
Projection-Based Knowledge Representation for
Concurrent Engineering

Carsten Thomas *
Daimler-Benz AG

Alt-Moabit 96a

10559 Berlin, Germany
thomas@dbresearch-berlin.de

ABSTRACT

This paper describes an integrative approach to repre-
sent knowledge structures and entities in the concur-
rent engineering enterprise. General types of knowl-
edge are classified and presented in various perspec-
tives and abstractions. A new concept of knowledge
representation based on projections is introduced. It
is demonstrated how the projection concept inte-
grates various facets of CE. Conclusions discuss the
benefits of the proposed representation scheme and
discuss potential application scenarios.

1 INTRODUCTION

Concurrent Engineering (CE) [l] paradigm has
emerged in response to increased global competition
in product design, deployment, and marketing. The
main characteristic of CE is the integration of all
development activities and as well as participating
teams through the entire product life cycle. In a
holistic perspective, CE is both an organizational and
technological effort. In this paper, we focus on the
technological aspect, namely, on the adequate knowl-
edge representation to support the concurrent engi-
neering process.

In the existing CE systems, general purpose knowl-
edge representation schemes such as semantic nets are
used [a] . However, these representations do not pro-
vide efficient methods for knowledge acquisition and
handling.

In this paper, we introduce a new formal means
of knowledge representation that overcomes the lim-
itations of the current schemes by combining the
strengths of both, general purpose and specialized
representations. The new scheme is intended to (i)
address the variety of knowledge aspects, (ii) help
structure CE knowledge in a clear and concise man-

+This research has been conducted while the first author
was on a sabbatical at The IJniversity of Arizona, Department
of Electrical and Computer Engineering.

Jerzy W. Rozenblit
Dept. of Electrical and Computer Engineering

The University of Arizona
Tucson, AZ 85721, U.S.A.

jr@ece.arizona.edu

ner , (iii) support maintaining knowledge consistency
and avoiding knowledge redundancy.

To achieve these goals, we propose to use an
object-centered approach in combination with a new
method for the differentiated access to the acquired
knowledge. The new representation scheme is called
Projection-Based Knowledge Representation.

2 CONCURRENT ENGINEERING
KNOWLEDGE

This section characterizes knowledge facets that are
predominant in CE.

Structuring Engineering Knowledge

In Concurrent Engineering processes, an overwhelm-
ing amount and variety of knowledge is available and
has to be used. To be represented, the knowledge
used in the engineering processes has to be structured
through an ordering scheme and a means to capture
the interdependencies among the different character-
istics of knowledge.

We propose a fourfold structuring of the engineer-
ing knowledge:

e A piece of knowledge belongs to one of three
general types of knowledge: knowledge about an
engineering domain, knowledge about the spe-
cific product to be designed and produced, and
knowledge about how to design and manufacture
products.

e A piece of knowledge serves a certain perspective
of the design (e.g., it contains geometric, tempo-
ral, or behavioral knowledge).

0 A piece of knowledge describes something on a
certain level of abstraction.

e A piece of knowledge has a certain m a t u r i t y .

In the following, we will review these characteristics
in more detail.

0-7803-2559-1/95 $4.00 0 1995 IEEE 3863

mailto:thomas@dbresearch-berlin.de
mailto:jr@ece.arizona.edu

General Types of Knowledge: In engineering
processes, three general types of knowledge are typi-
cally employed:

Domain knowledge is available in the domain from
previous engineering processes or as common knowl-
edge. It consists of standards information, knowledge
about common characteristics of products of a do-
main, results from earlier engineering work or knowl-
edge abstracted thereof.

Product knowledge (also referred to its “instance
knowledge”) contains information on properties of
the engineering process output. Typical examples
for product knowledge are design data, construction
plans, CAD files, implemented control software and
similar information.

Process knowledge holds information about the
properties of the process that leads to the desired
engineering output. It comprises information about
how and when to process product knowledge, about
engineering step dependencies or their prerequisites
and alike, and additional information such as timing
and resource constraints that stem from external re-
quirements.

Perspectives: The knowledge available about
products and processes can be structured in a manner
that focuses on an single, individual area of interest,
the so-called perspective. Typical perspectives used
in CE are “system behavior”, “geometry” , “finance” ,
“system safety” , and alike.

To express facts and rules, and to formulate opera-
tions to be used within a perspective, languages may
be used. These languages usually are different for
each perspective, but also have common subsets to
support the handling of knowledge interdependencies
among different perspectives.

If a piece of knowledge describes a complex part of
a product or process, them it may reference knowl-
edge pieces that describe its components. The actual
decomposition of products or processes may be differ-
ent for individual perspectives. Within a perspective,
aspects can be evaluated by operations. The informa-
tion may be generated from (i) a single fact available
under the perspective, (ii) an interpretation of a more
general fact, (iii) knowledge about the decomposition
of the product or process into components and the
interrelations between its components.

Levels of Abstraction: All knowledge about
products and processes is available on various levels of
abstraction. The descriptions may be available as ab-
stract specifications, conceptual design sketches, de-
tailed construction plans, and alike. Moreover, there
may be several different refinements for a less de-

tailed specification, each focusing on a specific de-
tail of the system. Although often not accounted
for in traditional engineering environments, there are
strong relations between abstract and detailed knowl-
edge pieces describing the same product or pro(-ess.
It should be possible to define formal mappings be-
tween abstract and detailed versions, and thus to test
for the validity of refinements or abstractions.

Maturity: The knowledge acquired or produced
in the engineering process changes over time. The
design of products and processes will change reflect-
ing the stepwise approach to ever better engineering
results and the change of engineering goals. How-
ever, knowledge from earlier design steps, which is
not up-to-date anymore, should also be available in
later engineering steps. It contains experience and
design solutions which might be useful later on.

Existing Knowledge Representation Schemes

Due to the heterogeneity and the amount of knowl-
edge that is dealt with in CE, there are many very
complex relations and interdependencies between the
individual pieces of knowledge. These relations do ex-
ist not only within knowledge types, perspectives, and
abstraction levels, but they also involve all knowledge
characteristics. Therefore, existing knowledge repre-
sentations that focus only on certain general types
knowledge (like the Domain Modeling Method [3] and
schemes based on the System Entity Structure con-
cept [4] for domain knowledge), or on certain per-
spectives (like various exchange formats for geomet-
ric design data) lack the representational adequacy
for CE.

3 KNOWLEDGE REPRESENTATION
BASED ON PROJECTIONS

In this section we propose a new scheme that inte-
grates a variety of knowledge facets and thus provides
a richer representation than the ones used in current
C E environments.

Knowledge Entities and Projections

We term our approach object-centered since we focus
on the knowledge that is available for individual ob-
jects of the real world. The knowledge is aggregated
within the so-called knowledge entitzes. Formally,
knowledge entities are set theoretic structures whose
elements contain parameters, constraints, rules, for-
mal specifications, and references to other knowledge
entities. We structure the knowledge entities along
the three dimensions: a) domain knowledge, b) in-

3864

stance knowlcdge, ancl c) process knowledge.
Individual knowleclgc entities are identified by their

names. Relatioris between knowledge entities are ex-
pressed by using the entity identifiers as refermces.
The knowledge entities concentrate the knowledge
available for the individual objects. To deal with such
knowledge in detail, the entities have to be viewed un-
der certain projections. Then, they reveal their inner
structure, their decompositions, and their parameter-
ization.

perspective 1

(e.g. system behavior)

/

perspective 2
(e.g.. geomelmffi layout)

abstraction level 2

(e.g.. detailed schedulig)

abstraction level 1

(e.g.. syslem level inpulloutpub

Figure 1: Knowledge projections under different per-
spectives at various levels of abstraction

Projections are combinations of perspectives and
levels of abstraction (figure 1). The visible details of
a knowledge entity depend on the chosen projection.
Specifications or parameters that are visible under
one projection might not be accessible under another
one. Typically, also decompositions and component
interdependencies are different for some of the pro-
jections.

Projections are used to acquire and handle knowl-
edge in a given context. In a projection operation, the
knowledge that is available about an object for a given
perspective and abstraction level is extracted from
the knowledge entity and is transformed into an ar-
bitrary conventional representation that is commonly
used in this context. For projections, all knowledge
is held directly within the knowledge entity (i.e., no
decomposition exists for this projection).

If decompositions exist in a certain projection, then
the complete knowledge about the object in this pro-
jection is computed as a combination of the respective
projections of all components. In order to retrieve the
necessary knowledge, the knowledge entities of the
components are evaluated under the same projection

as the decomposed object. Then, the result of this
evaluation can be combined according to rules that
are specified as part of the knowledge entity of the
decoriiposcd object.

The concept of k.ri.o,roledge en t i t i es and projections
differs from other approaches in two main mpects:

All knowledge about an object is concentrated in
a knowledge e n t i t y . Thus, a concise knowledge
representation and the avoidance of redundancy
is achieved.

Projections provide differentiated access to t h e
knowledge (taking into account the desired per-
spective and level of abstraction) and hide all in-
formation that is not needed in the current con-
text.

CE Environment Properties

The formal representation of knowledge about prod-
ucts and processes should be viewed in a specific con-
text that provides the semantics for the representa-
tion. The perspectives and levels of abstraction in
a specific environment depend on the tools that are
available, on the nature of the products to be engi-
neered, and on the engineering processes. Therefore,
the properties of CE environments are captured to
provide a formally defined context for the application
of the knowledge representation scheme.

Formally, the capabilities of a Concurrent Engi-
neering environment (C E E) are denoted by the fol-
lowing structure

where A is the set of pre-declared abstraction lev-
els, P is the set of pre-declared perspectives, XP is
a language to formulate expressions to be used in a
particular perspective p E P , and Q p is a set of ap-
plicable operations, formulated using the language of
this perspective.

Domain Knowledge Entities - DKE

Domain knowledge describes variants of objects under
certain perspectives and in certain levels of abstrac-
tion. In the projection-based approach, all knowledge
available about an object and its variants is contained
in the Domain Knowledge Entity. Formally, a domain
knowledge entity D K E is a structure

A domain knowledge entity is either an indepen-
dent specification, or specializes another DKE. If it

3865

is a specialization, this is denoted by the identifier
b of the more general DICE. In this case, the struc-
t,ure elenientb extend or specialize the elenients of the
base entity. An independent DI<E is indicated by the
replacenient of b by the “empty” symbol (.).

A DICE is defined for the projections listed in the
set of permissible projections IT C A x P , with A C: A
and P 5 P . For these projections, the operations
w E Q P (as defined for perspective p with (alp) =
x E II in the environment capabilities) can be carried
out. The knowledge necessary for these operations is
either contained in this DICE or can be extracted from
DICE referenced as components in decompositions of
this DICE.

Usually, more than one decomposition is applica-
ble to an object. While some of the differences are
due to the different focus of the individual projec-
tions, other differences specify individual object de-
composition variants to be used within one projec-
tion. To represent this fact, all decompositions ap-
plicable in a projection x are referenced in the de-
composition set D, of this projection. However, for
some operations, the decompositions of different per-
spectives and/or abstraction levels have to be used
in conjunction (e.g., to verify the appropriateness of
a refinement, or to map functional components into
a geometric layout). Here it is necessary to have a
“global” notion of the decompositions that might be
used. Therefore, a global set A of permissible decom-
positions is held independent from the projections.

Decompositions are lists of components. How these
components actually interact depends on the pro-
jection that is applied to the knowledge entity. To
be able to use decompositions in more than one
projection, the additional information that describes
component interrelations is held in so-called models.
There is exactly one set of models A!!, for each pro-
jection. This set of models contains one model for
each decomposition that is applicable in the current
projection: Vd E D, : 3m,,d E M , If the set of
decompositions for this projection is empty, then this
object is a terminal (atomic) object under this projec-
tion and the model contains all knowledge necessary
in this projection. D, = 0 . M, = {m,}.

Both, decompositions and models, can be param-
eterized in order to express multiple decompositions
and their couplings. Also, this would allow to pa-
rameterize properties specified by models in terminal
projections.

For each projection, an interface specification (cut)
e, does exist that provides a uniform access method
to the knowledge contained in the decomposition and
the model, no matter what decomposition is actually
used.

In the engineering process, the domain knowledge
contained in DICE is transferred into instance knowl-
edge by selecting single decoinpositions for each pro-
jection and by parameterizing all variables of dcconi-
positions and models. The sclection and generation
rules for this process are held implicitly as declarative
knowledge in form of the so-called invariants i E I ,
that exist for each individual projection. Instance
knowledge entities that are generated from DICE have
to obey these invariants.

For the specification of both, models m,,d and in-
variants i E &, the language XP of the perspective p
is used, with (alp) = x E ll.

Instance Knowledge Entities - IKE

An instance knowledge entity (IKE) describes a sub-
system of the engineered product. It contains all the
knowledge about that subsystem. An IKE is denoted
by a structure

I K E = (b , {z}, {K}).

3866

In this structure, the base domain knowledge entity
b is referenced to denote that this IICE is an instance
of the domain knowledge contained in this individual
DICE. For every projection x E IT’ of the domain
knowledge entity b , the structure contains exactly
one parameterized decomposition d, (or the ‘(empty”
symbol for terminal projections) and one parameter-
ized model K. Of course, the original versions d,
and m,,d of and m, have to be members of the
sets of applicable decompositions and models of the
projection x, respectively.

For the instance knowledge entity, the following
rules have to be observed: (i) For every projection, a
decomposition and an appropriate model have to be
selected and parameterized such that all invariants
of the projection are satisfied (this includes also the
invariants inherited from the predecessor DKE of b) .
(ii) If a certain decomposition is chosen in more than
one projection, the invariants of all involved projec-
tions must hold. (iii) Variables in decompositions,
models, and invariants which have the same identi-
fiers are bound to the same value.

Process Knowledge Entities - PKE

Process knowledge entities are used to describe which
engineering step has to be invoked to generate or ex-
tract knowledge from other knowledge. However, en-
gineering steps are fixed sequences of sub-steps or ba-
sic operations on the available knowledge. In PKE,
the prerequisites and the results of engineering steps
are specified. Depending on the degree of generality

of the invocation condit,ions, this can take two differ-
ent forms:

First, PICE can specify generic dependencies be-
tween inotlels that are available for certain projec-
tions. Here, riorierripty sets of projection identifiers
define what k i d of knowledge is needed to start an
engirieeririg step arid what knowledge will be available
after its completion.

Second, PICE may be used to specify dependen-
cies between certain models in DKE. In such PKE,
nonempty sets of model identifiers specify which mod-
els have to be available before the engineering step is
invoked, and which models will be generated.

Both forms, generic as well as specific PICE, define
the engineering step in terms of a sequence of engi-
neering sub-steps, or in terms of operations. In the
latter case, the engineering step is described as a sin-
gle operation or a fixed sequence of operations. The
difference between sequences of engineering sub-steps
and sequences of operations is that the elements of
sub-step sequences have a general meaning in itself
and can be individually applied wherever their invo-
cation conditions are fulfilled. The operations have
no general meaning (in terms of engineering steps) by
itself, and must be grouped in predefined sequences.

From these two differentiations, we receive four
forms of PKE:

Here, 'II and IT ' are the sets of projections that
are needed a s prerequisite and that are available as
a result of an engineering step. Accordingly, ' m and
m denote the respective sets of DKE models. The
PKE engineering step itself is described either as a se-
quence of operations (seq w) or as a sequence of PKE
(seq p k e) . The latter construct allows us to specify
engineering steps as aggregations of engineering sub-
steps and thus supports the handling of information
for process segments on different levels.

It might be useful to include invariant specifica-
tions into the PKE structure that are used to specify
in detail the conditions that have to be fulfilled prior
to the invocation of an engineering step. Other use-
ful information to be included in a PKE are the facts
about resource consumption, etc. information. The
". . ." symbolize that such extensions might be intro-
duced later on.

P K E = ('IT, II', seq U,. . .)
PICE = ('II, IT, seq p k e , . . .)
P K E = ({'m},{m'},seqw, ...)
PICE = ({'m},{m'},seqpke, ...)

3867

Process Data Entities - PDE

Process da ta entities (PDE) are instantiations of the
generic, domain-oriented process knowledge that is
contained in PKE. They describe mi engineering stlep
that has to be undertaken to transform instances of
knowledge (described by models that are part of IKE)
into other instances. This is done to iteratively gen-
erate a network of instance knowledge entities that
completely describe a product on the necessary level
of detail. Therefore, PDE contain sets of references
to the parameterized IKE models that are the pre-
requisites or results of the engineering step. Both,
temporal and resource consumption information can
be formulated as data or as constraints. The latter is
necessary to forniulate restrictions that apply only to
the current project and may not be associated with
PICE. Examples for such restrictions are project dead-
lines and project cost considerations.

Formally, process data entities are a structure

PDE = ('pde,pde.,{ 'm},{E'}, ...)

where pde and pde are the predecessor and successor
PDE of this process da ta entity, { E} and {E } are
the sets of model instances that have to be available
prior or that are available as result of the engineering
step, and ". . ." once again symbolize possible exten-
sions of the structure.

Like process knowledge entities, process data en-
tities may be grouped to specify larger engineering
steps and project phases. For this purpose, an alter-
native process data entity structure has been defined:

P D E = ('pde,pde',('m},{m'},seqpde, ...),

where seq pde denotes the sequence of PDE this pro-
cess step consists of.

4 IMPLEMENTATION SCENARIO

In the past, much work has been done to provide
computational support for concurrent engineering [5].
This includes the development of standardized data
exchange and knowledge interchange formats, and
tool invocation mechanisms. This work provides the
technical basis for the interaction between engineer-
ing tools. However, to actually co-operate in achiev-
ing an engineering solution, the tools must have a
common notion about the contents of the knowledge
they operate on and their interrelations. This com-
mon basis for the tool interaction is provided by the
framework of knowledge entities.

To take advantage of the distributed character of
the knowledge representation scheme, we propose an

accordingly distributed iniplementation of the CE en-
vironment. Such an environment coiisists of a IILIIII-
ber of interacting software programs, so-called (soft-
ware) agents. Soine of these agents (the Saperuzsor
Agents) control knowledge entities, handle the knowl-
edge contained in them and ensure their integrity.
Other agents (the Mediator Agents) realize the com-
munication between supervisor agents and traditional
software tools (operating on their own local knowl-
edge) that are used in the individual projections. The
agents form a network of interacting software pro-
grams that communicate with each other in order
to exchange knowledge and to effect operations (fig-
ure 2).

/

- knowledge llow

* control flow _ _

Figure 2: Partial structure of a projection-based CE
environment

Contrary to the blackboard concept applied in most
CE environments, this approach uses the structure
inherent to the network of knowledge entities as a
framework to organize the co-operation between the
software agents and for the distribution of the en-
gineering knowledge. This potentially allows to de-
fine which agents have access to certain parts of the
knowledge and to partition and distribute the “com-
monly used knowledge base”.

5 SUMMARY

We have proposed a set theoretic, integrative ap-
proach to represent knowledge requisite in the con-
current engineering enterprise. As opposed to the
traditional techniques which use a variety of repre-

seritatioris aid descriptionb to capture various facetb
of the CE-based product life cycle, our schcme af-
fords a comprehensive de iptiori of the niultiplic-
ity of knowledge views arid perspectives. As it is
well grounded in a formal specification, knowlcdge
integrity validation will be possible throughout the
product life-cycle. In addition, this fornial, underly-
ing foundation is the basis for an agent-based, soft-
ware realization of CE environment. We envision the
following application scenarios where the projection-
based representation would be particularly beneficial:

In the area of system faul t prevention and dzagno-
szs, the possibility to combine different views onto
the system can be efficiently utilized for the genera-
tion of failure models, fault symptom tables, and test
patterns during the design of a product, as well as
for model-based diagnosis of existing systems. Here,
models specifying the operational and faulty behav-
ior of the system and safety constraints are envisioned
to work together. For management informatzon sys-
tems, the continuously and automatically updated
process flow information together with the ability to
retrieve product related information on the required
level of detail provides a new quality of information
access.

For our future work, we will consider the devel-
opment of knowledge integrity validation procedures
and further specification of the projection-based CE
environment.

REFERENCES

[l] A. Kusiak, Concurrent Engzneering: Automatzon,
Tools, and Techniques. New York, NY, USA: John
Wiley and Sons, 1993.

[2] D. Sriram and R. D. Logcher, “The MIT Dice
project,” Computer, vol. 26, pp. 64-65, Jan. 1993.

[3] H. Gomaa, “An object-oriented domain analysis
and modeling method for software reuse,” in Pro-
ceedzngs of the Internatzonal Conference on Sys-
tems Sczence, Hawazz, vol. 2, (Los Alamitos, CA,
USA), pp. 46-56, IEEE CS Press, Jan. 1992.

[4] J . W. Rozenblit and B. P. Zeigler, “Design and
modeling concepts,” in Intern a t zonal En c yclope-
dza of Robotzcs, Applzcatzons and Automatzon
(R. Dorf, ed.), pp. 308-322, New York, NY, USA:
John Wiley and Sons, 1988.

[5] M. R. Cutkosky and J . M. Tenenbaum, “Provid-
ing computational support for concurrent engi-
neering,” Internatzonal Journal of Systems Au-
tomatzon: Research and Applzcatzons, vol. 1,
no. 3, pp. 239-261, 1991.

3868

