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Abstract—Predicting asymmetric threats (e.g., terrorist events) 

is becoming ever more important. Prior works have focused on 

tactical, statistical, and data-fusion systems. The thrust of our 

work has been the development of a non-numerical predictive 

model for amplifying intelligence analysts’ recognition of 

emergent threats. The intelligence community uses a Template 

schema for assessing courses of action. Our predictive model 

processes non-numerical data to arrive at automated 

assessment and confidence scores for these Templates. The 

predictive model is traceable, transparent, and utilizes Human-

in-the-Loop data-fusion. For future work, this predictive 

model will be further enhanced with behavioral filtering. 

Behavioral filtering adjusts the assessment and confidence of 

the predictions by intelligently evaluating characteristic 

behavioral data. This non-numerical predictive model has been 

tested and verified in the Asymmetric Threat Response and 

Analysis Program (ATRAP). 

Keywords-ATRAP, Prediction, Non-Numerical, Template, 

Data-Fusion 

I.  INTRODUCTION 

The generation of intelligence faces three major 
challenges. The first challenge is that of asymmetry, meaning 
opposing forces have very different capabilities. This is 
manifest in asymmetric financial markets, law enforcement, 
politics, homeland security, and modern warfare. Second, 
rapidly changing environments, such as technology and 
insurgencies [1-3], pose problems for systems that assume a 
static opponent. Lastly, due to the real-time confluence of 
information from automated sensors, Internet, unmanned 
aerial vehicles, and streaming reports, analysts have more 
data to sift through than previously. Information overload 
often obscures critical patterns in the data. To further 
compound this problem, the data analysts use is often in a 
textual form, such as reports – hence the need for non-
numerical predictive models.  

As a result of the third challenge – information overload 
– data-fusion systems have become critical. Data-fusion is 
broken down into five levels, where the lower levels deal 
with fusing sensor data and higher levels deal with 
identifying and predicting threats. The five levels (starting at 
level 0) according to the Joint Directors of Laboratories 
(JDL) are: Preprocessing, Object Refinement, Situation 
Refinement, Impact Assessment, and Process Refinement 
(see [4, 5] for details). There is also a proposed level 5 (sixth 

level) of data-fusion, User Refinement [5]. In [7], level 5 
data-fusion is called Human-In-The-Loop Data-fusion, in 
which higher level data-fusion tasks are performed manually 
by analysts making use of a Template schema. Templates are 
one way of structuring hypotheses and courses of action 
(COAs) (see fig. 1). It is this schema that is the basis for the 
non-numerical predictive model. 

We are employing this model in the Asymmetric Threat 
Response and Analysis Program (ATRAP). The non-
numerical predictive model is a key feature of ATRAP, 
which assists with the tasks of detecting, assessing and 
responding to COAs promptly and effectively. These COAs 
are coded up as Templates. The scoring process discussed in 
section II ties data to Templates, providing assessment and 
confidence scores for the codified COAs they represent. The 
scores are derived from sensor data and textual data such as 
reports, html, emails, documents, and other similar archival 
artifacts. ATRAP does sport several other sub-systems, but 
they are outside the scope of this paper. 

There are numerous data-fusion systems [6-9]. Most of 
the recent research has gone into higher level data-fusion 
(levels 2 and 3). Game Theory and simulation are commonly 
used tools for determining threat assessments and evaluating 
enemy courses of action (ECOAs). An attrition-type discrete 
time dynamic game model was designed to evaluate different 
approaches to a conflict [6]. The extensively developed game 
model evaluates COAs from a tactical standpoint, but lacks 
any mechanism to discover new COAs. In [8, 9], the authors 
resolve this deficiency using adversarial Markov games, as 
part of a larger data-fusion system. The Markov games help 
determine possible tactical enemy courses of action 
(ECOAs) as well as their possible intents. The work also 
considers uncertainty and deception possibilities when 
attempting to predict likely future ECOAs. 

Another branch of related research is the improvement of 
spatial forecasting methods [10, 11]. Recent advances 
include selecting the appropriate algorithms and intelligently 
increasing the dimensionality of the data to find new 
correlations. These methods have been successfully applied 
to the spatial forecasting of crime and of terrorist activities. 
The results of the new algorithms showed a significant 
improvement over the naïve model of spatial forecasting. 
These new methods have little to do with predicting COAs, 
but are still a significant contribution to predicting the 
locations of reoccurring phenomenon. 
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Algorithms have also been developed for identifying 
collective behavior. In [12], the authors develop a data-
fusion technique for clustering entities into groups. Their 
approach involves building a minimum spanning tree 
connecting all entities and breaking the tree up into forests if 
any connection exceeds a certain threshold. This produces a 
dynamic number of groups based on an attribute vector, 
opposed to a fixed number of groups as is the case with k-
means clustering. They also present a procedure for 
determining the spatial objective for a moving group and the 
confidence in that estimate. 

A recent trend has been Human-In-The-Loop Data-fusion 
[7]. The authors allow a user to define new entity types based 
on various sensor data requirements, which a data-fusion 
system can then use for classification. A human offers many 
unique aspects to data-fusion, especially the higher levels of 
data-fusion. A human can interject or act on knowledge that 
is missing from the system. Additionally, a system making 
use of a credible human would further build confidence in 
the system. 

Not all of these previous work focused exclusively on 
one level of data-fusion, but rather on a whole data-fusion 
system [8, 9] or on multiple data-fusion levels [7]. These 
systems include feedback between different levels. The 
human-in-the-loop system allows the users to provide 
feedback to lower level data-fusion levels based on current 
deficiencies in the system. 

II. SCORING TEMPLATES 

A Template’s structure is that of an acyclic graph (see 
fig. 1). There are usually three levels: Indicators, Situational 
Information Requests (SIRs), and Specific Order or Request 
(SORs). The terms are an uncategorized mix of theory, 
doctrine, and tactics/techniques/procedures. Thus, the names 
are subject to change.  

Indicators are primarily for organization and structure. 
However, they may also refer to other Templates, providing 
Templates a fractal nature. SIRs are questions, specifying 
what is being searched. The SIR query includes entities 
types, keywords, and associations. There are options to 
automatically expand the query to include inflections of 
words and to make use of an ontology. The SORs represent 
spatial and temporal constraints on the relevant information. 
The spatial-temporal query represents a 5-tuple {A, T, t-, t+, 
r}, where A is a well defined area, T is a well defined time 

range, t- is the allotted time before the start of T, t+ is the 
allotted time after the end of T, and r is the allotted radius 
outside of A. A and T represent the perfect match constraints 
while t-, t+, and r represent extensions to A and T for 
imprecise matches. 

By treating the SORs as the location of transduction and 
adding a weight, threshold, and activation function to each 
node in the Template, the Template behaves similar to an 
artificial neural network. We call this extended model a 
Quasi-Neural-Network (QNN). Fig. 2 depicts an example 
Template which is looking for an event at either location A 
or B, but not both. The numbers along the connections are 
the connection weights and the numbers inside the nodes are 
the thresholds. All activation functions are linear. 

One aspect of our non-numerical predictive model is 
designing an algorithm which mimics how intelligence 
analysts rank Templates. To make the ranking of the 
Templates easier, we introduce the concept of a score. A 
score is not a percent likelihood. This is because the variance 
in human behavior and human error is so large, that a 
probability is hard to estimate. While a user could learn to 
interpret the score with experience, the purpose of the score 
is to allow for the comparison of one Template to other 
Templates. 

To ensure that we designed a credible scoring algorithm, 
we worked with an intelligence analyst Subject Matter 
Expert (SME) to understand how the scoring should behave 
under various conditions, what entities should be tracked, 
and what database design would work best. We broke down 
the scoring into five separate parts and came up with various 
constraints and desired attributes for each part. We also came 
up with several test cases to verify the correct functionality 
of our scoring algorithm. 

A. Information Retrieval 

The first question to answer was how to take the query 
information from the SIRs and SORs and pull the 
appropriate information from the database. Despite free text 
being partially analyzed by humans and put into the database 
with additional fields, much of the information still requires 
some degree of natural language processing. While ATRAP 
is working on methods of extracting names, places, and 
events automatically from free text, differentiating a name of 
a person verse the name of an organization can be a very 
difficult task for a computer. 

For fields such as the entity type, an ontology is used to 
optionally expand the search for more general or more 

 

Figure 1.  Example Template 

 
Figure 2.  Example Quasi-Neural Network 
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specific types. For instance, if the user specifies an entity 
type of type vehicle and includes more specific types, the 
system may return a hit for an entity of type truck. For fields 
involving text, inflections of the words can be automatically 
added (again, if specified by the user). While not currently 
implemented in the prototype, the optional use of a thesaurus 
has been discussed to improve the recall at the expense of 
precision of such queries. 

B. Evaluation of Retrieved Data & Fuzzy Matching 

Once the data and documents have been retrieved which 
support (or deny) the queries, that information needs to be 
evaluated and converted into numerical vectors. The vector 
consists of three terms: confidence in the information, 
relevance of the match, and the assessment of the match. If 
the information came from a free-text report, the confidence 
in the information was entered by a human. If the 
information came from sensor data, the confidence is 
assumed to be very high. The relevance reflects how well the 
query matches the retrieved data. The assessment indicates 
whether the data supports or denies the query. 

An SME provided guidelines for evaluating the data 
retrieved from the query. Some of these behaviors include 
the impact of fuzzily matching spatial-temporal constraints, 
fuzzily matching generalizations of the entity types, user 
adjustable parameters, and methods for tweaking how 
detrimental a fuzzy match is compared to an exact match. 

The exact variables in the SOR constraint query, A and T, 
specify the perfect matches. Data retrieved from the database 
that fulfills these requirements perfectly do not suffer a 
penalty to their relevance score for the spatial-temporal 
constraints. However, if there is a fuzzy match, their 
relevance is determined by user-selectable falloff functions, 
which specify how the relevance transitions from the perfect 
match to a perfect failure. A perfect failure is defined as 
being outside the specified spatial-temporal region even 
when expanded by the parameters: t-, t+, and r. An example 
falloff function is shown in fig. 3. 

The relevance score can also be impacted by a 
generalization of the entity type searched. If the user chooses 
to include all levels of generalizations of the specified entity 
type (e.g., truck) when building an SIR query, ambiguous 
entities may be found (e.g., vehicle). The user can specify 
how many levels up the entity type ontology to travel when 
expanding the search and the penalty for each level. For 
example, every level that must be traversed up the ontology 
(more general terms), in order to find a match, could 
multiply the relevance by 0.5. This is demonstrated in  


),0(' LMaxRR   

where R’ is the relevance once adjusted for a 
generalization of the entity type, R is the relevance prior to 
accounting for the generalization, σ is a user adjustable 
parameter which determines how detrimental generalization 
is, and L is the number of levels (in the ontology) more 
generic the found entity type was than the specified entity 
type. 

C. Resolving Multiple Hits 

The next issue is converting all the informational vectors 
into a single vector for the SORs that can also be used for the 
rest of the Template scoring system. It was decided that the 
confidence in the information could then be combined with 
assessment and relevance to represent the data as a two-
dimensional polar vector for the rest of the scoring 
procedure. This simultaneously simplifies the task and 
transforms the problem to something that matches the 
intelligence analyst SME’s thought process better. The 
explanation of the two-dimensional polar vector is that the 
assessment reflects what the underlying information 
indicates. A measure of certainty indicates the strength in 
that belief. Our mathematics SME recommended Cobb-
Douglas products to accomplish this transform, primarily 
due to their behavior and wide acceptance in business and 
financial environments. The Cobb-Douglas product is a 
weighted multiplication. Equation (2) shows a Cobb-Douglas 
product, where x is a vector of components to be combined 
and α is a vector of weights, both of length as n. 

 

Figure 3.  Sinusoidal Falloff Function 

TABLE I.  PSEUDOCODE RESOLVING MULTIPLE HITS 

Vect3D scoredDataVectors;  

UserParameter a, b, c, d; 

UserFunction sigmoid; 

 

List<Vect2D> polarVectors; 

foreach( dataV in scoredDataVectors ){ 

  Vect2D polVect = new Vect2D(); 

  polVect.cert = pow(dataV.conf, a) *  

 pow(dataV.relv, b); 

  polVect.asse = pow(dataV.conf, c) * 

 pow(dataV.asse, d); 

  polarVectors.insert(polVect); 

} 

 

Vect2D vectSum(0,0); 

Vect2D tmpV; 

foreach( polV in polarVectors){ 

  tmpV.cert = sigmoid.inverse(polV.cert); 

  tmpV.asse = polV.asse; 

  vectSum = vectorAdd( vectSum, tmpV); 

} 

List<vect2D> conflictingData; 

conflictingData = FindCnfl(polarVectors); 

vectSum.cert = sigmoid.forw(vectSum.cert); 

 

double conflictSum = 0.0; 

foreach( conflictV in conflictingData){ 

  conflictSum += conflict.cert; 

} 

vectSum.cert /= (1 + conflictSum); 

SOR.Vector = vectSum; 
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Our intelligence analyst SME and team developed 11 key 
constraints and desired behaviors for resolving multiple hits. 
A few properties include: conflicting information should 
lower the confidence, order of elements should not matter, 
model dimensioning returns when there are many hits, 
various behaviors for different quality matches, and the 
simpler the better. When all aspects were combined, 
competing algorithms were then evaluated based on 
understandability and simplicity. 

The current procedure proceeds as follows (see table 1). 
First, the dimensionality is reduced to a two-dimensional 
polar vector using Cobb-Douglas Products. Next, the lengths 
(certainty) of all vectors are stretched by using the inverse of 
a user selectable sigmoid function. All vectors are then 
summed and the resulting vector is normalized using the 
user-selectable sigmoid function. Lastly if there are two or 
more pieces of information are in conflict, the length of the 
normalized resulting vector is adjusted to reflect disagreeing 
data. 

Since the last prototype of the model, we have talked 
with two SMEs for some additional constraints. This 
included methods for determining redundant data, measure 
of similarity, and a more statistical method for fusing the 
data based on the independence of the data. If a method for 
determining the dependence of two text-based pieces of 
information can be formulated, verified, and tested, then a 
statistical solution can be used for resolving multiple query 
hits. The intelligence analyst would then be able to select 
which algorithm to use for this part. 

D. Propagation of Score 

Once two-dimensional polar vector exists for each SOR, 
the system must propagate the scores to higher levels to 
answer the SIRs, Indicators, and eventually the Template. 
The propagation method is the activation function present at 
each node in the Template. 

To have the activation function behave as a generally 
accepted artificial neuron response without truncating 
information, a linear activation function was chosen. The 
slope of the linear function is determined by the inverse of 
the sum of the absolute values of the weights of all the child 
links. Thus, this effectively performs a weighted average if 
the threshold is equal to the sum of the absolute values of the 
weights. 

The behavior for the threshold is still under investigation. 
There are few options currently being debated. One solution 
would be to drop the threshold. Another solution involves 
using only the most influential information. The third 
solution focuses on making the behavior as similar to a 
piecewise linear neural network as possible. Each currently 
proposed solution has some disadvantages. 

The solution proposed using the most influential 
information would work as follows: the child vectors in 
order of greatest influence on the SIR or Indicator is selected 
and added until the sum of their weights equals the threshold. 
The influence is determined by a projection of the 

assessment and confidence. This solution has a few 
problems. While the confidence of the resulting vector is 
bounded by the lowest and highest child vectors’ 
confidences, it does not follow any predictable pattern. It 
does not mimic the threshold behavior of neural network 
configurations. 

The third option would involve decomposing the polar 
vectors into non-polar components. The vectors would be 
decomposed into two non-polar components (confirm-deny 
data and supporting but neutral data). The first step is the 
same, sum of all the vectors. Hold onto the un-normalized 
vector, but set the confidence to the normalized length. The 
confirm-deny component would be set to the minimum of 
the confidence and itself divided by the threshold. The other 
component is then calculated to preserve the confidence. 
This third option behaves most like a piecewise linear 
neural-network, but the confidence remains constant with 
respect to the threshold. Due to the nature of this third 
option, the confidence could be calculated in another manner 
to fix this. 

E. Template Score and Ranking 

The last step in evaluating Templates is providing scores 
and ranking all of the Templates selected for ranking. The 
first part of this procedure is identical to the propagation of 
the score, where all of the Template’s Indicators’ vectors are 
averaged to produce an assessment and confidence. This 
produces a final two dimensional vector which must be 
transformed into a one dimensional number for ranking 
purposes. 

A single number is generated from taking the projection 
of the confidence and assessment onto an axis. There are 
three reasons why a projection is used instead of the 
aforementioned Cobb-Douglas product. First, projection is 
more intuitive due to the polar nature of the vectors. 
Secondly, both have similar behavior if either number 
becomes zeros. Additionally, projection is simpler when 
working with negative numbers. The resulting number can 
then be used for ranking purposes. 

There is one more step when it comes to Template 
scoring. It is dangerous to report a number which ranges 
between -1.0 and 1.0, since the number can be 
misinterpreted. Positive scores could accidentally be taken as 
likelihoods. Thus the last step is a monotonic distortion to 
prevent the user from interpreting the score as a percent 
likelihood. The monotonic property preserves the relative 
order of the Templates. 

III. APPLICATION AND IMPLEMENTATION 

Because the non-numerical predictive model for 
asymmetric analysis uses a Template schema, its 
applications are not limited to military intelligence. Virtually 
any domain which uses significant non-numerical data can 
benefit from this predictive model since hypotheses can be 
codified as Templates. Applications range from criminal 
investigations, financial markets, and homeland security to 
evaluating political outcomes. One specific application is 
that for ATRAP, a practical and flexible toolbox for 
intelligence analysts. The model provides automatic 
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generation of an assessment and confidence for hypotheses 
(Templates). We worked with SMEs to help develop a non-
numerical predictive model that intelligence analysts could 
use. We have tested and verified the algorithms via the use of 
ATRAP.  

The non-numerical predictive model has been 
implemented as part of ATRAP, written for Microsoft 
Windows XP and Vista. The programming language used 
was C#, using Microsoft .NET Framework 3.5. The database 
system was built upon .netTiers and Microsoft SQL Server 
2005. 

IV. EXPERIMENTS AND RESULTS 

We have performed multiple preliminary experiments to 
help verify and validate the predictive model. The primary 
focus of the experiments was to test if the model behaved as 
our SMEs wanted (e.g., described in Section II.C). For 
brevity, only four types of experiments will be discussed. 
The white test case has a database containing information to 
confirm a Template. Another type of test case is the black 
test case. It involves a database with irrelevant material for 
the Templates being scored. There is a gray test case, which 
uses a much larger database, with both relevant and 
irrelevant data. Lastly, the database remains constant, but 
several different Templates are evaluated at the same time in 
a mixed test case. 

When the model was tested, the white case provided very 
good hits to all of the Indicators, meaning all their children 
also scored highly. The average Indicator assessment was 
approximately +0.707 (appears to be happening) with very 
high certainty. The Indicators had a neutral assessment of 
0.000 (non-negative and non-positive) with very low 
confidence in the black case. The gray case did not take 
noticeably longer to run, despite the database being an order-
of-magnitude larger. Some of the Indicators found relatively 
good matches while other found little to no data. The mixed 
case results showed a spectrum of results, ranging from a 
couple Templates performing well (indicating that they 
appear to be happening) to most Templates performing 
similar to the results from the black case (indicating a lack of 
data). These results reflected what the SMEs desired. 

V. CONCLUSION AND FUTURE WORK 

The non-numerical predictive model has been tested and 
verified in ATRAP. The model is made malleable from its 
many options, including: an entity ontology to optionally 
expand search parameters, adjustable Cobb-Douglas 
products, various sigmoid and falloff functions, and weights 
and thresholds for Indicators, SIRs, and SORs. It provides 
means for automatically surveying codified hypotheses 
(Templates) by providing an assessment and confidence 
from non-numerical data. The predictive model has primarily 
five parts: information retrieval, evaluation of the retrieved 
data, resolving multiple hits, score propagation, and final 
score generation. 

Another on-going research aspect is enhancing the 
predictive capabilities (Template evaluation) by making use 
of behavioral data. Behavioral filtering adjusts the 

confidence and assessment scores of each prediction 
modeled by a Template. Characteristic attributes which are 
easily and cheaply measurable, will be the basis for these 
adjustments. A powerful and flexible prototype inference 
engine can be integrated into the predictive model to enhance 
the accuracy. 

Future versions of the non-numerical predictive model 
will include further validation of Template scoring 
algorithms, computational scalability with orders-of-
magnitude larger datasets, integration of the inference engine 
and other possible improvements to the model.  
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