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Abstract

Predicting asymmetric threats (e.g., terrorist events) is becoming more important

in the war against terrorism. Prior works have focused on tactical, statistical, and

data-fusion systems. The thrust of our work instead has been the development of a

novel system, with an emphasis on a non-numerical predictive model for automating

and assisting intelligence analysts. The intelligence community uses a Template

schema for assessing predictions. Our predictive model processes non-numerical data

to arrive at automated assessment and certainty scores for these Templates. The

predictive model is traceable, transparent, and utilizes Human-in-the-Loop data-

fusion. In our future work, this predictive model will be further enhanced with

behavioral filtering, which adjusts the assessment and certainty of the predictions by

intelligently evaluating characteristic behavioral data. The non-numerical predictive

model has been tested and verified inside the Asymmetric Threat Response and

Analysis Program (ATRAP).

Disclaimer:

The views and conclusions contained in this document are those of the authors

and should not be interpreted as necessarily representing the official policies, either

expressed or implied, of the US Army Intelligence Battle Lab or the United States

Government
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Chapter 1

Introduction

Intelligence analysts currently have a very difficult task. They must sift through

massive amounts of data in order to build a higher level picture and answer questions

about what is going on. When analysts are trying to answer questions about a

situation, they traditionally make use of a Template schema. This schema involves

composing a hypothesis and answering it by investigating several indicators, indicat-

ing a certain series of prerequisites. Since most of the data they use is non-numerical

in nature (text, images, audio, multimedia), statistical software cannot help much.

Without an aid to discover vital patterns in this information, critical information

may be overlooked. Furthermore, without an automated method, rapidly changing

factors may make historical data ‘stale’ before it can acted upon. Thus, this work

discusses a tool to assist analysts in this process: a non-numerical predictive model

for asymmetric analysis.

The non-numerical predictive model (NNPM) for asymmetric analysis to be dis-

cussed in this thesis was developed for the Asymmetric Threat Response and Analysis

Program (ATRAP). The NNPM is essentially a flexible predictive model which gen-

erates a belief and a strength of that belief for predictions. The belief, hence forth

referred to as an assessment, corresponds to an indication of truth in the prediction.

The strength of that belief is called the certainty. The assessment and certainty

are combined into one unified score (called confidence) for sorting purposes. The

predictions are built using a Template schema similar to what intelligence analysts

already use. The Templates/predictions are query-based, allowing for the search of
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non-numerical information. The non-numerical information is derived from metadata

and partially parsed textual data. This provides an easily searchable environment for

the queries, which can then be matched either exactly, probabilistically, or fuzzily.

There are several applications of the non-numerical predictive model. It could be

used in the analysis of the stability of asymmetric financial markets, law enforcement

and criminal investigation, political inquiries, homeland security and modern warfare.

One substantial application is in military intelligence analysis. ATRAP was designed

for this purpose and hence includes a version of the non-numerical predictive model

for asymmetric analysis.

Throughout this paper there are many technical terms and abbreviations are used.

This can get confusing very quickly. Although all the terms are introduced before

they are used, there are a large number of them and this paper is fairly lengthy. This

makes it difficult to remember what all the terms and abbreviations mean. For a

complete list of these terms refer to Appendix B.

1.1 Motivation

The generation of intelligence faces three major challenges. The first challenge is

asymmetry, meaning opposing forces have very different capabilities. This is manifest

in asymmetric financial markets, law enforcement, politics, homeland security, and

modern warfare. Second, rapidly changing environments, such as technology and

insurgencies [5, 18, 25], pose problems for systems that assume a static opponent.

Lastly, due to the real-time confluence of information from automated sensors, Inter-

net, unmanned aerial vehicles, and streaming reports, analysts have more data to sift

through than previously. Information overload often obscures critical patterns in the

data. To further compound this problem, the data analysts use is often in a textual
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form, such as reports, which raises the need for non-numerical predictive models.

One major application is in asymmetric warfare, and modern warfare has taken

a significant asymmetric shift. This includes peacekeeping operations and combating

terrorist cells. Fighting terrorism is a significant current endeavor, which exhibits all

three challenges simultaneously. First, the terrorist groups do not have the numbers

nor equipment to fight a full-fledged (symmetric) war. To make combating terrorism

more difficult, the terrorists remain flexible. According to [5] Al Qaeda has been

successful in carrying out attacks partially due to its dynamic methods. Lastly, it

can be difficult to track the actions of an entire group from individual reports on

single persons or cells. All the data needs to be integrated to provide a full picture

that an analyst can use to accurately assess the situation.

The predictive nature of the work of military analysts is not easily mathematically

modeled. As such, evaluation of courses of actions (COAs) uses significant human

resources. This work aims to provide a model which can automatically assist analysts

by sifting through vast databases of information and leverage human intuition to help

build expert predictions.

There are many key features spread out among the prior works, but none of

them have all these features in a single package. Some of these features include: the

ability for the user to tweak the model, the selection, evaluation, and generation

of COAs, and support for tactical COAs as well as the COAs for the generation

of information. Some offer better information management frameworks than others.

Some prior works have better support for asymmetric analysis and human-in-the-loop

capabilities. Most were lacking the ability to evaluate and generate new COAs. Our

NNPM functioning inside of ATRAP offers all of these features in a single package.
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1.2 Contributions

The NNPM is a contribution to the predictive modeling field. It was also developed

as a data-mining application for ATRAP. This model is original compared to the

predictive systems discussed in the next chapter (Chapter 2). There are many

differences, which will be discussed in the next chapter, but one is the way the

prediction works. Many of the prior works attempt prediction through tactical

simulations, while the NNPM attempts prediction in a more general fashion via

historical/doctrinal patterns. It is this prediction that makes the NNPM essential

to the tasks of detecting, assessing and responding to COAs promptly and effectively.

This project achieves this by automatically generating an assessment and certainty

scores from textual data such as reports, HTML, emails, documents, and other similar

archival artifacts. It also provides support for Human-In-The-Loop feedback via

traceable, transparent, and overridable results. That is, a user can trace back to

the source of the results, understand why the model provided the score it did, and

optionally override the results to any subproblem. The non-numerical predictive

model is more geared toward the generation of intelligence rather than the simulation

of a scenario. Thus, given a vast database, the model can verify or deny an analyst’s

hypotheses.

With regards to data analysis, this project provides a mechanism for codifying

COAs. The codified COAs can then be evaluated them from data including non-

numerical sources. The codification process includes the construction of a tree-based

Template representing COAs; the creation of “entities;” specification of optionally

imprecise values, key terms, associations and relationships between “entities” for

queries. Throughout the process, several parameters can be customized to provide

a wide range of results. A selection of the parameters can be derived from several



14

example Templates with their recommended assessment and certainty scores.

The work reported here was supported by the US Army Intelligence Battle Lab.

Technical agents for part of this work were Fort Huachucha under Task Order Num-

bers 9T7ZDAIS705, 9T8ZDAIS803, and 9Q9SDAIS903. Prior testing and results

have been presented in [23].

1.3 Thesis Overview

In Chapter 2 we will introduce other predictive models and systems. Chapter 3

introduces the environment in which the non-numerical predictive model operates.

Chapter 4 describes the methodology used when developing most of the algorithms

used in this project. Chapter 5 describes how the model generates assessment, cer-

tainty, and confidence scores. Chapter 6 discusses experiments and results. Chapter 7

examines a potential enhancement to the non-numerical predictive model by making

use of behavioral data. Chapter 8 summarizes the accomplishments of this thesis and

suggests possible future improvements.
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Chapter 2

Background

As a result of the third major challenge to the generation of intelligence—information

overload—data-fusion systems have become critical. Data-fusion is broken down into

five levels, where the lower levels deal with fusing sensor data and higher levels deal

with identifying and predicting threats. The five levels (starting at level 0) according

to the Joint Directors of Laboratories (JDL) are: Preprocessing, Object Refinement,

Situation Refinement, Impact Assessment, and Process Refinement (see [13, 20] for

details). There is also a proposed level 5 (sixth level) of data-fusion, User Refinement

[2]. In Mahoney et al. [12], level 5 data-fusion is called Human-In-The-Loop Data-

Fusion, in which higher level data-fusion tasks are performed manually by humans.

There have been numerous data-fusion systems and predictive systems developed

to help deal with the problems of asymmetric conflicts, rapidly changing environ-

ments, and information-overload. StarlightTMis a system that was developed as

“visualization software” [7], with some data mining features. While Starlight slightly

helps the information-overload problem, it did not address asymmetric predictions

nor a rapidly changing environment. Neil Garra, a subject matter expert, saw

a demonstration of the Starlight program in 1998. The version he saw had 30

parameters, none of which were changeable. He has also talked to other people

who complained about the poor usability and large computing power [9].

Most recent research has gone into high level data-fusion (levels 2 and 3) via

wargame simulators. Game theory and simulations are commonly used tools for

determining threat assessments and evaluating enemy courses of action (ECOAs). An
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attrition-type discrete time dynamic game model was designed to evaluate different

approaches to a conflict [19]. In this simulator the focus was on military air operations

and civilians who can retaliate. There are two forces, the friendly (blue) and enemy

(red), and civilians can retaliate against any force that cause them harm (from

collateral damage). The extensively developed game model evaluates COAs from

a tactical standpoint, but lacks any mechanism to discover new COAs. In the closely

related works [4, 24], the authors resolve this deficiency using adversarial Markov

games, as part of a larger data-fusion system.

A game theoretic approach is also used in [4] with a multi-level data fusion system.

Specifically, their system performs level-one through level-four data-fusion. The

authors use a Hierarchical Task Network as an ontology representing various levels

of detail for various ECOAs. They developed a Markov (stochastic) game which

assumes there are three forces (friendly, hostile, and neutral). The hostile forces are

also allowed to use deception to present false information to the friendly forces. The

stochastic nature of noisy and uncertain environments is modeled well by Markov

Decision Process, which is similar to a stochastic automaton. It is used in level-three

data-fusion to help evaluate ECOAs as well as to discover their possible intents. The

cumulative work of [4,19] are also included in [24], which improves the Markov game

with added spatial dimensions. By using a modified spatial-temporal point-model,

which was originally developed in [3], spatial forecasting can be used in conjunction

with the terrain to generate a probability map of where certain events are likely to

occur. There are three primary draw backs of this system. First is that the ECOAs

are only tactical, rather than informational in nature. Additionally, there are few

details on how scenarios are created and how information is entered into their system.

Lastly, the system is too automated, lacking human-in-the-loop feedback.

The spatial prediction used in [24] was based on [3]. The authors of [3] offer



17

a significant improvement for spatial forecasting. The baseline method they used

for comparison purposes was the fitting of a probability density function to past

data. Their improvement came partially by increasing the dimensionality of the

data by including additional information from geographic information systems. This

allows them to intelligently increase the dimensionality of the data to find new

correlations. Recent advances made by them in [15] include an investigation to

select the appropriate algorithms based on the scenario and the available time for

analysis. The authors’ results showed a significant improvement over their baseline

model of spatial forecasting. These new methods have little to do with predicting

COAs, but are still a significant contribution in predicting the locations of reoccurring

phenomenon.

An entirely different simulation environment is the Wargame Infrastructure and

Simulation Environment (WISE) [17]. WISE was one of the approaches that the UK

Ministry of Defence undertook to help with decision making in Command and Control

(C2). It can be used both as a wargame, where military players make decisions, and as

a simulator. Thus it is suitable for both experimentation of COAs and investigation

of procurement options. It models many aspects including the difference between

truth and perception, physical behavior, “plug and play” AI, and communicational

modeling. WISE can log data for later examination. It uses two planning and

decision making processes: both a strategic/operational level and a tactical level.

The strategic/operational planner was enhanced in [11] by developing algorithms to

identify collective behavior. The authors develop a data-fusion technique for the

clustering of entities into groups. Their approach involves building a minimum

spanning tree connecting all entities and breaking the tree up into forests if any

connection exceeds a certain threshold. This produces a dynamic number of groups

based on an attribute vector, opposed to a fixed number of groups as is the case
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with k-means clustering. They also present a procedure for determining the spatial

objective for a moving group and the confidence in that estimate. WISE with these

enhancements is a truly remarkable environment, but it does not appear to cover

everything. Most of the planning appears to be oriented around more conventional

war rather than the generation of intelligence. Additionally, the system does not

appear to be driven by a massive amount of data.

Sheherazade [22] is another wargame simulator, which uses genetic algorithms

to evolve the COAs. Whereas other wargame simulators model Major Theater of

War, Sheherazade was designed to model Stability and Support Operations (SASO).

The wargame simulator alternates between playing out a series of friendly and hos-

tile COAs, evaluating the results, and revising the COAs. Part of the evaluation

includes examining factors such as animosity, civilian populations, and forces to

determine when and where a riot is likely to erupt. This addresses the problem

of the rapidly changing environment, reflecting how tactics change with respect to

time. Sheherazade “co-evolves” the COAs for both the friendly and hostile forces [21],

giving each side a chance to improve their tactics against the opponent’s previous

round’s tactics. This co-evolving strategies show how an insurgency might change its

strategies depending on the peace-keeping force’s strategies. However, these systems

take a narrow, tactical stance on COAs (limited to SASO), rather than a generic

scope which intelligence analysts may need. Sheherazade admits that setting up a

SASO environment, providing information about each unit, and information about

the regions requires a non-trivial amount of effort.

A recent trend has been Human-In-The-Loop Data-Fusion, since humans offer

many unique data-fusion skills. For example, a person can interject or act on knowl-

edge that is missing from the system. The goal of [12] is to develop a high level data-

fusion system that can easily be kept up to date and adapt to new Tactics, Techniques,



19

and Procedures (TTP). The authors do this with a prototype Human-In-The-Loop

Data-Fusion system. Their system performs “COA impact assessments,” which help

assess the effectiveness of a COA under varying situations and environments. This

is primarily an expert system with knowledge composed of several hundred hours of

interviews and evaluations with many subject matter experts (SMEs). However, the

authors quickly discovered that terminology changes quickly. So they expanded the

system to include a Human-In-The-Loop to update the ontology and vocabulary to

help keep terminology up to date. However, their system lacks some other features

which may be desired for Human-In-The-Loop Data-Fusion. The prototype system

does not state that the COAs are evolvable. Furthermore, most of the COAs men-

tioned are tactical in nature, rather than focusing on intelligence analysis. The system

does not describe how information is feed to it nor how new data is to be entered for

evaluation. Their system does not provide justification for its assessments, potentially

leaving the user confused as to how it arrived at its answer.

Most of these previous works focused exclusively on one level of data-fusion,

however a whole data-fusion system was introduced in [4,24] and multiple data-fusion

levels were developed in [12]. These systems include feedback between different levels.

The human-in-the-loop system allows the users to provide feedback to lower level

data-fusion levels based on current deficiencies in the system.
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Chapter 3

Environment

The Asymmetric Threat Response and Analysis Program (ATRAP) environment will

be described to provide the needed understanding of the framework in which this

NNPM operates. ATRAP is an ongoing project to assist analysts by functioning as

a “Cognitive Amplifier.” In other words, ATRAP’s is a suite of many useful tools to

assist analysts. ATRAP contains many individual pieces which build up the entire

ATRAP environment. The predictions are initially human generated. A user codifies

a prediction as a Template. These Templates are evaluated by the NNPM. More

details about Templates can be found in Section 3.2.

There is also a component called an “entity,” which is an object in the ATRAP

database. Entities can be a person, organization, location, action, event, etc. An

entity can have a place, time, relationships to other entities, and an entity type

associated with it. The non-numerical predictive model finds and processes these

entities to answer the questions posed by the Templates.

The non-numerical predictive model has been implemented as a part of ATRAP,

written for Microsoft Windows XP and Vista. The programming language used was

C#, using Microsoft .NET Framework 3.5. The database system was built upon

.netTiers and Microsoft SQL Server 2005.
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Figure 3.1. ThoughtSpace—ATRAP Visualization Tool

3.1 ATRAP co-development

A contracted developer, Ephibian, co-developed many aspects for ATRAP, including

most of the graphical user interface (GUI). Ephibian worked closely with Neil Garra,

a subject matter expert (SME), for various projects. They worked together on the

creation of the database format, including the definitions for “entities.” Another

project they developed was a 3-dimensional visualization system for data (see Figure

3.1). This includes a visual editor for creating and editing entities. Ephibian created

an automatic parser for documents to guess at proper nouns such as names of persons,

places, events, etc. A text-highlighter was also developed to allow a user manual

creation of entities from a report or other textual document. A visual search tool was

created to help locate all “entities” in a user-defined region of the world.

Research also went into optimizing the hardware on which ATRAP was to run.

The major contributor to this field was Roman Lysecky. This involved looking

into solutions for a parallelized ATRAP. Some areas of inquiry involved multi-core

systems verse distributed systems, benchmarking, network bandwidth, memory and

processing requirements. The solution that he and his team found should be sufficient
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for many years as acceptance and use of ATRAP grows.

Jacob Gulotta looked into the generation of derivative enemy courses of action

(DECOAs). To help make ATRAP more flexible and handle a rapidly changing

environment, a genetic algorithm is used to generate new Templates from the initial

user generated Templates. As of the writing of this document, the fitness function for

the genetic algorithm looks at the confidence score of the Templates when recombining

them to generate new “empirical” DECOAs. There is also ongoing research into mak-

ing more “theoretical” Templates by looking at the requirements for subcomponents

of the Templates rather than their performance based on available data.

Ephibian initially developed a text-highlighter tool to help extract entities, but

it required a user to perform the tasks. To help automate this job, a couple people

were recruited to help with computational linguistics. The computational linguists

worked on a tool to identify all proper nouns in text. The task is more difficult than it

sounds since the tool is designed to work for many regions around the globe. Future

work involves automatically classifying proper nouns into groups such as individuals,

locations, organizations, etc. Ideally, the tool could extract information associated

with the proper nouns as well, such as time, location, and relationships to other

entities.

Even with all these features, ATRAP lacked a basic predictive scheme. ATRAP

was missing a scoring/ranking algorithm and the theoretical basis for scoring. This is

where my work on the non-numerical predictive model comes into play. It affectively

extends Templates as a formal mechanism for evaluating predictions based the data in

ATRAP, which contains a significant amount of non-numerical data. Using generally

accepted algorithmic components (e.g., Artificial Neural Networks), mathematical

models (e.g., Cobb-Douglas Product) and feedback from expert Neil Garra, we built

the non-numerical predictive model for asymmetric analysis that is the subject of this
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(a) Template Structure (b) Example Template

Figure 3.2. Template

thesis.

3.2 Templates

This section will describe Templates. First, the connection between Templates and

the non-numerical predictive model will be established. Then, the structure of the

Template will be described in a bottom-up fashion. Lastly, this structure is extended

to take on features from neural networks to increase the capabilities of a Template.

Templates can represent COAs, enemy COAs, and general predictions (see Figure

3.2). The NNPM makes use of this Template schema. Basically a Template is a

codified hypothesis, including what information to look for that would support/deny

it. The non-numerical predictive model extends and evaluates Templates. It gives

Templates additional capabilities to make the querying process more powerful and

reflect how a subject matter expert (SME) processes a Template. The resulting

changes causes the Template to take on a Quasi-Neural-Network structure.

At the lowest level of a Template, there are the SORs, which have a link to its

parent SIR and a spatial-temporal query. The spatial-temporal query represents a
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(a) Spatial
Temporal
Query

(b) Query

Figure 3.3. SOR and SIR Specification

5-tuple {A, T , t−, t+, r}, where A is a well defined area, T is a well defined time

range, t− is the allotted time before the start of T , t+ is the allotted time after the

end of T , and r is the allotted radius outside of A. A and T represent the perfect

match constraints while t−, t+, and r represent extensions to A and T for imprecise

matches.

In ATRAP, the spatial-temporal query resides inside of the “Template Builder”

(see Section 5.1 for more on the Template Builder). When a user clicks on an SOR

in a Template, a dialog along the right-hand side of the screen appears (see Figure

3.3(a)). The 5-tuple is reflected by the Named Area of Interest (NAI) (A), earliest-

latest time (T ), hours before start (t−), hours after (sic) start (t+), and KM Outside

NAI (r). Any entities within the NAI between the earliest and latest time match

the spatial-temporal query perfectly. The other parameters will extend the search,

allowing for imprecise matches.

Above the SORs are SIRs. SIRs contain a search query for the ATRAP database

(see Figure 3.3(b)), links to all its SOR children, and a link to its parent indicator.

When constructing a query, there are options to automatically expand the query to
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include inflections of the words and to make use of an ontology. When specifying the

type of entity (person, place, event, etc.) the ontology can optionally include more

specific types and more general types. For example, a query could specify an entity

of type vehicle, and return a hit an entity of type truck.

Above the SIRs are Indicators, which contain a link to the parent Template and

can either reference another Template or contains links to SIRs. A Template can

take on a fractal nature by having Indicators referring to other Templates. Templates

connected in such a way can be expressed in a form of a graph. This graph must

remain acyclic, for Templates represent a hypothesis and a hypothesis in part based

on itself can result in a circular argument. Alternatively, an Indicator may contain

links to SIRs. Such an Indicator primarily provides structure and organization.

Templates consist of several links to their Indicator children and all their dece-

dents. This represents a hypothesis. Intelligence analysts may build a Template

for determining the capabilities of an organization or to evaluate COAs. There are

primarily two types of Templates: Doctrinal and Situational. Doctrinal reflect the

doctrine of some entity (organization, group, nation, individual, etc.). Typically

Doctrinal Templates lack specifics such as time and location (SORs). A Situational

Template is based off of a Doctrinal Template, but it contains all the specifics needed

to evaluate it.

By extending the previously described model, Templates can take on additional

capabilities. We call this extended model a Quasi-Neural-Network (QNN). The

extension is achieved by allowing all the links in Templates to carry a weight. By

adding a threshold value and activation function to each node in the Template, the

Template behaves similarly to an artificial neural network (see Figure 3.4). The QNN

are similar to other neural networks, except the input nodes are queries. Thus the

queries are the location where transduction occurs. The significance of the QNN
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Figure 3.4. Quasi-Neural-Network Extension

extension will be explained further in Section 5.5.
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Chapter 4

Methodology

This chapter describes the methodology used when generating the algorithms dis-

cussed in the next Chapter (5). Due to the unique nature of assigning a score to a

Template, there has not been a significant amount of prior research into the evaluation

of Templates. This chapter is outlined in three sections describing the steps used to

generate several original algorithms. The first step discusses the process of defining

requirements. Second, several algorithms are designed and compared in a trade-off

table, iterating the first step as needed. Once no additional benefit as defined by the

trade-off table can be obtained, a final review of the “best” algorithm attempts to

determine whether further iteration is necessary or not.

4.1 Algorithm Building with Desired Properties

We worked closely with Neil Garra, an ex-military analyst, our primary SME with

regards to evaluating Templates. Together we would brain storm test cases and

the expected behavior. There were two types of test cases: extremal test cases and

differential test cases. Extreme test cases defined how the algorithms ought to behave

whenever any situation is at a potential extreme or boundary. For example, the

behavior to occur at an SOR when the spatial constraint is perfectly matched and

the temporal constraint is a perfect miss. Differential test cases helped define how the

algorithms should behave as situations change slightly. An example of a differential

test case is the expected behavior as more matches are found for a single SIR/SOR
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query. Other examples include an entity moving or an entity type becoming more or

less specific.

There were usually several desired behaviors from the algorithms besides the test

cases. A few omnipresent desired properties were to keep the algorithms as simple as

possible, as understandable as possible, traceable and transparent. Traceability refers

to the ability to trace rationale and test cases back to the algorithm. Transparency

encompasses the concept of the user being able to follow the algorithm—without

black box components. The purpose for these behaviors lies in the fact that the non-

numerical predictive model is supposed to be transparent and traceable to humans.

As the algorithms grew in complexity, to fulfill the requirements and the desired

properties, sub-steps were introduced for the purpose of understandability. Under-

standability not only applies to the algorithms, but also the intermediate results.

To fulfill several constraints, such as a diminishing returns, the algorithms typi-

cally would use classes of mathematical functions that already have such a behavior

(e.g., sigmoid functions naturally exhibit diminishing returns and a maximum value).

Individual components would then be combined to preserve the desired behavior of

each component. This did not always lead to the simplest algorithms, but it did

lead to highly understandable algorithms. Each component could be traced back

to a test case or rationale. The algorithms are heavily mathematical, which is

generally transparent. If users disagree with the specifics, they can easily tweak key

parameters to change the behavior of individual components. The algorithm may not

provide precisely the same solution as the user would, but the general trends would

be correct. Furthermore, a mathematical SME could provide feedback on these types

of algorithms. A couple of competing alternatives methods were considered when

building up functionality include: logical decision trees, interpolation between saved

data, and artificial neural networks.
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Decision trees have their own sets of problem. First, they work much better

for discrete problems than for continuous ones. Decision trees can fail to provide

an answer if not all possible cases are covered. This is highly problematic since

the decision space grows exponentially as the number of input variables increase.

However, decision trees can be perfectly traceable and transparent. A user may

disagree with some of the decision tree rules, which conceivably could lead to a

disagreement with the system. Thus to account for this, the user might have to

rewrite a large number of rules due to the exponential nature of the decision tree.

Interpolation, recording the SME’s results for test cases and interpolating between

them, is much like a continuous decision tree. It resolves the discrete/continuous issue

present with decision trees, but shares many of its problems. The number of required

interpolation points would generally grow exponentially as the dimensionality of the

problem increases. Also the algorithm could fail if there are uncovered extremal cases.

Interpolation would be difficult to understand what is happening as the algorithm

interpolates. This means the algorithms would be traceable, but not transparent.

Also the rationale and test cases for the stored data would be tied to the user

who generates the data. Differences in opinion would result in a user either being

responsible for providing his/her own test cases (potentially significantly increasing

time required to configure the tool), or the data points would be non-transparent. The

lack of transparency could potentially leading to disbelief of the computed answer.

Similarly to interpolation, artificial neural networks are trained to imitate the

SME’s responses. While this resolves the issue of missing test cases, the neural

network is neither transparent nor traceable. Although it could perform arbitrarily

well, there is no simple to way explain what the neural network doing nor a way to

trace the test cases to the resulting neural network. The artificial neural network’s

complexity, run-time, and accuracy is governed by the decision surface and kernel
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functions [10]. The dimensionality of the problem sets a lower bound on the initial

number of neurons needed (which after training, may show some can be removed).

Thus the dimensionality of the problem need not reflect the complexity of the neural

network, which in turn means that this type of algorithm may run significantly faster

or slower, but it is very difficult to determine without actually implementing the

algorithm.

4.2 Trade-off Tables

To compare the different proposed algorithms for any particular part of the non-

numerical predictive model, trade-off tables were made. A trade-off table is a two-

dimensional grid with the proposed solutions along one axis. The other axis con-

tains the desired properties along with their relative weights of importance. Usually

more important properties have larger weights. The center of the grid shows an

approximation of how well any solution satisfies any property. The more a solution

satisfies a property, the larger the value. Then for each proposed algorithm, a score

is generated from the sum of the products of the relative weights of importance of

each property and how well that algorithm satisfies that property. The solution with

the largest outcome is the winner. If there are two or more tied, then those solutions

are considered equally good.

The majority of the algorithms used to score Templates underwent this process.

Typically extremal cases had the highest importance, followed by transparency and

traceability. Regardless whether or not there was a tie, the algorithms underwent

another iteration of tweaking to try to improve their scores where they performed

poorly, focusing on the heavier weighted attributes. Naturally, making an algorithm

more complicated would worsen its simplicity score. Steps could be taken to ensure
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the algorithm remained understandable though.

When no further improvements could easily be made, the algorithm was consid-

ered good enough at that point to implement. However, since the algorithms are not

perfect, they are still subject to change. In each revision of ATRAP, usually a couple

of bugs surface, showing a fault with the algorithm. Most of the faults are fairly

insignificant.

4.3 Final Review of an Algorithm

Once an algorithm is a clear leader, appears to perform well in all the requirements and

most of the desired properties, the algorithm is inspected for cases where it would fail

to produce intelligent results. For instance, if the output from an algorithm exhibits

a significant jump discontinuity, then there must exist a good explanation for it. An

algorithm is coded and used if and only if it holds up to this level of scrutiny from

two or more people.
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Chapter 5

Score Flow

This chapter describes how the non-numerical predictive model provides a score to

a Template. First, the process of building a prediction is reviewed, followed by the

actual scoring algorithms. The scoring algorithms consist of five parts: information

retrieval, evaluation of that information, resolving multiple hits, the aggregation of

the score up the Template structure, and then the final scoring process used to assign

a number to a Template to help sort it.

5.1 Building a Prediction

There are two prerequisites to running a prediction through the non-numerical pre-

dictive model. Entities must be extracted from the underlying non-numerical data

and a prediction must be codified into a Template.

5.1.1 Entity Extraction

Entity extraction is a very important prerequisite. These entities are those that the

Template’s SIRs and SORs queries match against. If there are no entities, then the

queries will fail to find anything. If the queries fail to find anything, then the non-

numerical predictive model will provide the same assessment and certainty (neutral

with no certainty) for all Templates.

Entity extraction can be done both automatically and manually. Automatic entity

extraction has several limitations at this point. While it can identify many proper
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Figure 5.1. Text-Highlighter

nouns in text, it cannot currently classify the type of entity the proper noun represents.

Furthermore, it currently cannot automatically attach relevant information from the

document to the entity either. This means that much of the entity extraction must

still be done by humans.

ATRAP has a text-highlighter tool to assist in manual entity extraction (see

Figure 5.1). Once extracted, the entity can have additional information about it

specified, including times and locations. Additionally, keywords and relationships to

other entities may be included at this time. Once the entity has been extracted by

any user and it resides in the ATRAP database and is visible to all users. This allows

several users to build the ATRAP database.

5.1.2 Template Design

Templates are split into two categories: doctrinal and situational. A doctrinal Tem-

plate is an outline or an abstraction of a specific behavior. It reflects the doctrine of

an individual, organization, or nation. A situational Template is an applied doctrinal

Template. It takes the abstraction of a behavior and fills in all the specifics (when,

where, and other details). For example, a list of instructions for crossing rivers would

be reflected in a doctrinal Template while the steps executed when crossing a specific

river would be exhibited by a situational Template.

There is a tool called the “Template Builder” inside of ATRAP where these
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(a) Template Builder blocks (b) Prediction
Run

Figure 5.2. Template Builder and Prediction Run

Templates are built. Inside the Template Builder a user can load or copy exist-

ing Templates, create new Templates, or make a doctrinal Template a situational

Template. When creating a Template, there are Indicators, SIRs, SORs, Decisions,

and Options. The Decisions and Options are currently not used because they do

not extend functionality. For more details on Templates please refer to Section 3.2.

The SIR queries are shown specified as shown in Figure 3.3(b) and the SOR spatial-

temporal constraints are entered as shown in Figure 3.3(a).

Once there are entities in the database and there are Templates, one or more

Templates can be evaluated in a “Prediction Run.” In ATRAP, a prediction run is

initiated by selecting the “Prediction” tab from the bottom left corner of ATRAP,

selecting the Templates which are to be compared against one another, and clicking

“Run.”

5.2 Information Retrieval

The first question to answer was how to take the query information from the SIRs

and SORs and pull the appropriate information from the database. Since natural



35

Figure 5.3. Example use of Entity Type Ontology

language processing is a very difficult problem, the system requires some degree of

manual entity extraction.

There are three primary fields for SIR queries: entity type, keywords, and rela-

tionships. The entity type field specifies what is being searched for: a location, an

attack, an IDE, etc. The entity type can optionally be expanded to include more

specific and less specific entity types. For instance, if the user specifies an entity type

of type “vehicle” and includes more specific types, the system may return a hit for an

entity of type “truck.” Figure 5.3 depicts the expansion of “Submersible Research”

in red, including one level of generalization and specification.

The recognition of generalizations and specifications is achieved by using an entity

type ontology, where the higher levels are more generic and the lower levels are more

specific. This tool improves recall and trades off between recall and precision. Recall

is a measure of the completeness of the search, and precision is a measure of true

positives:

recall =
|{relevant matches ∩matches found}|

|relevant matches|
(5.1)

precision =
|{relevant matches ∩matches found}|

|matches found|
. (5.2)

By searching for more specific types in addition to the specified type, the recall is

improved with a minimal impact to precision. Since a generalization provides less
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Figure 5.4. A Relationship Between Two Entities

information and may provide a false positive, a parameter has been introduced to

provide a penalty for generalizations (see Section 5.3).

Keywords are useful for specifying additional details not captured by the entity

type, location, and relationship to other entities. The search can optionally be

expanded using inflections of keywords. This allows the search to look for sin-

gular/plural and different tenses of the provided keywords. While not currently

implemented in the second revision of ATRAP, the optional use of a thesaurus has

been discussed to improve the recall at the expense of precision of such queries.

The last part of the SIR query, entity relationships, is an incredibly powerful tool.

This enables the user to specify a query where entities have relationships among each

other. These relationships can be specified by either relationship type or to a specific

entity. An example query may involve searching for an arms dealer with suspected

relations with a criminal organization.

5.3 Evaluation of Retrieved Data & Fuzzy Matching

We are now onto the vectors which provide the basis for the scoring. This section

will discuss the evaluation of these vectors, the next section will discuss reducing the

problem space, and the following section will describe how they are aggregated to

form a vector for a Template.

Once the data and documents have been retrieved which support (or deny) the

queries, that information needs to be evaluated and converted into numerical vectors.

These vectors are three-dimensional in nature, consisting of: confidence in the infor-
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mation, relevance of the match, and the assessment of the match. If the information

came from a free-text report, the confidence in the information was entered by a

human. If the information came from sensor data, the confidence is assumed to be

very high. The relevance reflects how well the query matches the retrieved data. The

assessment indicates whether the data supports or denies the query. By default these

values are:

relevance = R = 1

confidence = C = Copied from information’s confidence

assessment = A = π/4

A military intelligence SME provided guidelines for evaluating the data retrieved

from the query. Some of these behaviors include the impact of fuzzily matching

spatial-temporal constraints, fuzzily matching generalizations of the entity types, user

adjustable parameters, and methods for tweaking how detrimental a fuzzy match is

compared to an exact match. While the guidelines only allow our algorithms to

capture the general trends the SME expected, the specifics that the analysts expect

can be captured by tweaking or training the adjustable parameters.

The exact variables in the SOR constraint query, A and T , specify the perfect

matches. Data retrieved from the database that fulfills these requirements perfectly

do not suffer a penalty to their relevance score for the spatial-temporal constraints.

However if there is a fuzzy match, their relevance is determined by the user-selectable

spatial and temporal falloff functions, Fspatial and Ftemporal), which specify how the

relevance transitions from the perfect match to a perfect failure:

R = Fspatial(Distance) · Ftemporal(∆Time) (5.3)
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Figure 5.5. Example Falloff Curve

A perfect failure is defined as being outside the specified spatial-temporal region even

when expanded by the parameters: t−, t+, and r. An example falloff function is

shown in Figure 5.5.

The relevance score can also be impacted by a generalization of the entity type

searched. If the user chooses to include all levels of generalizations of the specified

entity type (e.g., truck) when building an SIR query, ambiguous entities may be found

(e.g., vehicle). He/She can specify how many levels up the entity type ontology to

travel when expanding the search and the penalty for each level. The user can also

specify more specific entity types, but typically there is no penalty for more specific

types (traveling down the ontology). For example, every level that must be traversed

up the ontology (more general terms) to find a match, could multiply the relevance

by 0.5. This is demonstrated in:

R′ = R · σmax(0,L), (5.4)

where R′ is the relevance once adjusted for a generalization of the entity type, R is

the relevance prior to accounting for the generalization, σ ∈ (0, 1] is a user adjustable

parameter which determines how detrimental generalization is, and L represents the

number of levels of generalization. Formally, L = Ds −Df , where Ds is the depth of

the entity type specified and Df is the depth of entity type of the query hit. Note

that a positive value for L represents a generalization was found, a negative value

represents a more specific type, and the value of zero (0) represents exactly the type
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specified in the query. Thus, in equation (5.4) regardless the penalty parameter σ,

only generalizations suffer from a penalty.

5.4 Problem Reduction

The next issue is reducing the problem space from potentially many three-dimensional

vectors into a single twp-dimensional vector for the SORs, that can also be used for

the rest of the Template scoring system. It was decided that the confidence in the

information could then be combined with assessment and relevance to represent the

data as a two-dimensional polar vector for the rest of the scoring procedure. This

simultaneously simplifies the task and transforms the problem to something that

matches the intelligence analyst SME’s thought process better. The two-dimensional

polar vector is that the assessment reflects what the underlying information indicates.

A measure of certainty indicates the strength in that belief. We introduced Cobb-

Douglas type products to accomplish this transform.

5.4.1 Cobb-Douglas-Products

Cobb-Douglas type products were selected primarily due to their behavior and wide

acceptance in business and financial environments [6]. The Cobb-Douglas product is a

weighted multiplication. Equation (5.5) shows a Cobb-Douglas product (CDP), where

x = (x1, x2, . . . , xn) is a vector of components to be combined and a = (a1, a2, . . . , an)

is a vector of weights, both of length as n, and a constant A which defines the

product when (∀i, xi = 1)|(CDP = A). For our purposes we always let A = 1, since

that corresponds to a perfect match:
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CDP (x, a) = A

n∏
i=1

xai
i . (5.5)

The Cobb-Douglas production model has traditionally been used in economics as

a method of estimating productivity. In the economic case, it is common for there

to be only two quantities multiplied: a measure of the employees and a measure

of equipment. The main question that the literature has been trying to answer,

since the Cobb-Douglas production model was introduced, is how to choose the

weight values. The method for determining these weight values have progressed from

simple regression techniques to Bayesian estimation techniques [14,26]. In our current

version of the NNPM, there are a few methods in which a value can be assigned: by

the user with a feeling for the meaning behind the a values, by regression methods,

or by non-linear programming methods.

The a values have a real meaning. Via the manipulation shown in equation (5.6),

ai can be solved. This equation shows that each ai is the ratio of the CDP relative

growth rate to the relative growth rate of xi, which is called the elasticity. Thus if an

analyst has a feeling about these relative growth rate ratios, he can directly provide

the a vector. Since:

f(x) = A
n∏

i=1

xai
i

simple differentiation shows that

∂f(x)

∂xi

= A

(∏
j ̸=i

xj
aj · aixi

ai−1

)
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and so

∂f(x)
∂xi

f(x)
=

ai
xi

.

This relation can be rewritten as

ai =

∂f(x)
f(x)

∂xi

xi

(5.6)

Alternatively, one can see that the log of the CDP is linear in terms of ai and the

log of A:

log (CDP (x, a)) = log (A) +
n∑

i=1

ai log (xi) . (5.7)

If A is not assumed to be 1.0, it can be treated as one of the values to be solved for

in the least squares regression. This provides a linear least square solution for the

logarithm of the CDP. An alternative method is the use of nonlinear regression, where

the least square solution to the CDP requires minimizing equation (5.8). The primary

difference between these two regression methods is the definition of the nonlinear error

term:
T∑
t=1

(
f (t) − A

n∏
i=1

x
(t) ai
i

)2

(5.8)

By further redefining the error as the L1 norm or the L∞ norm and using the

equation (5.7), the a values can be obtained from a linear programming problem.

Other definitions of error would most likely transform the problem into a non-linear

programming problem.
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5.4.2 Resolving multiple query matches

However the Cobb-Douglas Products is only half of the process, reducing the dimen-

sionality to a domain more familiar to the hypothesis domain for analysts. Our

intelligence analyst SME and team developed 11 key constraints and desired behaviors

for resolving multiple hits. A few properties include: conflicting information should

lower the confidence, order of elements should not matter, model dimensioning returns

when there are many hits, various behaviors for different quality matches, and the

simpler the better. When all aspects were combined, competing algorithms were then

evaluated based on understandability and simplicity.

The current procedure proceeds as follows (see Pseudocode 5.6). First, the dimen-

sionality is reduced to a two-dimensional polar vector using Cobb-Douglas Products.

Next, the lengths (certainty) of all vectors are stretched by using the inverse of a

user selectable sigmoid function (sigmoid functions model diminishing returns well).

All vectors are then summed and the resulting vector is normalized using the user-

selectable sigmoid function. Lastly if two or more pieces of information are in conflict,

then the length of the normalized resulting vector is adjusted to reflect disagreeing

data.

Since the last prototype of the model, we have talked with two SMEs for some

additional constraints. This included methods for determining redundant data, mea-

sure of similarity, and a more statistical method for fusing the data based on the

independence of the data. If a method for determining the dependence of two text-

based pieces of information can be formulated, verified, and tested, then a statistical

solution can be used for resolving multiple query hits. The intelligence analyst would

then be able to select which algorithm to use for this part.
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Vect3D scoredDataVectors;

UserParameter a, b, c, d;

UserFunction sigmoid;

//Reduce the dimensionality of each vectorized query match

List<Vect2D> polarVectors;

foreach( dV in scoredDataVectors ){

certainty = Cobb-Douglas( { dV.confidence, dV.relevance }, {a, b} );

assessment = Cobb-Douglas( { dV.confidence, dV.assessment }, {c, d} );

polarVectors.insert( new Vect2D( assessment, certainty ) );

}

//Stretching, adding, and normalizing the new 2D vectors

Vect2D vectSum(0,0);

foreach( pV in polarVectors ){

certainty = stretch( pV.certainty, sigmoid.inverse );

assessment = pV.assessment;

vectSum = vectorAdd( vectSum, new Vect2D( assessment, certainty ) );

}

vectSum.certainty = stretch( vectSum.certainty, sigmoid );

//Determine general sway of the information & the data in conflict

double positiveSum = negativeSum = runningSum = conflictValue = 0.0;

foreach( pV in polarVectors ){

double yComp = pV.certainty * sin( pV.assessment );

runningSum += yComp;

if( yComp > 0)

positiveSum += yComp;

else

negativeSum -= yComp;

}

if( runningSum > 0 )

conflictValue = negativeSum;

else

conflictValue = positiveSum;

//Reduce the certainty of the prediction by the amount of conflicting data

vectSum.certainty /= ( 1 + conflictValue );

SOR.Vector = vectSum;

Figure 5.6. Code outline
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Figure 5.7. Interaction of certainty and assessment in score aggregation

5.5 Score Aggregation

Once a two-dimensional polar vector is obtained for each SOR, the system must

propagate the scores to higher levels to answer the SIRs, Indicators, and eventually

the Template. The aggregiation method is the activation function present at each

node in the Template.

To make the activation function behave as a generally accepted artificial neuron

response [10] without truncating information, a piece-wise linear activation func-

tion with thresholds was chosen. We extend this into two-dimensions by using

weighted vector addition, where the certainty represents the length and the assess-

ment represents the angle of a vector. Figure 5.7 demonstrates vector addition before

normalization, where the dotted vector is the un-normalized result. This shows

that vectors with greater certainty contribute more to the resulting score vector’s

assessment (direction). However, this is only the behavior within the linear region

of the activation function, which is related to its slope. By default, the slope of the

linear region of the function is determined by the inverse of the sum of the absolute

values of the weights of all the child links. This has the affect of ensuring that by

default the activation function only operates in the linear region. Thus, the resulting

operation performs a weighted average if the threshold is either unspecified or equal
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Figure 5.8. Weights and Thresholds for an XOR operation

to the sum of the absolute values of the weights. When the threshold is reduced to

a value lower than its default value, the network behaves like a QNN.

The QNN structure of the Template is a very useful tool for performing fuzzy

logical operations between different SORs and SIRs. Since all Templates have at

least three layers (Indicators, SIRs, SORs), it is possible to perform complex logical

operations such as an XOR. In Figure 5.8, the numbers inside each node represent

the threshold values, the numbers along the connections show the weights, and the

“true” nodes refers to a vector having maximum certainty and assessment (1, π/2).

The behavior for the threshold is subject to change, but one of the latest proposed

methods is described here (see Appendix A). Basically it checks if the weighted sum

of the vectors appears to be too ambiguous to apply any sort of thresholding effect.

If the resulting vector is unambiguous, then the length of the vector is extended and

the assessment is improved. The details are as follows.

The first step is to sum up all vectors multiplied by their weights. Determine

the magnitude of the resulting vector and decompose the resulting vector into its

Cartesian components (confirm-deny data and relevant but assessment-neutral data).

If the confirm-deny component (y) divided by the threshold is greater than the
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magnitude of the un-normalized resulting vector (y/threshold > magnitude), then

proceed with the rest of this procedure. Otherwise, since the vector is considered too

ambiguous, use the previously discussed activation function. Adjust the magnitude

by the adaptive formula:

magnitude′ = magnitude+ α · (y/threshold−magnitude), (5.9)

where α ∈ (0, 1] is a constant which defines how fast the threshold function thresholds,

and y/threshold −magnitude represents an amount of improvement. The improve-

ment is always positive if the vector is considered unambiguous. This measure of

improvement was chosen because of two properties. First, the algorithm converges

to the previously discussed algorithm when the threshold is set to the sum of absolute

values of the weights. Secondly, at α = 1.0, the magnitude becomes the confirm-deny

component divided by the threshold value (the usefulness of this will be shown later).

Essentially, equation (5.9) sets the magnitude to the weighted average of its previous

value and the amount of improvement. Then the confirm-deny component is adjusted:

y′ =
y∑∣∣∣−−−−−→weights

∣∣∣ + α · (magnitude′ −magnitude), (5.10)

where
−−−−−→
weights corresponds to the weight vector and y′ is the new confirm-deny

component. Equation (5.10) performs a weighted average between the confirm-deny

component before normalization and the amount by which the magnitude increased.

If α = 1.0, then y becomes the full length of the vector, which translate to a vector

with maximum assessment. By replacing magnitude′ in equation (5.10) with its
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definition in equation (5.9), we have

y′ =
y∑∣∣∣−−−−−→weights

∣∣∣ + α2 · (y/threshold−magnitude). (5.11)

In the next step, we ensure the vector does not exceed the maximum length. This

is accomplished done by clamping both the magnitude and the confirm-deny compo-

nent to no higher than 1.0. Lastly the relevant but assessment-neutral component,

(x′) is calculated to preserve the magnitude:

x′ =
√
Magnitude′2 − y2 (5.12)

The net result of this thresholding algorithm is as follows. Unambiguous vectors

have their confidence increased in proportion to α and the measure of improvement.

The assessment improves in proportion to α2 and the measure of improvement. If

α = 1.0, the resulting vector is a vector composed entirely of just a confirm-deny of

y/threshold. This is useful because it behaves like a hard-thresholding “or” function.

This algorithm has been coded up in Matlab to test and verify its behavior (see

Appendix A). Appendix A also has a simpler algorithm which appears to have similar

properties.

5.6 Template Score & Ranking

The last step in evaluating Templates is providing scores and ranking all of the

Templates selected for ranking. The first part of this procedure is identical to the

aggregation of the score, where all of the Template’s Indicator vectors are averaged to

produce an assessment and certainty. This produces a final two dimensional vector

which must be transformed into a one dimensional number for ranking purposes.
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A single number is generated from taking the projection of the certainty and

assessment onto an axis. There are three reasons why a projection is used instead

of the aforementioned Cobb-Douglas product. First, projection is more intuitive due

to the polar nature of the vectors. Secondly, both have similar behavior if at least

one number becomes zero. Additionally, projection is simpler when working with

negative numbers. The resulting number can then be used for ranking purposes.

There is one more step when it comes to Template scoring. It is dangerous

to report a number which ranges between -1.0 and 1.0, since the number can be

misinterpreted. Positive scores could accidentally be taken as likelihoods. Thus the

last step is a monotonic distortion to prevent the user from interpreting the score as

a percent likelihood:

Confidence = −100 · log
(
0.5− 0.5 · ∥

−−−−−−−−→
TempScore∥ · sin

(
∠−−−−−−−−→TempScore

)
+ ϵ
)

(5.13)

The monotonic property preserves the relative order of the Templates. In equation

(5.13), the
−−−−−−−−→
TempScore represents the polar two-dimensional vector representing the

Template’s assessment (∠−−−−−−−−→TempScore) and certainty (∥
−−−−−−−−→
TempScore∥), and ϵ repre-

sents a small number to prevent taking the log of zero. Since the certainty ranges

from 0.0 to 1.0 and the assessment ranges between −π/2 and +π/2, the minimum

confidence is −100 log(1 + ϵ) ≈ 0 and the maximum is −100 log(ϵ) ≈ ∞.
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Chapter 6

Experimentation & Results

Several experiments were conducted to help verify the proper functioning of the non-

numerical predictive model and to show validity of the model. Since the ATRAP

project is still looking for a large database of non-classified data to run predictions

against, most of the data in the experiments was fabricated for the purpose of verifying

the proper functioning of the algorithms. There is one real on-going prediction being

made with ATRAP as well. This “live” experiment is part of the on-going project to

validate the model.

6.1 Experiment Setup

Several experiments were performed to verify the predictive model. Of the exper-

iments that were performed, there are five categorizes of verification experiments:

white, black, gray, mixed, and live test cases. The first three (white, black, and gray)

were part of the first tests to verify if the algorithms were working. A white test

case has a database containing information to confirm a Template. If the algorithms

are functioning as they were designed, most to all of the indicators should have

a confirming assessment with at least a moderately high certainty. Another type

of test case is the black test case. It involves a database with irrelevant material

for the Templates being scored. Few to none of the indicators should have any

assessment other than neutral and all certainties should be extremely low or non-

existent. There is a gray test case, which uses a much larger database, with both
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relevant and irrelevant data. The purpose of the gray case was to test how well the

system scales to having to search through more data. Since the gray case includes

parts of both of the white and black test case data, the expected outcome should be

between the two other cases.

In another batch of experiments the database remains constant, but several dif-

ferent Templates were evaluated at the same time in a mixed scenario. This involved

holding the database constant, but sweeping what was being searched. In the mixed

test case, our intelligence analyst SME created a gang-recruitment scenario. There

were three different gangs, three different schools, and several events at each school.

The three gangs are: the Right Hand of Freedom (Right), the Sinister Lifestyle

Defenders (Left), and the Free Hand of Choice Fellowship (Ambidextrous). The three

high schools from which the gangs might try to recruit from are: Leesville, Polk, and

North. This generated a total of nine Templates. The data was mostly randomly

distributed, but there was a heavy focus on the Sinister Lifestyle Defenders at the

Polk High School. There were also smaller clusters of information. For example,

North High School had much more activity around it than the other schools.

There was also a live test case where the non-numerical predictive model was run

against a developing scenario (as of October 2009 and updated for January 2010):

H1N1 outbreak on the University of Arizona (UA) and Arizona State University

(ASU) campuses. The objective was to determine how serious an outbreak might be

based on its location. The source documents include a transcript from Phoenix ABC,

a transcript of the delay of H1N1 vaccines, and some of the weekly flu updates from

Arizona Department of Health Services. Entity extraction and Template design were

performed manually. The example Template in Figure 3.2(b) shows the Template for

the UA.

There is the possibility of a few other types of experiment which were not yet
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performed, but could be constructed. A red case would involve information that is

relevant to the Templates, but the information denies the Template. This is different

from the other cases because the assessment should be “less” than neutral with at least

a moderate level of certainty. For this to work, the Template would have to make

use of negative weights. Another type of experiment that could be constructed and

tested is a mixture of the red and white case. This hybrid case would involve relevant

data that both denies and confirms different parts of the Template. The expected

outcome of this type of experiment should be a Template score near neutral assessment

with a moderate level of certainty. However, there are three places in a Template

where the data can be in conflict. Thus it is helpful to label the three additional

cases as: contradictory-SOR, contradictory-SIR, and contradictory-Indicator cases.

A contradictory-SOR case would involve an SIR with both positively and negatively

weighted SORs, both returning matches. A contradictory-SIR case would involve

an indicator having positively and negatively weighted SIRs, both of which return a

positive match to the indicator. Likewise, a contradictory-Indicator would involve

any two indicators having nearly opposite assessments.

6.2 Results

All results are summarized in Table 6.1. For the first batch of experiments, the white,

black, and gray results are shown. As anticipated, the white case performed well,

achieving an extremely high score. To confirm this score, we checked the indicators

which all performed very well as well. Likewise all their children also scored highly.

The average Indicator assessment was approximately +0.79 (appears to be happening)

with very high certainty. The black case performed as hoped, all Indicators had a

neutral assessment of 0.00 (non-negative and non-positive) with very low certainty.
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There were no matches. The gray case did not take noticeably longer to run (no

times were recorded), despite the database being an order-of-magnitude larger. Some

of the Indicators found relatively good matches while other found little to no data.

The mixed case provided a spectrum of results. The top ranking Template from

this batch is the Template that looks at Sinister Lifestyle Defenders’s activity around

the Polk High School. There were two Templates tied for a distant second place

ranking. Most Templates performed better than the previously mentioned black test

case, but were inferior to the gray test case. Almost all information found confirmed

gangs were trying to recruit from the schools, but most of the evidence was limited,

producing the low Certainty scores shown. These results reflect what the subject

matter experts anticipated.

The live case showed that there was more information indicating ASU would suffer

an H1N1 outbreak rather than the UA. Both universities showed similar assessments

(confirming it will happen), but there was more evidence for ASU (reflected in the

certainty score). The confidence measure shows that the non-numerical predictive

model (using the provided data and the provided Templates) holds more confidence

in the Template describing an H1N1 outbreak at ASU than the Template describing

an H1N1 outbreak at UA. While there is no direct data on the campuses to validate

the NNPM, there is data associated with the counties.

In an attempt to measure the severity of H1N1 outbreaks on the ASU and UA

campuses, the suspected/confirmed cases for Pima and Maricopa were collected from

[16]. Pima is where the University of Arizona resides and ASU is in Maricopa county.

Since the counties differ in size, the populations are also examined for a fairer analysis.

The official US government census [1] was used to provide population estimates. This

data has been combined and summarized in Table 6.2. While Maricopa (closer to

ASU) has many more cases than Pima (closer to UA) in total, the ratios of cases is
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Table 6.1. Template Score Results
Test Case Assessment Certainty Confidence
White 0.79 1.00 193.22
Black 0.00 0.00 69.31
Gray 0.78 0.35 97.57

Left - Polk 0.75 0.77 143.19
Left - Leesville 0.79 0.15 80.53
Left - North 0.79 0.19 93.16
Right - Polk 0.79 0.15 80.53
Right - Leesville 0.79 0.15 80.53
Right - North 0.79 0.30 93.16
Ambidextrous - Polk 0.00 0.00 69.31
Ambidextrous - Leesville 0.00 0.00 69.31
Ambidextrous - North 0.79 0.15 80.53

Live (ASU) 0.79 0.57 120.95
Live (UA) 0.78 0.35 97.33

Table 6.2. Arizona County Data
County Total cases 60-day span cases 2000 Census 2008 estimate
Maricopa 7,819 41 3,072,149 3,954,598
Pima 2,150 2 843,746 1,012,018
Ratio 3.6367 20.5 3.6411 3.9076

nearly the same as the ratio of the populations. However, the Template for H1N1

anaylsis was updated in early January of 2010; examining all cases does not reflect

the NNPM’s prediction. However, in the a 60-day span (from December 27, 2009 to

February 25, 2010), even though Maricopa has had only 41 cases, this is more than 20

times the suspected/confirmed cases in Pima. The population ratios cannot account

for this discrepancy. Thus, it this result helps to validate the NNPM.
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Chapter 7

Behavioral Filtering

Another on-going research aspect of ATRAP is enhancing the predictive capabilities

(Template evaluation) by making use of behavioral data. Behavioral filtering would

adjust the certainty and assessment scores of each prediction modeled by a Template.

The next section describes the problem in more depth. This is followed up with a

description of a prototype expert system.

7.1 The Problem

Behavioral data comes at a cost. Investigation into an individual’s or agency’s

background takes time and could cost a lot of money. Sometimes it is impractical

to gather the level of information needed for a good prediction of an entity’s (person,

organization, etc.) actions. Police cannot interview or perform a comprehensive

psychological analysis on an uncaught criminal. Thus behavioral data must be able to

be estimated from a person or organization’s actions or estimated from demographics.

Additionally, such estimations may contain a great deal of error.

Determining which attributes to use for enhancing the predictive capability of

ATRAP is problematic. The central problem to the behavioral aspect of ATRAP

is optimizing the prediction accuracy per the difficulty, time, and cost of obtaining

the behavioral information. Thus, the characteristic attributes must be measurable

(even if the entity is unwilling to cooperate), cheaply obtainable, and provide a great
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deal of predictive capabilities. Another problem involves designing robust prediction

methods that work well even in the presence of flawed or incomplete behavioral data.

To help ensure a valid solution, the ATRAP team is currently seeking out SMEs

in the behavioral field. The SMEs would assist in the selection of attributes as well

as aid in the development of an expert system to use the attributes.

7.2 Expert System Framework

A very powerful and flexible prototype expert system framework has been developed

to aid in the processing of the behavioral data. The expert system framework is

effectively an inference engine builder (see Figure 7.1(a)). The inference engine builder

has four primary inputs:

• syntax - Describes types and values for attributes

• attributes - Describes what the attributes entities have

• entities - Names of the input variables to the expert system

• rules - Basis of the expert system

These four modules allow the prototype to build an inference engine with several

additional features. The inference engine (see Figure 7.1(b)) does not just execute

rules but can also output an adjusted two-dimensional vector and a list of messages

to show the user if certain rules fire and why. More formally, the inference engine

generated has the following:

• entities - The input/output variables

• messages - An expert’s messages that were triggered as the engine ran
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• two-dimensional vector - An input/output ATRAP score vector

The syntax allows the rules to be written in an English-like language. Each non-

numerical attribute has its syntax defined in the syntax component. Effectively, the

syntax provides the programming equivalent of enumerated strings (enums), which

the attributes can reference. Together this allows much of the rules to be written in

an English-like language.

The attributes provide a generalized framework for any entity, event, or action

to be passed into the inference engine. By taking the union of several abstracted

objects, the inference engine can work with diverse sets of objects by treating them

all as the same thing inside the engine. For example, an entity might have a desire

for publicity and actions also have a certain amount of publicity associated with

them. The resulting inference engine would be able to work with these two very

different data types (entity and action). Additionally, all the attributes have two

dimensions to them: their value and the confidence in that value. There is a trade-

off for this additional degree of flexibility. This allows the expert to write rules that

take uncertainty into account, at the cost of added complexity for the expert.

Three separate aspects make the rules very flexible and powerful. First, each set

of rules starts with a list of aliases for the entities to be passed into the system, which

can then be used throughout the rest of the rule set. This allows the rule developer

(a) Prediction Run (b) Template Builder blocks

Figure 7.1. Inference Engine Builder and Inference Engine
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to use his/her own naming scheme while writing the rules. This feature also allows

the inference engine to work on rules with an arbitrary number of entities.

Another aspect which makes the rule system powerful is the reading and writing

to the entity’s attributes. This allows for the modification of the entities during their

processing. After the engine has exhausted all available rules, it is possible to read

these modifications out of the inference engine entities and back into the rest of the

ATRAP system. Due to the arbitrary number of entities that can be entered into the

engine and the read-write capabilities, it is possible to introduce a dummy variable

for keeping track of anything the author of the rules might want.

The third powerful aspect of the rules is the fact that they are modular. Modular

rules allow for several classes of rules to be written for various scopes and offer the

promise of hierarchical rule sets. One set of rules could be global while another set

could be specific to a region or paradigm.

The two-dimensional vector that can optionally be passed in is a polar vector

representing the assessment and certainty of a particular Template. These two

components are treated as special variables inside the rule sets, which allow an expert

to directly tweak the assessment and certainty as seen fit. If more than two variables

are ever needed in the future, a dummy entity could be input into the system and

used as an additional IO.
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Chapter 8

Conclusions

We have developed and tested a non-numerical predictive model (NNPM) which

makes use of non-numerical data to test predictions codified as Templates. Because

the NNPM uses a Template schema with fuzzy matching, its applications are not

limited to military intelligence. Virtually any domain which uses significant non-

numerical data can benefit from this predictive model since hypotheses can be codi-

fied as Templates. These applications range from: criminal investigations, financial

markets, homeland security to evaluating political outcomes. One specific application

is that for ATRAP, a practical and flexible toolbox for intelligence analysts.

We worked with SMEs to help develop an NNPM that intelligence analysts could

use. The model automatically generates three metrics for evaluating hypotheses

(Templates). Our NNPM generates an assessment of the apparent truth of the

prediction, a certainty or precision of that assessment, and a unified score called

confidence. The algorithms have been tested and verified via the use of ATRAP. The

experimental results have been shown to reflect an SME’s expert evaluation of the

same data. The live test reflected real world data, further validating the model.

Our NNPM offers several important features. It overcomes the three primary

hurdles associated with modern intelligence analysis: asymmetry, rapidly changing

tactics, and information overload. Compared to other works, it offers: extensive user

customizability; COAs that go beyond tactics to include the generation of information,

new COAs, and an evaluation; an information management framework; asymmetric

and human-in-the-loop capabilities. While there are other programs which offer



59

several of these features, none of them incorporate all of these features into a single

package. Our NNPM, functioning inside of ATRAP, offers all of these features in a

single package.

The score flow consists of two prerequisites and five steps. The first prerequisite

is that entities must be extracted for the non-numerical predictive model to match

queries against. Additionally, predictions must be codified as Templates. The SIR

queries can make use of an ontology, inflections of keywords, and relationships to

other entities to help provide retrieve as much relevant information as possible. Then

the retrieved information is evaluated to determine how well the data matches. The

dimensionality is reduced and multiple hits are resolved into a single score for each

SOR. The scores propagate up the Template structure, performing operations from

neural networks. Lastly the assessment and certainty are combined and monotoni-

cally distorted to prevent misinterpretation of the output value.

The model is made malleable from its many options, including: an entity ontology

to optionally expand search parameters, adjustable Cobb-Douglas products, various

sigmoid and falloff functions, and weights and thresholds for Indicators, SIRs, and

SORs. It provides means for automatically surveying codified hypotheses (Templates)

by providing an assessment and confidence from non-numerical data. The predictive

model has primarily five parts: information retrieval, evaluation of the retrieved data,

resolving multiple hits, score propagation, and final score generation.

Future versions of the non-numerical predictive model will include further val-

idation of Template scoring algorithms, computational scalability with orders-of-

magnitude larger datasets, integration of the inference engine and other possible

improvement of the Template model.
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8.1 Future Research Directions

The NNPM could be extended in many different directions. Some are directions

include: detecting “duplicate-like” information and accounting for it; introducing and

processing of dependence among query matches; using machine learning to optimize

all the parameters; generalizing the Template schema for improved flexibility and

decreased time codifying hypothesis; integrating the behavioral inference engine; and

improving data-fusion with stochastic linear motion models.

8.1.1 Duplicate-like Detection

One direction which has been investigated but not implemented, tested, or verified,

is a “duplicate-like” detection tool. A duplicate-like detection tool would find sets

of entities that are inexact duplicates, meaning that entities ought to really be one

entry in the database instead of several. This tool would check various factors between

entities such as:

• analyst who created the entity

• analyst level

• creation time

• name

• location

• time

• type

• source documents
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This list is not exhaustive, and there are potentially many more factors to consider.

By examining these factors we should be able to determine if entities are duplicate-

like. For example, two different users (with very different ranks) create two very

similar entities, sharing source documents, type, time, location, and similar names.

It is reasonable to say these two entities might be duplicate-like.

The detection process could be on-the-fly (entities matching a query) or offline

(when the system is idling). There are advantages to both approaches. First, on-

the-fly detection could operate much faster by comparing smaller subsets of entities

(if there N entities, each must be compared against N − 1 entities). On-the-fly

detection could operate upon entities found matching an SIR/SOR query, which

would automatically limit the number of entities. Also, if the entities are checked

in real-time as they are added to the database, we could alert the user to a possible

preexisting entity as soon as possible.

There are a few advantages to the offline detection process. The user’s would

never have to wait for the system to perform the checks, whether during Template

evaluation or during entity extraction/entry. It would spare memory and cpu-time

when the system is being heavily used. When the system is idle, the system can

examine any entities which were introduced or changed to check for near duplicates.

8.1.2 Accounting for Dependence

The introduction and processing of dependence is another future research direction

for the NNPM. When a single SOR query finds multiple matches, it is possible some

of those events are not independent. For example, a search for a red truck in a small

vicinity, over a large span of time might show multiple matches not because there

are many red trucks, but because the same red truck has been spotted on several

different occasions or even duplicate information entered into the database.
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There is an analogous problem with random variables. This is the problem of

linearly combining random variables to minimize the variance. With regards to

query hits, the variance is a measure of uncertainty. The exact relationship between

certainty and uncertainty is still currently an open question. Regardless, the basic

idea is to combine query hits in a similar manner to the process used for combining

unbiased random variables to obtain an unbiased estimate with minimum variance

(or in our case minimum uncertainty):

Z =
n∑

i=1

αiXi. (8.1)

In equation (8.1), Z is the unbiased estimate (combined score), Xi are the random

variables (query matches), and the αi are the weights used to combine the Xi’s.

Solving for the αi’s that produce the minimum variance is trivial for a set of variables

(query matches) that are mutually independent. The solution to the αi’s that produce

the minimum variance estimate of Z (assuming independent random variables) is

given by

αi =
1

σ2
i

n∑
j=1

1

σ2
j

, (8.2)

The process becomes complicated when some of the query hits are dependent. Our

mathematics SME has provided a derivation for the closed form solution, which is

presented below. In the following derivation (equations (8.3) – (8.12)), X1, X2, . . . , Xn

are random variables such that E[Xi] = µ, Cov[Xi, Xj] = σij = σji, Var[Xi] = σii =

σ2
i , α = (α1, α2, . . . , αn)

ᵀ, and λ is the Lagrange multiplier.
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An unbiased estimate requires:

E

[
n∑

i=1

αiXi

]
=

n∑
i=1

αiE[Xi] = µ

n∑
i=1

αi = µ. (8.3)

Thus, the constraint is
n∑

i=1

αi = 1. (8.4)

The variance of our estimate is:

Var

[
n∑

i=1

αiXi

]
= E

( n∑
i=1

αiXi −
n∑

i=1

αiµ

)2


= E

( n∑
i=1

αi (Xi − µ)

)2


=
n∑

i=1

α2
iσ

2
i +

n∑
i=1

∑
j ̸=i

αiαjσij

=
n∑

i=1

n∑
j=1

αiαjσij

= αᵀC α, (8.5)

where C = (σij) is a symmetric matrix.

Minimizing the variance produces the following constrained optimization problem:

minimize αᵀC α

subject to 1ᵀα− 1 = 0, (8.6)

which by the Lagrange method is reduced to the following unconstrained optimization

problem:

minimize αᵀC α + 2λ (1ᵀα− 1) . (8.7)
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Differentiating with respect to αi (note C is a symmetric matrix) and λ gives us:

/2C α + /2λ1 = 0 (8.8)

1ᵀα− 1 = 0. (8.9)

To solve for α in closed form, take equation (8.8) and multiply by C−1 from the left:

α + λC−1 1 = 0,

so

α = −λC−1 1 (8.10)

To solve for λ, multiply this equation by 1ᵀ from the left to have

1ᵀα+ λ1ᵀC−1 1 = 0,

or

1ᵀC−1 1 = −1

and so

λ =
−1

1ᵀC−1 1
(8.11)
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Substituting this value for λ back into equation (8.10) produces show that

α =
1

1ᵀC−1 1
· C−1 1. (8.12)

Equation (8.12) defines the values for the αi values to be used in equation (8.1).

This solution requires a covariance matrix. The primary problem is generating the

covariance matrix. Future work involves generating a method to estimate the covari-

ance matrix and the implementation. Due to the relationship between correlation

and covariance, we hope that an “independent-ness” metric for each variable (query

hit) could be used to construct an estimate of the covariance matrix.

If we assume all the variables, X1, X2, . . . , Xn are mutually independent, then:

C =


σ2
1

σ2
2

. . .

σ2
n


,

C−1 =


1/σ2

1

1/σ2
2

. . .

1/σ2
n


,

C−1 1 =


1/σ2

1

1/σ2
2

...

1/σ2
n


,
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and

1ᵀC−1 1 =
n∑

i=1

1

σ2
i

,

so

α =
1

n∑
i=1

1

σ2
i

·


1/σ2

1

1/σ2
2

...

1/σ2
n


. (8.13)

This is the same solution that was presented in equation (8.2).

8.1.3 Machine Learning

Future versions of the NNPM and ATRAP could use example Situational Templates,

datasets, and experts’ evaluations to optimize the many adjustable parameters. Due

to the mostly linear nature of the weights and thresholds, a combination of least

squares regression (8.14) and back-propagation (discussed extensively in [10]) should

be able to help optimize the weights and thresholds for Doctrinal Templates.

Functions of a linear nature exhibit the following form:

f(xi, α) =
m∑
j=1

αjϕj(xi)

where the αi coefficients are the weights of the linear components and ϕi is a function

of xi. Let for all i,

Xij =
∂f(xi, α)

∂αj

= ϕj(xi),
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Then the values for αi, which minimize the sum of the squared errors, are obtained

from relation:

α̂ = (XᵀX)−1Xᵀy, (8.14)

where y is a vector of the desired outcomes or training data.

Cobb-Douglas Production weights could also be optimized via regression men-

tioned earlier (equations (5.7) and (5.8). More advanced methods, such as genetic

algorithms or simulated annealing, may be necessary for selecting the optimal func-

tions (e.g., fall-off functions, sigmoid functions, etc.).

8.1.4 Generalized Templates

The Template structure could be revised to provide many benefits to the NNPM.

There is a proposed “Generalized Template” which simplifies the Template schema

and makes Templates more Simulink-esque. This work could vastly simplify the

database for Templates. It can simplify the scoring code, provide forward compati-

bility, provide the users with more power and flexibility at greater ease of use, allow

for more intelligently designed DECOAs, provide a framework for the Analysis of

Competing Hypotheses, and speed up the Template design process. However, there

are several considerations to account for before revising the Template structure.

A few features we were hoping for the Templates to include are: event-driven

Templates, a more recursive structure, a simplified structure, variables, constraints,

and operations.

We believe there is a need for an Event-Driven Template type. Basically Event-

Driven Templates would have input-events which are monitored (e.g., something

matching any query shows up or expires) and output-events. An output-event might

send the user a warning or modify the database. An Event-Driven Template would not
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Figure 8.1. Generalized Template

wait for the analyst to run it, but an input event could trigger it. Once the Template

is triggered, the Template can re-evaluate its score and fire an output-event if certain

conditions hold. For example, upon data arriving that is associated with one or more

of the queries, the system could update the branches of the Template that depended

on that source, which in turn would update the Templates score. In turn, an updated

Template score could trigger other Event-Driven Templates to re-evaluate their scores

as well. Event-Driven Templates would have thresholds for automatically notifying

the user if a score rises above or below a threshold. Additionally, there could be a

“live” threat-level heat-map that is updated every time an Event-Driven Template

fires.

In the proposed Generalized Template structure, a Template would be interchange-

able with a higher level question (HLQ). This effectively merges an Indicator and a

Template into a single structure, the HLQ. Basically an HLQ is simply a node from

which further questions can be asked. An HLQ could potentially be collapsed (hiding

all children) and saved as a Template to be drag-and-dropped in to another Template.

The drag-and-drop could perform a copy or a reference, where the reference would
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stay up to date if the Template changed, the copy would not. Visually, a referenced

Template could be inserted into the HLQ block referencing it and expanded to view

all queries. Additionally, this structure could allow for the easy creation of derivative

enemy courses of action (DECOAs) by swapping around HLQs, constraints, variables,

and operators.

Furthermore, the Template structure can be further simplified by merging the

SIRs with the SORs into a general purpose query. The new query node would specify

both the spatial-temporal constraints and the query (entity type, entity constraints,

keywords, and relationships). While this does not follow the SIR and SOR structures

directly, there is an easy mapping from the ATRAP 2.0 Template structure to this

new proposed Generalized Template structure. The SIR will become an HLQ, with

its spatial-temporal query converted into a variable that is applied to all its children.

In addition to this merging, the query nodes are capable of taking variables.

Variables are a very important addition. They can do more than save time by

allowing multiple queries to reference the same entity, location, keywords, relation-

ships, or any other part of the query. They can be used to automate the process

known as the Analysis of Competing Hypotheses. The variables can be allowed to

rotate through a list of alternatives. For example, nine Templates representing three

organizations operating at potentially three locations could be captured in a single

Generalized Template with two variables, each rotating through three values. Fur-

thermore, these variables allow for potentially highly effective DECOAs by rotating

in untested values for these variables.

The new constraint nodes would operate on variables to produce complex, power-

ful operations. The most notable use is to be able to select all organizations, locations,

etc. that fit certain requirements. The constraints can be either applied to a single

variable or a group of variables. For example, if there are hundreds of terrorist groups,
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then it would be easier to specify a single entity with the constraint that the entity

is a terrorist group and in a specific region. A constraint could be applied to location

variables to enforce that the location of query hits must be within a certain kilometer

radius of each other.

The last major change is the way how the nodes are connected. Connections are

made through operator blocks in a Simulink-esque fashion. Whereas the previous

connection type was always a weighted average with optional thresholding, in the

proposed Generalized Template model any number of operations can be chosen. A

problem in ATRAP 2.0 is that the weighted average with thresholding was tied to

the AND and OR operations, defining how thresholding operates. The new model

offers various different operators: AND, OR, Weighted Average with thresholding,

Exactly N, and Polarization (to name a few). Not only does this decouple the AND

and OR from the Weighted Average, but it allows for more operations.

The operator blocks could further be used to allow the user to define other parts of

the scoring algorithm (see Chapter 5). Currently a user selectable sigmoid function is

used for combining multiple hits to a single query. However, various operator blocks

could be used instead. It would allow the user to specify which sigmoid function

to use or the option to use the statistical method that was discussed earlier. If all

queries and HLQs have associated operator blocks, then this vastly simplifies the

scoring algorithm. Inside the code, all nodes would have a score operator. HLQs

would simply pass down the ‘score’ command to the operator node directly below it.

Operators would perform work on their input after passing down the ‘score’ command

to more operators, HLQs, or queries. The query would be able to generate several

score vectors for each prediction match, which then combine them into a single score

for the query via the use of the operator directly below it. This allows the builder

of the Generalized Template to select how infobits are combined and whether to use
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disambiguation, sigmoid thresholding, etc.

The combination of these two merges (Templates with Indicators and SIRs with

SORs) and the use of operator nodes allow for vastly simplified code and database

structure. First there would be fewer classes, which would benefit both the code

and the database structure. This also models a much more design which makes

use of inheritance far easier. The scoring of Templates would no longer make hard-

coded scoring procedure calls. Rather these calls will be tied to the operator nodes,

decoupling the Template scoring from the operations used.

8.1.5 Behavioral Filtering

An on-going research aspect is enhancing the predictive capabilities (Template evalu-

ation) by integrating the behavioral filtering engine (see Chapter 7. The development

of rules and selection of attributes for behavioral filtering is currently underway. This

research is trying to determine which behavioral attributes to track as well as building

rules around these attributes to maximize the accuracy of the NNPM per the time,

cost, and difficulty of obtaining the behavioral attributes.

The behavioral filtering engine could benefit from an additional input: user-

defined keywords. There are already a few built-in keywords such as “show” and “fin-

ished.” A technical user could introduce new keywords along with their interpretation.

Formally, a user-defined keyword is represented by the 5-tuple ⟨P, V,O, T, ϕ⟩, where P

is an English-Like pattern to match, V is the set of the variables in P , O is a boolean

describing whether its an “output” or an“input” keyword, T the set of relations

between variables and their types, and ϕ is the code translation of P . For example, to

copy a variable, the user might define P = “X1 copy X2,” V = {X1, X2}, O = true,

T = {X1 ≡ X2} ϕ = {X1.value = X2.value; X1.certainty = X2.certainty; }.

If the behavioral filter were to become slow due to a large number of rules, it could
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potentially be sped up by implementing the Rete algorithm discussed in [8]. The

Rete algorithm allows for the quick matching of many patterns by taking advantage

of two facts. First, when a rule fires, it usually only affects a few other rules. Second,

multiple rules can share patterns, so the pattern only needs to be evaluated once.

8.1.6 Stochastic Linear Motion Model

Another direction of research is that of stochastic linear motion data-fusion. There

are two applications for motion data-fusion. First, when a single entity is moving,

it will provide an estimate to where the entity might be after a given amount of

time. Secondly, when a single entity may appear in the database multiple times if

it is recorded by sensors multiple times, the system could determine if it appears

plausible that the multiple sensor readings are all a single target (or at least reduce

the number of suspected entities). The use of random variables in motion estimation

equations could be used to provide a probability map of where an entity might be or

to determine if sensor data suggests linear motion. Additionally, the random variables

help account for measurement errors.

Stochastic linear motion can be described as:

−→
X −

−→
X0 = ∆T ·

−→
V , (8.15)

or alternatively,

−→
X =

−→
X0 +∆T ·

−→
V ,

where
−→
X0 is a random variable describing the initial position,

−→
X is a random variable

describing a second position, ∆T is a random variable describing a change in time, and
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−→
V is a random variable describing velocity. Equation (8.15) is used to generate two

distributions,
−→
Z1 from the differences in position and

−→
Z2 from the time and velocity.

Lets examine the first distribution:

−→
Z1 =

−→
X −−→

X0,

which would have a probability distribution of

f(zx, zy, wx, wy) =
fXX0(xx, xy, x0x, x0y)∣∣∣ ∂(zx,zy ,wx,wy)

∂(xx,xy ,x0x,x0y)

∣∣∣
∣∣∣∣∣∣xx=zx+wx

x0x=wx
xy=zy+wy
x0y=wy

.

These random variables are two-dimensional, but for now we shall use just one

dimension (since x and y dimensions are assumed independent):

f(z, w) =
fXX0(x, x0)∣∣∣ ∂(z,w)

∂(x,x0)

∣∣∣
∣∣∣∣∣∣
x=z+w
x0=w

f(z) =

∫ ∞

−∞

fXX0(z + w,w)∣∣∣ ∂(z,w)
∂(x,x0)

∣∣∣ dw

Letting
−→
X and

−→
X0 be independent yields:

f(z) =

∫ ∞

−∞

fX(z + w)fX0(w)∣∣∣∣∣∣1 −1

0 1

∣∣∣∣∣∣
dw

f(z) =

∫ ∞

−∞
fX(z + w)fX0(w) dw. (8.16)

If the second dimension is taken into account, the above equation is nearly identical.
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The primary difference is the integral becomes a double integral to integrate out both

wx and wy.

Now lets examine the second distribution:

−→
Z2 = ∆T ·

−→
V .

If the heading and speed of
−→
V are independent, we can operate on the magnitude of

the
−→
V and the magnitude of

−→
Z2:

∥Z2∥ = ∆T · ∥V ∥.

The probability distribution of ∥Z2∥ is

f∥Z2∥ =

∫ ∞

−∞

f∆T (t)f∥V ∥(v)∣∣∣∣∣∣t v

0 1

∣∣∣∣∣∣
dw

∣∣∣∣∣
v=z/w
t=w

f∥Z2∥ =

∫ ∞

−∞

f∆T (w)f∥V ∥(z/w)

|w|
dw. (8.17)

Since the heading and the speed are independent,

fZ2(∥z2∥,∠z2) = f∥Z2∥(∥z2∥)f∠Z2(∠z2).
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When converted to Cartesian coordinates, where x = ∥z2∥ cos(∠z2), y = ∥z2∥ sin(∠z2)

is

fZ2(x, y) =
f∥Z2∥(

√
x2 + y2 )f∠Z2(atan2(y, x))∣∣∣∣∣∣cos(∠z2) −∥z2∥ sin(∠z2)

sin(∠z2) ∥z2∥ cos(∠z2)

∣∣∣∣∣∣
fZ2(x, y) =

f∥Z2∥(
√

x2 + y2 )f∠Z2(atan2(y, x))√
x2 + y2

(8.18)

Now the two distributions must be compared to determine how well they fit each

other. At first, a two-dimensional Kolmogorov-Smirnov test was considered for the

comparison of the two distributions. Upon further analysis of the problem, it was

discovered that the distributions need not match. For example, suppose a velocity

estimate is potentially flawed, then the random variable representing velocity would

contain a large variance for speed and direction. If the locations are known with great

accuracy, their variances would be much smaller. Even if the expected values were the

same, the two-dimensional Kolmogorov-Smirnov test would show the distributions

are dissimilar due to the differences in their variance (differences in their errors).

Clearly we do not want the Kolmogorov-Smirnov test since it is likely to return a

false negative if the sensors do not share the same degree of accuracy.

There are several methods which could be used to determine how well Z1 and Z2

fit each other. The Student’s t-test would work except that the test is based on a

number of samples. There are other statistical tests as well, but most assume sample

sizes. Hence, this is still an open question.
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Appendix A

function [ outs ] = Threshold_system( dataV, W, threshold )

%Threshold_system( dataV, W, threshold )

% For investigating how this system behaves as data vector,

% weight vector, and threshold changes

%transition speed: alpha = 1.0 ->

% sudden jump to saturation (assessment->pi/2, magnitude=y-component)

%transition speed: alpha = 0.5 ->

% average transition region(assessment & magnitude both increase)

alpha = 0.5;

V = dataV’ * W’;

x = V(1);

y = V(2);

%raw distance

dist = sqrt(x^2+y^2) / sum(abs(W));

distold = dist;

if(dist > 1)

fprintf(1, ’WARNING VECTORS OF MAGNITUDE > 1\n’);

end

%Test to see if threshold condition is met

if ( (y / threshold) > dist )

y2 = y / sum(abs(W)); %y-average

y = y/threshold; %y-threshold

%%soft-cap (if 0<alpha<1) the distance & y

%weighted average(dist,dist+improvement)

dist = dist + alpha * (y - dist);

%weighted average(y, y+improvement)

y = y2 + alpha * (dist - distold);

%hard-cap magnitude to 1

dist = min(1, dist);

y = min(dist, y);

%adjust related assessment-neutral information

x = sqrt( dist^2 - y^2);

else %There isn’t enough supporting information ==> default case

y = y / sum(abs(W));

x = x / sum(abs(W));
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if(dist > 1)

theta = atan2(y,x);

y = sin(theta);

x = abs(cos(theta));

end

end

outs = [x, y];

end

function [ outs ] = Experimental_threshold_system2( dataV, W, threshold )

%Experimental_threshold_system2 ( dataV, W, threshold )

% For investigating how this system behaves as dataV changes

%Example new threshold system2 - for every 2 points gained in y past

%threshold -> 1 point lost from x

alpha = 0.5;

absW = sum(abs(W));

x = sum ( abs(W) .* dataV(:,1)’ ) / absW;

y = sum ( W .* dataV(:,2)’ );

y1 = y / absW;

if(threshold < absW)

y2 = y / threshold;

%raw distance

D1 = sqrt(x^2+y1^2); %Calculate dist without threshold

D2 = sqrt(x^2+y2^2); %Calculate dist with threshold

D1P = D1 + alpha * (D2 - D1); %Allow D to grow some, shrink x some

D1P = max( D1P, abs(y2) ); %Don’t sacrifice y (primary signal)

D1P = min( D1P, 1); %Cap distance

y2 = min( y2, +1); %Cap y (from upper)

y2 = max( y2, -1); %Cap y (from lower)

x = sqrt(D1P^2 - y2^2); %Recalculate x

else

y2 = y1; %Pass through

end

outs = [x, y2];

end
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Appendix B

ATRAP - Asymmetric Threat Response and Analysis Program

C2 - Command and Control

COA - Course of Action

DECOA - Derivative Enemy Course of Action

ECOA - Enemy Course of Action

HLQ - Higher Level Question

GUI - Graphical User Interface

JDL - Joint Directors of Laboratories

NNPM - Non-Numerical Predictive Model (for Asymmetric Analysis)

QNN - Quasi-Neural Network

SASO - Stability And Support Operations

SOR - Specific Orders and Request

SIR - Specific Information Request

SME - Subject Matter Expert

TTP - Tactics, Techniques, and Procedures



79

References

[1] U.S. Census: Population Estimates. website:
http://www.census.gov/popest/counties/tables/CO-EST2008-01-04.csv, February
2010. accessed: February-25-2010.

[2] R. M. Akita. User based data fusion approaches. In Information Fusion, 2002.
Proceedings of the Fifth International Conference on, volume 2, pages 1457–1462,
2002.

[3] D. Brown, J. Dalton, and H. Hoyle. Intelligence and Security Informatics, volume 3073
of Lecture notes in computer science, chapter Spatial Forecast Methods for Terrorist
Events in Urban Environments, pages 426–435. Springer Berlin, 2004.

[4] G. Chen, D. Shen, C. Kwan, J. B. Cruz, and M. Kruger. Game theoretic approach
to threat prediction and situation awareness. In Information Fusion, 2006 9th
International Conference on, pages 1–8, July 2006. ID: 1.

[5] A. H. Cordesman. The lessons of Afghanistan : war fighting, intelligence, and force
transformation. CSIS Press, Washington, D.C., 2002. ID: 50417230.

[6] P. H. Douglas. The cobb-douglas production function once again: Its history, its
testing, and some new empirical values. The Journal of Political Economy, 84(5):903–
915, 1976.

[7] J. A. Fisher and A. H. McMakin. Pnnl wins four technology transfer awards.
Breakthroughs. Science, Technology, Innovation, 5, 2006.

[8] C. L. Forgy. Rete: a fast algorithm for the many pattern/many object pattern match
problem, pages 324–341. IEEE Computer Society Press, Los Alamitos, CA, USA, 1990.

[9] N. Garra. Info about ‘star-light’ program. email, Nov 2009.

[10] S. Haykin. Neural Networks and Learning Machines. Pearson Education, New Jersey,
Upper Saddle River, third edition, 2009.

[11] A. Hossain, N. Walmsley, and P. Pearce. A minimum spanning tree approach
to identifying collective behaviour and inferring intent for combat models. In
International C2, volume 2(2). DoD, September 26 2008.

[12] S. Mahoney, J. Pfautz, T. Fichtl, S. Guarino, E. Carlson, and M. Farry. Enabling
robust c2 systems through evolvable human-in-the-loop data fusion. In International
Command and Control Research and Technology Symposium, volume 14, page 147,
Washington, DC, 2009. DoD.

[13] D. McDaniel. An information fusion framework for data integration. In 13th Annual
Software Technology Conference, Salt Lake City, UT, May 3, 2001 2001. Silver Bullet
Solutions, Inc.



80

[14] W. Meeusen and J. V. D. Broeck. Efficiency estimation from cobb-douglas production
functions with composed error. International Economic Review, 18(2):435–444, 1977.

[15] M. B. Mitchell, D. E. Brown, and J. H. Conklin. A crime forecasting tool for the
web-based crime analysis toolkit. In Systems and Information Engineering Design
Symposium, 2007. SIEDS 2007. IEEE, pages 1–5, April 2007. ID: 1.

[16] Dr. Henry Niman. Flu tracker. website: http://flutracker.rhizalabs.com/, February
2010], note=accessed: February-25-2010.

[17] P. V. Pearce, A. Robinson, and S. C. Wright. The wargame infrastructure and
simulation environment (wise). In V. Palade, R. J. Howlett, and L. C. Jain, editors, 7th
International Conference on Knowledge-Based Intelligent Information and Engineering
Systems, volume 2774, page 714722, Oxford, September 3-5 2003. Springer-Verlag,
Berlin.

[18] E. Roth, R. Scott, S. Deutsch, S. Kuper, V. Schmidt, M. Stilson, and J. Wampler.
Evolvable work-centred support systems for command and control: creating systems
users can adapt to meet changing demands. Ergonomics, 49(7):688, 2006.

[19] D. Shen, G. Chen, J. B. Cruz, L. S. Haynes, M. Kruger, and E. Blasch. Game-theoretic
modeling and control of military air operations with retaliatory civilians. In Aerospace
Conference, 2007 IEEE, pages 1–10, March 2007. ID: 1.

[20] A. N. Steinberg, C. L. Bowman, and F. E. White. Revisions to the jdl data fusion
model. In Belur V. Dasarathy, editor, Sensor Fusion: Architectures, Algorithms, and
Applications III, volume 3719, pages 430–441. SPIE, 1999.

[21] L. Suantak, D. Hillis, J. Schlabach, J. W. Rozenblit, and M. Barnes. A coevolutionary
approach to course of action generation and visualization in multi-sided conflicts. In
Systems, Man and Cybernetics, IEEE International Conference on, volume 2, pages
1973–1978 vol.2, October 2003.

[22] L. Suantak, F. Momen, J. W. Rozenblit, D. Hillis, M. Barnes, and J. Schlabach.
Modeling and simulation of stability and support operations (saso). In Engineering
of Computer-Based Systems, 2004. Proceedings. 11th IEEE International Conference
and Workshop on the, pages 21–28, Los Alamitos, CA, USA, 2004. IEEE Computer
Society.

[23] M. L. Valenzuela, F. Szidarovszky, C. Feng, P. Reddy, F. Momen, J. W. Rozenblit,
and B. Ten Eyck. A non-numerical predictive model for asymmetric analysis. Accepted
to be presented in the Engineering of Computer-Base Systems (ECBS’10), 17th IEEE
International Conference on, St. Anne’s College, Oxford, UK, March 22-26 2010. IEEE
Computer Society.

[24] M. Wei, G. Chen, J. B. Cruz, B. Jose, L. S. Haynes, and M. Kruger. Applying spatial-
temporal model and game theory to asymmetric threat prediction. In 12th International



81

Command and Control Research and Technology Symposium (ICCRTS), volume 12(3),
page 63, Newport, RI, 2007.

[25] D. Woods and S. Dekker. Anticipating the effects of technological change: a new era of
dynamics for human factors. Theoretical Issues in Ergonomics Science, 1(11):272–282,
1 July 2000.

[26] A. Zellner, J. Kmenta, and J. Dreze. Specification and estimation of cobb-douglas
production function models. Econometrica, 34(4):784–795, 1966.


