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ABSTRACT 

This paper describes an integrative approach to repre- 
sent knowledge structures and entities in the concur- 
rent engineering enterprise. General types of knowl- 
edge are classified and presented in various perspec- 
tives and abstractions. A new concept of knowledge 
representation based on projections is introduced. It 
is demonstrated how the projection concept inte- 
grates various facets of CE. Conclusions discuss the 
benefits of the proposed representation scheme and 
discuss potential application scenarios. 

1 INTRODUCTION 

Concurrent Engineering (CE) [l] paradigm has 
emerged in response to increased global competition 
in product design, deployment, and marketing. The 
main characteristic of CE is the integration of all 
development activities and as well as participating 
teams through the entire product life cycle. In a 
holistic perspective, CE is both an organizational and 
technological effort. In this paper, we focus on the 
technological aspect, namely, on the adequate knowl- 
edge representation to  support the concurrent engi- 
neering process. 

In the existing CE systems, general purpose knowl- 
edge representation schemes such as semantic nets are 
used [a ] .  However, these representations do not pro- 
vide efficient methods for knowledge acquisition and 
handling. 

In this paper, we introduce a new formal means 
of knowledge representation that overcomes the lim- 
itations of the current schemes by combining the 
strengths of both, general purpose and specialized 
representations. The new scheme is intended to (i) 
address the variety of knowledge aspects, (ii) help 
structure CE knowledge in a clear and concise man- 
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ner , (iii) support maintaining knowledge consistency 
and avoiding knowledge redundancy. 

To achieve these goals, we propose to use an 
object-centered approach in combination with a new 
method for the differentiated access to the acquired 
knowledge. The new representation scheme is called 
Projection-Based Knowledge Representation. 

2 CONCURRENT ENGINEERING 
KNOWLEDGE 

This section characterizes knowledge facets that are 
predominant in CE. 

Structuring Engineering Knowledge 

In Concurrent Engineering processes, an overwhelm- 
ing amount and variety of knowledge is available and 
has to be used. To be represented, the knowledge 
used in the engineering processes has to be structured 
through an ordering scheme and a means to capture 
the interdependencies among the different character- 
istics of knowledge. 

We propose a fourfold structuring of the engineer- 
ing knowledge: 

e A piece of knowledge belongs to one of three 
general types of knowledge: knowledge about an 
engineering domain, knowledge about the spe- 
cific product to be designed and produced, and 
knowledge about how to design and manufacture 
products. 

e A piece of knowledge serves a certain perspective 
of the design (e.g., it contains geometric, tempo- 
ral, or behavioral knowledge). 

0 A piece of knowledge describes something on a 
certain level  of abstraction. 

e A piece of knowledge has a certain m a t u r i t y .  

In the following, we will review these characteristics 
in more detail. 
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General Types of Knowledge: In engineering 
processes, three general types of knowledge are typi- 
cally employed: 

Domain knowledge is available in the domain from 
previous engineering processes or as common knowl- 
edge. It consists of standards information, knowledge 
about common characteristics of products of a do- 
main, results from earlier engineering work or knowl- 
edge abstracted thereof. 

Product knowledge (also referred to its “instance 
knowledge”) contains information on properties of 
the engineering process output. Typical examples 
for product knowledge are design data,  construction 
plans, CAD files, implemented control software and 
similar information. 

Process knowledge holds information about the 
properties of the process that leads to  the desired 
engineering output. It comprises information about 
how and when to process product knowledge, about 
engineering step dependencies or their prerequisites 
and alike, and additional information such as timing 
and resource constraints that stem from external re- 
quirements. 

Perspectives: The knowledge available about 
products and processes can be structured in a manner 
that focuses on an single, individual area of interest, 
the so-called perspective. Typical perspectives used 
in CE are “system behavior”, “geometry” , “finance” , 
“system safety” , and alike. 

To express facts and rules, and to formulate opera- 
tions to be used within a perspective, languages may 
be used. These languages usually are different for 
each perspective, but also have common subsets to  
support the handling of knowledge interdependencies 
among different perspectives. 

If a piece of knowledge describes a complex part of 
a product or process, them it may reference knowl- 
edge pieces that describe its components. The actual 
decomposition of products or processes may be differ- 
ent for individual perspectives. Within a perspective, 
aspects can be evaluated by operations. The informa- 
tion may be generated from (i) a single fact available 
under the perspective, (ii) an interpretation of a more 
general fact, (iii) knowledge about the decomposition 
of the product or process into components and the 
interrelations between its components. 

Levels of Abstraction: All knowledge about 
products and processes is available on various levels of 
abstraction. The descriptions may be available as ab- 
stract specifications, conceptual design sketches, de- 
tailed construction plans, and alike. Moreover, there 
may be several different refinements for a less de- 

tailed specification, each focusing on a specific de- 
tail of the system. Although often not accounted 
for in traditional engineering environments, there are 
strong relations between abstract and detailed knowl- 
edge pieces describing the same product or pro(-ess. 
It should be possible to define formal mappings be- 
tween abstract and detailed versions, and thus to test 
for the validity of refinements or abstractions. 

Maturity: The knowledge acquired or produced 
in the engineering process changes over time. The 
design of products and processes will change reflect- 
ing the stepwise approach to ever better engineering 
results and the change of engineering goals. How- 
ever, knowledge from earlier design steps, which is 
not up-to-date anymore, should also be available in 
later engineering steps. It contains experience and 
design solutions which might be useful later on. 

Existing Knowledge Representation Schemes 

Due to  the heterogeneity and the amount of knowl- 
edge that is dealt with in CE, there are many very 
complex relations and interdependencies between the 
individual pieces of knowledge. These relations do ex- 
ist not only within knowledge types, perspectives, and 
abstraction levels, but they also involve all knowledge 
characteristics. Therefore, existing knowledge repre- 
sentations that focus only on certain general types 
knowledge (like the Domain Modeling Method [3] and 
schemes based on the System Entity Structure con- 
cept [4] for domain knowledge), or on certain per- 
spectives (like various exchange formats for geomet- 
ric design data) lack the representational adequacy 
for CE. 

3 KNOWLEDGE REPRESENTATION 
BASED ON PROJECTIONS 

In this section we propose a new scheme that inte- 
grates a variety of knowledge facets and thus provides 
a richer representation than the ones used in current 
C E  environments. 

Knowledge Entities and Projections 

We term our approach object-centered since we focus 
on the knowledge that is available for individual ob- 
jects of the real world. The knowledge is aggregated 
within the so-called knowledge entitzes. Formally, 
knowledge entities are set theoretic structures whose 
elements contain parameters, constraints, rules, for- 
mal specifications, and references to other knowledge 
entities. We structure the knowledge entities along 
the three dimensions: a) domain knowledge, b) in- 
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stance knowlcdge, ancl c )  process knowledge. 
Individual knowleclgc entities are identified by their 

names. Relatioris between knowledge entities are ex- 
pressed by using the entity identifiers as refermces. 
The knowledge entities concentrate the knowledge 
available for the individual objects. To deal with such 
knowledge in detail, the entities have to  be viewed un- 
der certain projections.  Then, they reveal their inner 
structure, their decompositions, and their parameter- 
ization. 

perspective 1 

(e.g. system behavior) 

/ 

perspective 2 
(e.g.. geomelmffi layout) 

abstraction level 2 

(e.g.. detailed schedulig) 

abstraction level 1 

(e.g.. syslem level inpulloutpub 

Figure 1: Knowledge projections under different per- 
spectives at various levels of abstraction 

Projections are combinations of perspectives and 
levels of abstraction (figure 1). The visible details of 
a knowledge entity depend on the chosen projection. 
Specifications or parameters that are visible under 
one projection might not be accessible under another 
one. Typically, also decompositions and component 
interdependencies are different for some of the pro- 
jections. 

Projections are used to acquire and handle knowl- 
edge in a given context. In a projection operation, the 
knowledge that is available about an object for a given 
perspective and abstraction level is extracted from 
the knowledge entity and is transformed into an ar- 
bitrary conventional representation that is commonly 
used in this context. For projections, all knowledge 
is held directly within the knowledge entity (i.e., no 
decomposition exists for this projection). 

If decompositions exist in a certain projection, then 
the complete knowledge about the object in this pro- 
jection is computed as a combination of the respective 
projections of all components. In order to  retrieve the 
necessary knowledge, the knowledge entities of the 
components are evaluated under the same projection 

as the decomposed object. Then, the result of this 
evaluation can be combined according to rules that 
are specified as part of the knowledge entity of the 
decoriiposcd object. 

The concept of k.ri.o,roledge en t i t i es  and projections 
differs from other approaches in two main mpects: 

All knowledge about an object is concentrated in 
a knowledge e n t i t y .  Thus, a concise knowledge 
representation and the avoidance of redundancy 
is achieved. 

Projections provide differentiated access to t h e  
knowledge (taking into account the desired per- 
spective and level of abstraction) and hide all in- 
formation that is not needed in the current con- 
text. 

CE Environment Properties 

The formal representation of knowledge about prod- 
ucts and processes should be viewed in a specific con- 
text that provides the semantics for the representa- 
tion. The perspectives and levels of abstraction in 
a specific environment depend on the tools that are 
available, on the nature of the products to  be engi- 
neered, and on the engineering processes. Therefore, 
the properties of CE environments are captured to 
provide a formally defined context for the application 
of the knowledge representation scheme. 

Formally, the capabilities of a Concurrent Engi- 
neering environment ( C E E )  are denoted by the fol- 
lowing structure 

where A is the set of pre-declared abstraction lev- 
els, P is the set of pre-declared perspectives, XP is 
a language to  formulate expressions to  be used in a 
particular perspective p E P ,  and Q p  is a set of ap- 
plicable operations, formulated using the language of 
this perspective. 

Domain Knowledge Entities - DKE 

Domain knowledge describes variants of objects under 
certain perspectives and in certain levels of abstrac- 
tion. In the projection-based approach, all knowledge 
available about an object and its variants is contained 
in the Domain Knowledge Entity. Formally, a domain 
knowledge entity D K E  is a structure 

A domain knowledge entity is either an indepen- 
dent specification, or specializes another DKE. If it 
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is a specialization, this is denoted by the identifier 
b of the more general DICE. In this case, the struc- 
t,ure elenientb extend or specialize the elenients of the 
base entity. An independent DI<E is indicated by the 
replacenient of b by the “empty” symbol (.). 

A DICE is defined for the projections listed in the 
set of permissible projections IT C A x P ,  with A C: A 
and P 5 P .  For these projections, the operations 
w E Q P  (as defined for perspective p with (alp) = 
x E II in the environment capabilities) can be carried 
out. The knowledge necessary for these operations is 
either contained in this DICE or can be extracted from 
DICE referenced as components in decompositions of 
this DICE. 

Usually, more than one decomposition is applica- 
ble to an object. While some of the differences are 
due to  the different focus of the individual projec- 
tions, other differences specify individual object de- 
composition variants to be used within one projec- 
tion. To represent this fact, all decompositions ap- 
plicable in a projection x are referenced in the de- 
composition set D, of this projection. However, for 
some operations, the decompositions of different per- 
spectives and/or abstraction levels have to  be used 
in conjunction (e.g., to verify the appropriateness of 
a refinement, or to  map functional components into 
a geometric layout). Here it is necessary to have a 
“global” notion of the decompositions that might be 
used. Therefore, a global set A of permissible decom- 
positions is held independent from the projections. 

Decompositions are lists of components. How these 
components actually interact depends on the pro- 
jection that is applied to the knowledge entity. To 
be able to  use decompositions in more than one 
projection, the additional information that describes 
component interrelations is held in so-called models. 
There is exactly one set of models A!!, for each pro- 
jection. This set of models contains one model for 
each decomposition that is applicable in the current 
projection: Vd E D, : 3m,,d E M ,  If the set of 
decompositions for this projection is empty, then this 
object is a terminal (atomic) object under this projec- 
tion and the model contains all knowledge necessary 
in this projection. D, = 0 . M,  = {m,}. 

Both, decompositions and models, can be param- 
eterized in order to express multiple decompositions 
and their couplings. Also, this would allow to pa- 
rameterize properties specified by models in terminal 
projections. 

For each projection, an interface specification (cut) 
e, does exist that provides a uniform access method 
to the knowledge contained in the decomposition and 
the model, no matter what decomposition is actually 
used. 

In the engineering process, the domain knowledge 
contained in DICE is transferred into instance knowl- 
edge by selecting single decoinpositions for each pro- 
jection and by parameterizing all variables of dcconi- 
positions and models. The sclection and generation 
rules for this process are held implicitly as declarative 
knowledge in form of the so-called invariants i E I ,  
that exist for each individual projection. Instance 
knowledge entities that are generated from DICE have 
to obey these invariants. 

For the specification of both, models m,,d and in- 
variants i E &, the language XP of the perspective p 
is used, with (alp) = x E ll. 

Instance Knowledge Entities - IKE 

An instance knowledge entity (IKE) describes a sub- 
system of the engineered product. It contains all the 
knowledge about that subsystem. An IKE is denoted 
by a structure 

I K E  = ( b ,  {z}, {K}). 
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In this structure, the base domain knowledge entity 
b is referenced to denote that this IICE is an instance 
of the domain knowledge contained in this individual 
DICE. For every projection x E IT’ of the domain 
knowledge entity b ,  the structure contains exactly 
one parameterized decomposition d, (or the ‘(empty” 
symbol for terminal projections) and one parameter- 
ized model K. Of course, the original versions d, 
and m,,d of and m, have to be members of the 
sets of applicable decompositions and models of the 
projection x, respectively. 

For the instance knowledge entity, the following 
rules have to be observed: (i) For every projection, a 
decomposition and an appropriate model have to  be 
selected and parameterized such that all invariants 
of the projection are satisfied (this includes also the 
invariants inherited from the predecessor DKE of b) .  
(ii) If a certain decomposition is chosen in more than 
one projection, the invariants of all involved projec- 
tions must hold. (iii) Variables in decompositions, 
models, and invariants which have the same identi- 
fiers are bound to  the same value. 

Process Knowledge Entities - PKE 

Process knowledge entities are used to  describe which 
engineering step has to be invoked to  generate or ex- 
tract knowledge from other knowledge. However, en- 
gineering steps are fixed sequences of sub-steps or ba- 
sic operations on the available knowledge. In PKE, 
the prerequisites and the results of engineering steps 
are specified. Depending on the degree of generality 



of the invocation condit,ions, this can take two differ- 
ent forms: 

First, PICE can specify generic dependencies be- 
tween inotlels that are available for certain projec- 
tions. Here, riorierripty sets of projection identifiers 
define what k i d  of knowledge is needed to start an 
engirieeririg step arid what knowledge will be available 
after its completion. 

Second, PICE may be used to  specify dependen- 
cies between certain models in DKE. In such PKE, 
nonempty sets of model identifiers specify which mod- 
els have to  be available before the engineering step is 
invoked, and which models will be generated. 

Both forms, generic as well as specific PICE, define 
the engineering step in terms of a sequence of engi- 
neering sub-steps, or in terms of operations. In the 
latter case, the engineering step is described as a sin- 
gle operation or a fixed sequence of operations. The 
difference between sequences of engineering sub-steps 
and sequences of operations is that the elements of 
sub-step sequences have a general meaning in itself 
and can be individually applied wherever their invo- 
cation conditions are fulfilled. The operations have 
no general meaning (in terms of engineering steps) by 
itself, and must be grouped in predefined sequences. 

From these two differentiations, we receive four 
forms of PKE: 

Here, 'II and IT ' are the sets of projections that 
are needed a s  prerequisite and that are available as 
a result of an engineering step. Accordingly, ' m  and 
m denote the respective sets of DKE models. The 
PKE engineering step itself is described either as a se- 
quence of operations (seq w) or as a sequence of PKE 
(seq p k e ) .  The latter construct allows us to specify 
engineering steps as aggregations of engineering sub- 
steps and thus supports the handling of information 
for process segments on different levels. 

It might be useful to  include invariant specifica- 
tions into the PKE structure that are used to specify 
in detail the conditions that have to be fulfilled prior 
to the invocation of an engineering step. Other use- 
ful information to be included in a PKE are the facts 
about resource consumption, etc. information. The 
". . ." symbolize that such extensions might be intro- 
duced later on. 

P K E  = ('IT, II', seq U,. . .) 
PICE = ('II, IT, seq p k e ,  . . .) 
P K E  = ({'m},{m'},seqw, ...) 
PICE = ({'m},{m'},seqpke, ...) 
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Process Data Entities - PDE 

Process da ta  entities (PDE) are instantiations of the 
generic, domain-oriented process knowledge that is 
contained in PKE. They describe mi engineering stlep 
that has to  be undertaken to transform instances of 
knowledge (described by models that are part of IKE) 
into other instances. This is done to iteratively gen- 
erate a network of instance knowledge entities that 
completely describe a product on the necessary level 
of detail. Therefore, PDE contain sets of references 
to the parameterized IKE models that are the pre- 
requisites or results of the engineering step. Both, 
temporal and resource consumption information can 
be formulated as data or as constraints. The latter is 
necessary to  forniulate restrictions that apply only to 
the current project and may not be associated with 
PICE. Examples for such restrictions are project dead- 
lines and project cost considerations. 

Formally, process data entities are a structure 

PDE = ( 'pde,pde.,{ 'm},{E'},  ...) 

where pde and pde are the predecessor and successor 
PDE of this process da ta  entity, { E} and {E } are 
the sets of model instances that have to be available 
prior or that are available as result of the engineering 
step, and ". . ." once again symbolize possible exten- 
sions of the structure. 

Like process knowledge entities, process data en- 
tities may be grouped to specify larger engineering 
steps and project phases. For this purpose, an alter- 
native process data entity structure has been defined: 

P D E  = ('pde,pde',('m},{m'},seqpde, ...), 

where seq pde denotes the sequence of PDE this pro- 
cess step consists of. 

4 IMPLEMENTATION SCENARIO 

In the past, much work has been done to provide 
computational support for concurrent engineering [5]. 
This includes the development of standardized data 
exchange and knowledge interchange formats, and 
tool invocation mechanisms. This work provides the 
technical basis for the interaction between engineer- 
ing tools. However, to  actually co-operate in achiev- 
ing an engineering solution, the tools must have a 
common notion about the contents of the knowledge 
they operate on and their interrelations. This com- 
mon basis for the tool interaction is provided by the 
framework of knowledge entities. 

To take advantage of the distributed character of 
the knowledge representation scheme, we propose an 



accordingly distributed iniplementation of the CE en- 
vironment. Such an environment coiisists of a IILIIII- 
ber of interacting software programs, so-called (soft- 
ware) agents. Soine of these agents (the Saperuzsor 
Agents) control knowledge entities, handle the knowl- 
edge contained in them and ensure their integrity. 
Other agents (the Mediator Agents) realize the com- 
munication between supervisor agents and traditional 
software tools (operating on their own local knowl- 
edge) that are used in the individual projections. The 
agents form a network of interacting software pro- 
grams that communicate with each other in order 
to exchange knowledge and to effect operations (fig- 
ure 2). 

/ 

- knowledge llow 

* control flow _ _  

Figure 2: Partial structure of a projection-based CE 
environment 

Contrary to  the blackboard concept applied in most 
CE environments, this approach uses the structure 
inherent to  the network of knowledge entities as a 
framework to  organize the co-operation between the 
software agents and for the distribution of the en- 
gineering knowledge. This potentially allows to de- 
fine which agents have access to certain parts of the 
knowledge and to partition and distribute the “com- 
monly used knowledge base”. 

5 SUMMARY 

We have proposed a set theoretic, integrative ap- 
proach to  represent knowledge requisite in the con- 
current engineering enterprise. As opposed to  the 
traditional techniques which use a variety of repre- 

seritatioris aid descriptionb to capture various facetb 
of the CE-based product life cycle, our schcme af- 
fords a comprehensive de iptiori of the niultiplic- 
ity of knowledge views arid perspectives. As it is 
well grounded in a formal specification, knowlcdge 
integrity validation will be possible throughout the 
product life-cycle. In addition, this fornial, underly- 
ing foundation is the basis for an agent-based, soft- 
ware realization of CE environment. We envision the 
following application scenarios where the projection- 
based representation would be particularly beneficial: 

In the area of system faul t  prevention and dzagno- 
szs, the possibility to  combine different views onto 
the system can be efficiently utilized for the genera- 
tion of failure models, fault symptom tables, and test 
patterns during the design of a product, as well as 
for model-based diagnosis of existing systems. Here, 
models specifying the operational and faulty behav- 
ior of the system and safety constraints are envisioned 
to  work together. For management informatzon sys- 
tems, the continuously and automatically updated 
process flow information together with the ability to 
retrieve product related information on the required 
level of detail provides a new quality of information 
access. 

For our future work, we will consider the devel- 
opment of knowledge integrity validation procedures 
and further specification of the projection-based CE 
environment. 
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