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Abstract—We have developed a game-theory driven decision-
support tool that builds probabilistic game trees automatically
from user-defined actions, rules, and states. The result of eval-
uating the paths in the game tree is a series of decisions which
forms a decision-path representing an ε-Nash-Equilibrium.
The algorithm uses certainty-equivalents to handle trade-offs
between expected rewards and risks, effectively modeling the
probabilistic game tree as deterministic. The resulting decision-
paths correspond to player actions in the scenario. These sets
of actions can be used as search patterns against a real-
world database. A match to one of these patterns indicates
an instance of novel behavior patterns generated by the game-
theory driven decision support tool. This particular paradigm
could be applied in any domain that requires anticipating and
responding to adversarial agents with uncertainty, from mission
planning to emergency responders to systems configuration.

Keywords-decision support; repeated game theory; certainty
equivalents; game simulation; risk aversion

I. INTRODUCTION

Decision Support Systems (DSS) have been developed for

many fields [1], used for medical purposes [2], [3], and

even addressed issues in agriculture [4]. They have been

applied to stability and support operations [5], [6], produced

for network security [7]–[9], created to aid intelligence

analysts [10], and provided analysis of web traffic [11].

Decison Support Systems are characterized by handling vast

amounts of information, taking many factors into account,

and providing expert advice all in a relatively short time.

They explore alternatives and learn from and refine models.

An important characteristic of a DSS is to provide consistent

analysis, allowing users to refine their own decision-making

processes in response to the analysis of the system.

The decision support system introduced in this paper

is a game theoretic system that is both configurable and

consistent. The user configures the game by specifying

actions, rules, effects of actions, and desired outcomes.

By allowing the user to configure these parameters, the

game can take the form of an adversarial competition, a

cooperative advancement toward a shared goal, or some mix

of the two. Furthermore, the algorithm that chooses among

alternatives models probabilities using certain equivalents,

resulting in consistent and reproducible outcomes.

This paper continues with Section II briefly reviewing

game theory (including game trees and the handling of

uncertainty). Section III explains the use of deterministic

equivalents of probabilistic game trees and refinements over

previous methods. Section IV describes the DSS in detail.

Finally, we conclude in Section V with a brief summary and

future research directions.

II. BACKGROUND

We demonstrate our approach on ATRAP (Asymmetric

Threat Response and Analysis Program), an application

developed at the University of Arizona. We built into

ATRAP a framework for building games, finding optimal

responses, exploring alternative responses, and inspecting

the results to allow for human validation of the game. Thus,

using our framework in an iterative process, games can be

refined to include more strategies, more accurate outcomes

of strategies, etc. Furthermore, the results from this decision

support tool can be processed by other tools within ATRAP

[10].

A. Game Theory

This section presents a brief review of game theory that is

relevant to our application. In game theory there are payoffs,

strategies, and players. The payoffs describe the desirability

of a certain outcome for each player and are defined for all

combinations of strategies. The decisions made by a player

can be modeled as a tree of possible moves with alternating

branches being turns, known as a game tree.

1) Game Trees: As each player takes turns evaluating the

payoffs of their strategies and choosing the respective action,

the turn can be represented as choosing one from a set of

alternatives. A turn in a game tree can be simultaneous,

sequential, or some other hybrid. Typically, each node in

the game tree represents a state and each edge represents a

possible action. For most interesting games, the game tree is

too large to store in computer memory. Therefore the game

tree is often pruned and only expanded out according to the

system’s resources.

This leads to each player’s outcome being dependent

on all the other players’ decisions. In other words, the

decisions at every turn determine a path through the tree

of alternatives. This path can be termed the decision path.

The DSS described in this paper produces a decision path

that can be expanded and collapsed to show the result path as
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well as the paths not taken. This can be useful for explaining,

forecasting, and aiding decisions.

2) Game Theory Criticisms: There are some common

criticisms of game theory. One of the most well known criti-

cism of game theory is the traditional, unrealistic assumption

that players are rational, choosing the optimal strategy.

However, as long as there is a well-defined decision process

(e.g., bounded-rationality), even if it is not optimal, then the

game can still be anatomized [12]. Thus this criticism is

unsound.

Another criticism which cannot be refuted, but may be

mitigated, is the considerable amount of information needed

to construct such as game; one rarely knows perfectly all the

possible actions (strategies), their related payoffs to all the

players, and how the players make decisions. However, many

possible actions can be determined by observing historical

outcomes of similar games. Additionally, the payoffs are

usually known to some degree and according to game theory,

only relative payoffs matter.

The last objection to game theory that will be addressed

here is that game theory often suggests it is rational to take

advantage of other players when possible, but ignores the

long range consequences. There are two responses to this

criticism. First, the payoff function should reflect the total

utility of the situation including, for example, long-term

damage to the reputation of a player who exploits another.

The other response is that realistic scenarios, if viewed from

the stand point of a game, is not a single stage game, but

a repeated game. In order to analyze repeated games, game

trees are used.

III. DETERMINISTIC EQUIVALENTS

Real-world situations always have some degree of un-

certainty; players may not always realize all their available

moves, they may be acting in only a near optimal fashion,

or there may be some random elements. Probabilistic game

trees can model this uncertainty. One technique to model

“moves by nature” (random effects), is to introduce a player

without any payoff and whose choices are stochastic. To

address players acting in a heuristic fashion, adversaries can

be modeled as taking the best move probabilistically. This is

the approach taken in [9]. However, due to the probabilistic

nature, each possible strategy has a distribution of payoffs

(outcomes). To rapidly and deterministically analyze the

uncertain outcomes, certainty equivalents (also called the

deterministic equivalents) are computed from the expected

value and variance.

Deterministic equivalents provide an efficient method for

approximating expected utility. A utility function ui(xa) de-

scribes the usefulness of the payoff. For example, one dollar

is worth more to a college student than to a millionaire.

Thus, maximizing utility is a more realistic and long-range

method of making decisions.

Distributions can be described by their expected value as

well as higher order central moments [13]. While only the

expected value of the payoff matters with a linear utility

function, risk may also be an important factor to consider.

The expected utility of outcomes can then be approximated

as

E[ui(xa)] ≈ E[xa]−αiE[(xa−E[xa])
2] = μa−αiσ

2
a, (1)

where xa is the payoff distribution for the action a, μa

and σ2
a are the expected value and variance of the pay-

off distribution, and αi is the player’s risk aversion. This

approximation allows for a deterministic analysis of risks

and rewards. Players who are risk adverse have αi > 0.

Similarly, a player who is risk seeking would have αi < 0.

α = 0 describes a player who is risk neutral.

A. Overview of the Proactive Defense Strategy

We built upon the deterministic equivalent of probabilistic

game trees for network security by Luo et al. [14]. This

work focuses on finding optimal strategies in a probabilistic

repeated game. There are two players, the defender and

the attacker, each with their own risk aversion factor α. In

this game, the attacker and defender have different actions

available to them. The variable τ represents a sliding window

of the number of moves the players are looking ahead. After

the defender and attacker determine their moves, the game

is advanced to a new stage. The current stage of the game

is denoted as d for decision node.

According to the algorithm from Luo et al, let ka be

one possible path (of length τ ) through the game tree

originating with action a. Also let m represent the number of

interactions into the future that are currently being examined.

Moreover, let pd+2m−1
ka

be the prior probability that the

defender chooses a response along ka at stage d+ 2m− 1.

Likewise, pd+2m
ka

is the probability that the attacker chooses

a subsequent action along the path ka at stage d + 2m. In

Luo et al.’s work pd+2m−1
ka

(attacker’s assumptions of the

defender’s probabilities) can be determined from historical

data and pd+2m
ka

(attacker’s moves) are determined by (5).

One potential problem with using deterministic equiva-

lents as described by (1) is that a large risk aversion and large

variance can lead to the selection of dominated solutions.

An action is dominated when its best possible outcome is

worse than another action’s worst possible outcome (i.e.

a1 is dominated when max(xa1) < min(xa2)). Hence to

avoid accidentally selecting dominated solutions, dominated

actions are pruned.

The first step in calculating the probability of each of the

attacker’s possible actions is to calculate the expected value

and variance. The expected value is obtained from

E[xa] =
K∑

k=1

yka
Qka

, (2)
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where K is the total number of possible outcomes given the

action a, yka
is the payoff for the specific path ka, and

Qka
=

⎧⎪⎨
⎪⎩

∏τ
m=1 pd+2m−1

ka∑K
k=1

∏τ
m=1 pd+2m−1

ka

if attacker’s turn

∏τ
m=1 pd+2m

ka∑K
k=1

∏τ
m=1 pd+2m

ka

if defender’s turn

. (3)

The variance is calculated from

Va =

K∑
k=1

y2ka
Qka − E[xa]

2. (4)

Then the expected value and variance are combined accord-

ing to (1) to produce Ua. Finally the probability of attacks

at the current decision node is given by:

ppa =
Ua∑A
a=1 Ua

, (5)

Where A is the total number of available actions. The above

steps with minor modifications can also be applied to find

the defender’s best moves. The current player then makes

a move reflecting his/her optimal action. This advances the

current decision, d, down the game tree one step. The game

then continues for the other player, each side taking turns.

The above algorithm can be adapted to find ε-Nash

equilibria by calculating the ppa for both the defender and

attacker. This would remove the dependence on historical

data. Due to the nature of Qka , the ppa would have to be

calculated from the leaves of the game tree up. Naturally

there are many interesting variations and possible extensions.

B. Algorithm Extensions

Before discussing extensions to the above algorithm, we

will show how it is related to the traditional AI minimax

algorithm. The minimax algorithm can be rederived through

three steps. First we use the Nash equilibria extension as

discussed earlier. This will make all probabilities dependent

on analysis only, removing the dependence on historical

data. Then, we add some positive constant C to Ua such

that Ua + C > 0. Lastly, we replace (5) with

ppa = lim
β→∞

(Ua + C)β∑A
a=1(Ua + C)β

. (6)

As β → ∞, an action will have nonzero probability if and

only if

Ua = max
a

Ua.

Note that the payoff is now deterministic so the risk attitudes

α have no effect. This rederives the minimax algorithm

except that it randomly chooses one of the best choices when

there are multiple options.

We extend and modify the algorithm in [14] in the fol-

lowing ways. First, the games are not confined to zero-sum

games (the payoffs are equal and opposite). This method

allows the players to not necessarily be in direct conflict.

This configuration is achieved by letting each player have

its own payoff which it tries to maximize. Another minor

extension was to rectify some numerical instability. Equation

(4) replaced with the more numerically stable single pass

algorithm suggested by West [15] for more accuracy in

calculating the variance.

We also addressed the possibility that Ua could be neg-

ative due to a negative expected value or large risk. A

negative Ua in (5) would produce a negative output, which

cannot be used as a probability. Thus we decided to modify

how the probabilities are calculated. There are two common

approaches for removing negativity. The first approach is to

use a softmax method using a Gibbs/Boltzman distribution

[16]:

ppa =
exp (Ua/T )∑A
a exp (Ua/T )

, (7)

where T is the temperature. The lower the temperature, the

more optimal the player’s strategy. Another approach is to

normalize all the Ua using

U ′a =
Ua −mina {Ua}+ T

maxa {Ua} −mina {Ua} , (8)

where T provides behavior similar to temperature in (7).

Then use the new U ′a in (5) to produce the path probabilities.

We also introduced a state-space to allow for a higher level

description of the state of the game. This state-space can

be any number of dimensions. For example, the state-space

could describe resources such as player money, information,

and reputation. This allows each action to impact multiple

variables. As a consequence of this state-space, payoff

functions for each player must be specified as a function

of the state-space. In an n person game with r resources

(r-dimensional state-space) there are r × n variables each

player could consider.

In the next sections, we will describe the decision sup-

port tool that implements the algorithm and modifications

described above.

IV. IMPLEMENTATION

Within the ATRAP framework, resides the Game Builder

(see Fig. 1). This is where games can be specified, saved,

and loaded.

A. Game Setup

The tool allows for construction of games via specifying:

• action sets (which moves are available),

• rule sets (when are moves valid),

• two players (initial conditions, payoff function, and risk

aversion),

• a cost/benefit model (the state-space in which actions

interact),

• player assumptions (prior probabilities from historical

data) and

• the number of moves to look ahead.
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Figure 1. Game Builder home screen

1) Cost/Benefit Models: In evaluating moves, a player

must weigh the costs and benefits of every possible action.

They must be interpreted in a model that encompasses all

of the important factors impacting a decision. The Game

Builder tool allows for the selection of typical six-ring (six-

dimensional) analyses, which include the PMESII (political,

military, economic, social, infrastructure and information

systems) [17] and ASCOPE (areas, structures, capabilities,

organizations, people, events) models [18]. However, this

could easily be extended to several other domains and more

dimensions. Mathematically, the cost/benefit model is simply

the space of R6 and names for each dimension.

2) State-Space: The state-space describes the state of the

game at a particular turn. The state-space is a collection of

real numbers describing the cost/benefit resources for each

player. Formally, the state space is (s|s ∈ R
n×6), where n

is the number of players. Our tool fixes n at two.

3) Action Sets: The action set describes the actions or

moves in the game. Each action set operates on a specific

cost/benefit model. Precisely, action sets are a 2-tuple: the set

of actions and an associated cost/benefit model. The action

set is built from the tool shown in Fig. 2.

Actions are the individual moves. Each action has an

impact on the state of the game, taking a previous state-

space and transforming it into a new state-space. Each

action is represented by a 12 × 13 matrix (more generally

2r×2r+1). The matrix represents an affine transformation of
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Figure 2. Constructing an action set

the previous state-space. In other words, the first 12 columns

perform a linear transformation on the state-space and the

last column is added to the result. The matrix is applied to

the left-hand side of a column vector describing the state-

space (see Fig. 3). While a 12 × 13 matrix may seem like

it requires a lot of data entry, these matrices are typically

sparse with ones on the main diagonal.

4) Rule Sets: Rules describe when actions are valid or

invalid, and may be triggered when a player performs some

action. The rule may allow or disallow other actions for one

or more players, for some number of turns. A rule may also

be initially active, not requiring a player to trigger it. Initial

rules are useful for specifying asymmetric actions (only one
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Figure 3. Constructing an individual action

player may perform them). Mathematically, a rule is a seven-

tuple:

• set of triggering players,

• set of triggering actions,

• add/remove operator,

• set of add/remove actions,

• set of affected-players,

• rule’s life span in number of turns and

• a boolean describing if the rule is an initially active.

If a rule is initially active then the set of triggering players

and triggering actions should be empty. The tool for con-

structing rules has more options (like a replacement operator

for compactness), but those rules can be reduced to the above

seven-tuple. The rule builder is shown in Fig. 4. The rule

set is a set of rules (see Fig. 5).
The rule set together with the action set describe the

game tree’s structure. At each step as the game tree is being

built, the rule set is consulted to determine which rules were

triggered by the current move. Additionally, a stack is kept

to determine for how many more turns previously triggered

rules will be valid. Thus the rules combined with the actions

effectively defines the possible strategies.
5) Players: The players are the decision makers. For-

mally each player is described by a five-tuple: a vector

of initial resources (which resources are defined by the

cost/benefit model), a payoff matrix, a risk aversion, and

a set of time-varying strategies (as defined by the rule

set and action set). The payoff matrix is a 2 × 6 matrix

describing how much the player values each component of

the state-space (i.e., how much they value their resources

and their opponent’s resources). The risk aversion is a real

number describing the α in (1). Recall that the more positive

α the more risk-adverse the player. There is one more

additional component for one of the players: assumptions

(prior probabilities). The assumptions are simply the prior

probabilities pd+2m−1
ka

of the defender.

6) Look ahead: The last step before analyzing the game

is to determine the number of moves the players look ahead,

τ . It is difficult to determine a good τ when there are

complex rule interactions changing the number of possible

actions at each stage of the game. For simple or no rules,

there is a method which determines the maximum number

of moves (such that memory is not exhausted) to look ahead

for constant fan-out. Thus, the user can provide a positive

integer to manually specify the τ otherwise the method will

attempt to automatically estimate the maximum τ .

B. Results

To analyze a game, the user clicks the “run” button

in Fig. 1. The optimal moves (for the first player) and

optimal moves under assumptions (for the second player) are

expanded in stage of five moves. Then the system prompts
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Figure 6. Specifying Priors

the user if the game should continue. This is repeated until

the user is satisfied with the number of turns played. The

result is similar to that in Fig. 7a. After the game has been

expanded enough turns, the user is free to look at alternative

actions by clicking the “+” button at any stage. This will

reveal the other possible permitted actions. Any node can

be inspected to see the state-space of the game as well as

any active rules by clicking the document icon (see Fig. 7b).

Together these tools allow for a user to refine and validate

the outcomes as well as explore alternative options. If the

results are unexpected, the user can trace the issue, then

refine the model. This allows for iterative model building,

which encourages refining/expanding the action and rule

sets. Furthermore the action and rule sets can be reused on

different players with different initial conditions. Thus users

can have confidence in their games by taking advantage of

this human-in-the-loop feedback.

The resulting path through the game can be used as input

into a tool that makes queries that ATRAP can then use to

search a database for empirical support. These queries can

be chained together in what is called a template, allowing

for the result of one query be an input to another query.

Instantiations (queries) of each player’s moves (abstractions)

go into different templates to permit querying for empirical

support for either player.

V. CONCLUSION

We have reviewed game theory, deterministic equivalents,

and how the two can be combined to produce a decision

support system. The decision support system allows for

the modeling of players who consider risk when making

decisions. The resulting methodology’s relation to the tra-

ditional minimax algorithm was explored. We analyzed,

extended and improved on prior work, which included

providing superior numerical stability and resolving an issue

associated with negative deterministic equivalents. The work

was extended to allow for non-zero sum games and the

introduction of a state-space allows for more complicated

scenarios to be simulated. Furthermore we built a framework

to aid in the creation, refinement, and inspection of proba-

bilistic multistage games. A brief walk-through of the tool

demonstrated the specification of action sets, rule sets, player

initial conditions and player risk aversion. It was shown how

an opponent’s assumptions could be taken into account. The
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results of the analysis were fed into another tool to allow

for the exploration of alternatives and introspection of the

model. The results were then translated into queries that

could be used to search a database.

There are several possible extension for future work.

The most interesting games need more than two players.

Arbitrary dimensional models would allow for even more

advanced simulation of situations. To further aid in robust

decision making, multiple paths through the game tree

should be returned. Assumptions could be refined through

self-play to represent the evolution of the game as the

other players begin to adapt to an optimal strategy. A more

advanced rule system, such a production system, would

allow for certain actions to be disabled or enabled depending

on the current resources held by the players. Alternative

decision-making models, such as bounded-rationality, for

the opponents could be integrated to reflect more realistic

opponents.
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