provide a perfect source of very

large and interconnected networks. As a result, this research

makes use of data collected from users on Facebook. We

note that the participants in this research were asked to

provide data to test the speed of algorithms, and not to do

any human subjects research. Participants opted in using the

standard Facebook interfaces to our application. Participants

understood that data from their news feeds and on their

friends would be collected and used for the testing of these

algorithms.

Using Facebook as a data source for social network anal-

ysis is not a new concept. For instance, [2] mined Facebook

data to provide examples of a large-graph structure for

research into parallel computing models. [3] is a presentation

of a system meant to manage privacy information in a

social network (specifically Facebook). The FAITH system

developed in [3] also allows users to transform the social

graph that each Facebook application can see. [4] presents

data on the social properties of player-to-player interactions

developed in social media applications.

C. Existing Tools and Techniques

UCINET [5] is a tool used by social network analysts to

visualize and understand social networks. UCINET presents

a user with many of the same or similar algorithms presented

in this paper, but in a way that is more useful to experienced

sociologists than to intelligence analysts. The key difference

between these two groups of individuals being that sociolo-

gists understand social network analysis and why they might

use the algorithms presented herein whereas the intelligence

analysts have other specialties and could validate results, but

may be unable to construct the graphs or algorithms.

The methodology presented in [6] presents a similar

approach to centrality as is presented in this paper. However,

this method could be considered a different centrality mea-

sure than the three presented in this paper. Also, the research

in [6] was built around developing and presenting a novel

approach to measuring the centrality of nodes in a social

network while this research is geared towards presenting

existing techniques for large-scale networks to intelligence

analysts with no social network analysis experience.

Carley’s work in [7] presents analysis techniques for

networks that may have dependencies between segments

of data that might impair or invalidate statistical methods

of analysis. [8] demonstrates an approach to extract covert

social networks from texts. Both [7] and [8] are novel con-

cepts, but both are geared towards building an understanding

of networks. Similarly, this paper is meant to present a

set of tools that can be used to gain an understanding of

social networks. However, the methods presented in [7]

and [8] would be techniques that could be applied to the

networks that are generated as a result of parts of the

research presented in this paper.

D. ATRAP: An Environment for Intelligence Analysts

Asymmetric Threat Response and Analysis Program

(ATRAP) is used to visualize and perform analysis on

information gathered from disparate sources [9], [10]. The

tool has various use cases: (i) to ingest information into a

database; (ii) to query that information based on ranges of

date, geography, etc.; (iii) to visualize results of a query ge-

ographically, in time, or by association of database entities.

ATRAP is used as the implementation framework for our

algorithms, due to the ease of use of its databases, and its

ability to expand/reduce queries based on entities and their

relationships. All of the screenshots in this paper are taken

from ATRAP.

III. NETWORK EXTRACTION

The ideal analyzable graph model is a well connected

graph that can be guaranteed to contain all relevant data,

and only relevant data. However, in practice, such a perfect

example can never be expected from raw data. Instead, for

this paper we will describe a process by which a network that

is more suitable for analysis can be extracted from existing
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Figure 1. The metadata structure from Facebook that this paper is using
as an example data set. Nodes are represented in a UML class style with
open arrows representing edges and diamonds representing containment.
Attributes that are collected as part of the data in the graph are noted in
the classes.

data structures. In short this process involves removing

explicit connections that do not contribute to the overall

understanding of the network, and inserting by inference

new implicit connections that do.

This process also serves a secondary function for the

purposes of this research. The final application developed

during the cycle of this research contains data that is of

a different structure than the Facebook examples presented

in this paper. For this reason it was beneficial to develop

an interface for converting other data structures to the data

structure that the algorithms presented herein expect. As a

result the algorithms could be developed independently of

the requirements of either the example data structures or the

final product’s data structures.

A. Graph Model

The most suitable network for the analysis methods that

this paper describes is one that contains only relevant social

entities (e.g. people) with relevant social connections (e.g.

relationship statuses). Since the example data set being used

in this research is from Facebook, the reader may expect that

this data is already apparent. Unfortunately, that supposition

assumes that the example data set comes from a wide variety

of people that are all interconnected with minimal external

connections. Also, in order to make this research relevant to

more data sets than just Facebook (or other social networks)

data, a more generalized approach has been developed.

Fig. 1 shows the raw data’s desired metadata structure

that will be translated into a more analyzable data structure.

This structure shows how persons on Facebook are related

by friendship and through comments and “likes” on status

updates and news posts.

Person

Friend

Date
Time

Commenter

Date
Time

Liker

Person

Figure 2. The end-result metadata structure that is generated from the
example data set. Note that the “Liker” and “Commenter” relationships
from Fig. 1 are now shown as relation classes so that the attributes that are
kept from the original metadata structure can be shown.

B. Analyzable Graph Organization

Fig. 2 shows the desired metadata after extraction from

the example data set. The social graph obtained from

Facebook users is reduced in complexity to only show

persons and the ways in which persons are related. This

generalized translation process from an example data

set allows the methods and algorithms described in the

following sections to be usefully applied to more data sets

than just one specific example (e.g. the Facebook example

used in this paper). The only catch in this process is that

each new example data set has to be properly translated to

the metadata type described by Fig. 2.

C. Graph Translation

The graph translation algorithm for this research works

by searching the original social graph for certain patterns

and adding in a connection between the two end points of

the pattern. A pattern in this case is itself a graph, but is

limited to being a string of entities. A string of entities is a

set of more than one connected entities with no loops and

where each entity has at most two connections and at least

one connection. The algorithm begins by examining each

entity in the graph and comparing it to the first entity in

the pattern. If the graph entity matches the pattern entity

the algorithm then branches out to neighboring entities and

compares those to the neighboring entities in the pattern. The

algorithm repeats this comparison routine until the entire

pattern has been matched. If the pattern has been matched a

new connection can be established between the first matched

entity and the last matched entity. This gives a user the

ability to specify implicit connections between different

entities in the graph. Extraneous non-social connections and

entities can then be removed from the graph leaving behind

a new graph unique to the purposes of the user.

As an example, assume there is a network that shows

membership of individuals in a few organizations with
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Pattern 2

Pattern 1

Person 1

Comment

Post

Person 2

Person 1

Person 2

Commenter

Comment

Poster

Commenter

Figure 3. A graph translation pattern (Pattern 1) and the pattern to add
(Pattern 2) into the graph structure. Each pattern is a list of interconnected
nodes. Note that the concept of containment shown in Fig. 1 is not shown
here. The network structure is such that containment in the metadata
structure is represented as an edge between the contained node and the
containing node. Node and edge types are denoted where appropriate, but
be aware that “Person 1” and “Person 2” denote unique nodes of type
Person.

only links between the organizations and the individuals

(no connections between individuals). An individual may

be a member of multiple organizations, and thus have

connections between multiple organizations. A pattern may

then be created that is defined as a person connected to

an organization which is then connected to another person.

Applying this pattern to the network would then create links

between all of the individuals in a given organization. Then,

removing the organizations and the connections between

organizations and individuals would create a network of only

individuals with connections to other individuals.

The reader should understand at this point that the tool

developed through this research leaves to the user the

tasks of defining patterns, adding implicit connections, and

deciding which entities and connections to remove. Fig. 3

shows one of the patterns used to reduce the example data

set (Fig. 1) down to the example social data set (Fig. 2).

This particular metadata example is not very complicated

(it only requires three patterns). However, if this example

is extended a bit to consider a graph where the friend

connections do not exist (i.e. the data set contains no

knowledge of friendships between different people) then

the data it does contain can be used to at least partially

reconstruct the information on friendship connections. In

other words, the data on how individuals are connected

together via comments left on news posts and “likes” of

news posts can be used to build a graph that represents

Figure 4. An example raw network in the ATRAP utility before extracting
a social network. Light blue nodes are events, blue are organizations, purple
are equipment and the remainder are individuals. This figure is meant to
demonstrate the complexity of a large network before it gets reduced to a
social network.

Figure 5. An example social network that was extracted from the network
in Fig. 4. Yellow nodes representing individuals and blue nodes representing
organizations are the only remaining nodes. This figure is meant to show
the reduced complexity of the network in Fig. 4.

possible friendship relationships between those individuals.

Fig. 4 and Fig. 5 show an example network in the ATRAP

utility, pre-network extraction and post-network extraction

(respectively). This example illustrates the reduction in com-

plexity that is expected with networks.

IV. ANALYSIS

We consider an undirected network represented by a

graph G(N ,L) where N denotes the set of nodes and L
denotes the set of links. The number of nodes and links

are represented by N,L respectively. We now consider

two different ways; organizational and individual level of
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analyzing the social network to gain insight on portions or

nodes of interest. The former tries to make inference at

the global structure or the entire network while the latter

operates on a finer granularity in that it tries to identify

individual persons or objects of interest in the social graph.

Some of the schemes that follow are well understood and

considered standard techniques in social network analysis,

and we call attention to our novel contributions where

appropriate. However, in the interest of completeness, we

describe all of them briefly.

A. Organizational level analysis

1) Network Density Over Time: Network density(ρ) is a

measure of the number of links in the network relative to the

number of maximum possible links in the same network [1].

ρ =
2L

N(N − 1)

In a social network, relationships need not be static.

For instance, a node representing a person can change

associations with organizations over time. This dynamic

nature resulting in several ties being severed or added over

time can be directly captured by the appearance or removal

of links in the social network. Then, it is of interest to

study the behavior of the network density over time. This

can be a powerful tool in studying the sudden changes in

the importance of people, relationships etc. Assuming the

presence of temporal data, namely which links are active at

any instant of time, it is possible to compute the network

density at several instances. The granularity at which this

is required varies depending on the type of changes that an

analysis wishes to track.

Running time: Computing the network density at one

time instant takes constant time O(1). Thus, the cost of

computing it at several instances (say d of them) takes time

O(d).

2) Clustering and Cliques: A social network that has

been extracted from partial observation can still be fairly

large in size. Thus, analysis that looks for patterns in

the entire network can be a fairly cumbersome task. This

motivates the need to identify clusters or sub-graphs in the

network. Once this is done, the analyst can focus on studying

the behavior and properties within this network. A good

example is one of identifying a single organization among

several in a social network.

The goal of clustering a social network is to group nodes

that have several interconnections amongst themselves. This

captures closely knit sub-groups or individuals. From a

graph theoretical perspective, finding such groups can be

modeled as finding cliques. However, computing a maxi-

mum clique or listing all maximal cliques in a network is

NP-hard and decision versions of the problem are known to

be NP-complete [11]. To this end, we employ an algorithm

that is simple and fast to execute while compromising on the

quality of the clusters. Further, we provide a handle on this

quality which can be used by the analyst to look at clusters

of desired sizes.
We define a cluster as a function of two variables K and

F . K is termed as the clique approximation factor while F
denotes the cluster size factor. Both variables are fractions

that range between 0 and 1.
A cluster is a sub-graph satisfying the following proper-

ties:

1) Each node in the sub-graph has at least K(N − 1)
neighbors

2) The number of links in the sub-graph is at least

F (N(N − 1)/2)

As an example, to check if the the given network is a

complete graph, one can simply set both K and F to 1 and

check if a cluster can be found. A more useful scenario

is one in which an analyst wishes to identify a densely

connected sub-graph1 or several sub-graphs of a certain size.

The handle on K, F help achieve exactly this.
Running time: Computing the clusters for a given K,F

can be done in O(N+L). This is achieved by computing all

nodes that satisfy the neighbor constraints in O(L) followed

by computing the connected components on this restricted

sub-graph in O(N+L) using a tree traversal algorithm such

as breadth first search (BFS) [12]. Finally, it only remains to

check if the number of edges in each of these components

satisfy the second condition for a cluster which can be done

in time O(L).
Remark: A more interesting analysis ensues when an

analyst wishes to find the largest sub-graph in which each

node has a certain degree. That is, we wish to compute the

largest F for a given K. There are a total of potentially

L discrete values for the cluster size2. By doing a binary

search3 on the range of F we can compute the largest sub-

graph for a given K in O(logN).

B. Individual level analysis
We now discuss algorithms to identify nodes in the

network that are likely to be influential and are often the

centers of information flow. It is standard practice in social

network analysis to study centrality scores for each node in

the graph to achieve this.
1) Degree centrality: The degree centrality of a node is

the number of links incident on the node.

Cd(v) = degree(v)

Running time: The score for all nodes can be computed

in overall time O(L) by maintaing an adjacency list repre-

sentation for the graph.

1The maximum clique ideally.
2L ≤ N(N − 1)/2
3We can compute the smallest value of F (N(N−1)/2) for which there

is no cluster. The largest integer smaller than the value above is the cluster
size.
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Figure 6. After running the Central Players algorithm, the calculated central players are indicated by circles. Note that the names and events in this
network are fictional.

Figure 7. After running the Brokers algorithm, the calculated information brokers are indicated by circles. Note that the names and events in this network
are fictional.
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2) Closeness centrality: In the context of a social graph,

the measure of closeness is quantified in terms of shortest

path distances. Let d(u, v) denote the shortest path distance

from node u to node v in the network. Then the closeness

centrality for a node v is given by

Cc(v) =
N − 1∑

∀x∈N d(v, x)

This score for a node v represents the average shortest

distance cost from v to any other node in the network.

Running time: For a single node, the shortest distances

to all other nodes can be computed by running Dijkstra’s

algorithm in O(L+NlogN). Thus computing centrality for

all nodes in the network takes time O(NL + N2logN).
The same asymptotic running time can also be achieved

by running Johnson’s algorithm [12] to compute all-pairs

shortest paths on the graph. In case of unweighted graphs,

a BFS is sufficient to discover shortest paths from a node.

The overall time complexity in that case is O(NL+N2)
3) Betweenness Centrality: The betweenness of a node

is a measure of the number of shortest paths in the network

that pass through the node. Let σst denote the number of

shortest paths from s to t and σst(v) denote the number

of shortest paths from s to t that pass through v. Then the

betweenness centrality for a node v is given by

Cb(v) =
∑

s �=t �=v∈N

σst(v)

σst

Running time: Brandes [13] algorithm can be employed

to compute the betweenness centrality for all nodes in

O(NL) for unweighted graphs and in O(N2logN) for

weighted graphs.

4) Central Players: A central player as the name suggests

is someone who has several connections to other nodes in

the network. These nodes are likely to indicate individuals

that are important to the network in question, but not to

elements outside of the network. They are possibly centers

of information flow and likely to control large portions of the

network. Among the centrality scores discussed above, both

degree centrality and closeness centrality have a positive

correlation for a node to be identified as a central player.

Higher scores are indicative of nodes being more central.

From an analyst’s perspective, sorting these scores (de-

gree, closeness) in decreasing order gives an insight of the

most central players in the network. Depending on the nature

of the application, it could be of interest to remove or protect

such key players.

Fig. 6 shows a small example network with four central

players indicated by circles as seen in ATRAP.

5) Information Brokers: Brokers are nodes that tend to

control the flow of information across different regions of

the network. Brokers typically have high betweenness scores

since the centrality is a measure of the number of (shortest)

paths through a given node. Thus, these liaison nodes see a

lot of information flowing through them.

As an analyst, one might want to identify such points of

interest for spying or control purposes. It is also possible

that the analyst would wish to remove such brokers to limit

or damage the communication with the organization.

Fig. 7 shows a small example network with four brokers

indicated by circles. This is the same network as shown

in Fig. 6 except after running the Brokers algorithm. The

difference between information brokers and central players

may not be entirely evident from this small example, but

note that the central players in this network appear to be

surrounded by many other nodes while the brokers tend to

be the main points at which information will travel in the

network. For instance, the broker circled at the top left of

Fig. 7 is a broker because that node is between one other

node and the rest of the network. This particular broker

is not central in the network, but any information flowing

between another point in the network and the yellow node

labeled “Ricardo Ravelo” must travel through this broker.

6) Peripheral Players: Peripheral players are quite the

opposite of central players in a network. These nodes tend

to have limited connections and control over the network

in question. These are identified by looking up nodes that

score low on degree, centrality and betweenness. However,

an important aspect for an analyst to consider is the role

of such nodes outside the scope of the network in question.

Peripheral players are likely to be brokers in unmapped net-

works [1] and could potentially control flow of information

across different networks. Thus, they could be key players

at a coarser scale of analysis.

V. CONCLUSION

This paper described methods of extracting a social net-

work from data structures not originally intended to be

analyzed using metrics for the behavior of an organization.

Novel approaches to graph analysis algorithms are used in

order to permit scalability of common metrics, and these

approaches leverage the concept of the social network to

reduce the size of the graph under consideration. Several

examples were shown which demonstrate the ability of

the ATRAP tool to integrate these social network concepts

into its repertoire of use cases, and to utilize its existing

visualization engines. With these results, analysis of the

behavior of an organization is not fully automated: rather,

the domain expertise of an analyst is used to reduce the

workload required to consider the social network of players

in an organization.
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