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Abstract

     This paper analyzes and compares the effectiveness 
of various system level design methodologies in 

assessing performance of embedded computing 

systems from the earliest stages of the design flow. 
The different methodologies are illustrated and 

evaluated by applying them to the design of an 

aircraft pressurization system (APS). The APS is 
mapped on a heterogeneous hardware/software 

platform consisting of two ASICs and a 

microcontroller. The results demonstrate the high 
impact of computer aided design (CAD) tools on 

design time and quality. 

1. Introduction 

     In recent years, growing system complexity and 

shrinking time-to-market requirements have resulted 

in a strong need for new design methods and tools. In 

order to keep pace with the increased system 

complexity, designers must work at a higher level of 

abstraction [1]. Depending on the abstraction level 

(namely, the number of details used to model the 

system) different concerns can be addressed and 

solved. At each step of the design process, the key to 

cope with complexity is to model the systems, only 

with the minimum number of details needed. Tools 

support is needed throughout all steps of the design 

flow, from the formal specification of the system to its 

physical implementation. 

     Traditionally, the design of embedded systems has 

been carried out by decomposing and allocating the 

system to hardware and software, then allowing 

separate hardware and software design teams to 

design their respective parts, and finally integrating 

hardware and software. This separation of design tasks 

leads to the potential for initial design mistakes to be 

carried until the integration phase, where they are 

much more difficult and costly to correct. We address 

this issue by using the same high level language, i.e. 

C/C++, for describing both hardware and software. 

The idea is to keep the hardware and software design 

activities tightly coupled [2].

     Given system functionality the goal is to find the 

best architecture and the best partitioning of 

functionality into the architectural components. Here, 

the term architecture is used to mean not only the set 

of hardware and software components forming the 

system but also their topology. Starting from the same 

specification, many different architectures and 

functionality-architecture mapping may be produced. 

The exploration of all these alternatives requires the 

ability to rapidly estimate the performance resulting 

from a particular partitioning. In order to evaluate 

performance, we cannot afford to synthesize and 

simulate at the cycle level, every possible design 

alternative. The use of a C/C++ based methodology 

simplifies the system modeling task and maintains 

computation time within feasible ranges [3]. As a 

result: 1) design assessment can be done much earlier 

in the design cycle, and 2) execution time to explore 

different design tradeoffs is much shorter. 

     The rest of this paper is organized as follows. First 

we propose a top-down C/C++ based system design 

process that can be used from executable specification 

of the system to silicon. Then, we illustrate the 

viability of our approach by introducing an APS 

design example and applying different C/C++ design 

based methodologies on it. Last we compare the 

results obtained and provide conclusions. 
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2. Design Flow 

     Designing an embedded system requires many 

capabilities: 1) describing the interaction between the 

system and the external environment, 2) describing the 

system architecture, 3) modeling the behavior of 

hardware and software components forming the 

system, 4) describing system constraints and 

requirements, 5) describing the test scenarios used to 

simulate the system, and 6) defining a set of gauges to 

measure various performance metrics during 

simulation execution. As a consequence, the 

complexity of the design process is determined by the 

semantic and syntax of the system level design 

language (SLDL) adopted as implementation vehicle. 

     System level design approaches can be broadly 

classified into three groups: system-level synthesis, 

platform-based design, and component-based design 

[4]. In system-level synthesis the design starts by 

describing system behavior. Then system architecture 

is generated by the behavior and finally a register 

transfer level (RTL) model or an instruction set 

simulation (ISS) model are generated depending 

whether the behavior is going to be mapped on 

hardware or software. In platform based design the 

system behavior is mapped to a predefined system 

architecture, instead of being generated from the 

behavior as in the system level synthesis approach. In 

component-based design the task of selecting 

components and combining them in a proper 

architecture is not defined a priori. Compared with 

platform based design this solution provides a higher 

flexibility, however it requires a well developed 

database of components (also known as intellectual 

properties or virtual components) before it can be 

effectively implemented. 

     In general a SLDL requires two essential attributes: 

1) it should support modeling at all levels of 

abstraction, from purely behavioral un-timed models 

to cycle accurate RTL/ISS models, and 2) the models 

should be executable and simulatable, so that 

functionality and constraints can be validated. The two 

most commonly used SLDL in embedded system 

engineering are: SystemC [5] and SpecC [6]. 

     The objective of system level design is to generate 

system implementation from behavior. To that end, 

we propose a design process based on the use of finite 

state machines as mathematical model of computation 

to describe behavior, and either SystemC or SpecC as 

implementation vehicle. In order to reduce the 

complexity of system design a number of intermediate 

models are built. Each intermediate model describes 

specific design tasks and objectives and can be 

independently executed and simulated.  

     The design process we propose belongs to the 

system-level synthesis group and is illustrated in 

Figure 1. Here, we decompose the design process in 

four main steps: 1) specification modeling, 2) 

architecture modeling, 3) communication modeling 

and 4) implementation modeling. The specification 

model is a formal description of the system 

functionality, but does not carry any implementation 

details, and it is un-timed in terms of both 

computation and communication. After the 

specification model is analyzed and validated the 

system functionality is partitioned and the various 

partitions are mapped to different components. The 

architecture model defines the final set of components 

into which the functionality is mapped and its 

topology. The execution delays of the processes 

assigned to the components are modeled by means of 

unit delta delays, while communication among 

components is modeled via message passing. Hence at 

this level, computation is approximate-timed, while 

communication is un-timed. The communication 
model defines the protocol and the accurate timing 

followed by the various components to exchange 

information. The implementation model represents the 

hardware components in terms of resister transfers and 

the software components in terms of instruction set 

architecture. At this level, computation components as 

well as communication components are refined down 

to individual clock cycles.  

3. A Design Example 

     To illustrate the details of our approach we apply it 

to the design of an Aircraft Pressurization System 

(APS). As altitude increases it becomes increasingly 

difficult for humans to handle the air pressure. 

Atmospheric pressure decreases as altitude increases 

(Figure 2), so in aircrafts flying at high altitudes, the 

cabin pressure has to be controlled. The APS is an 

automated control system that controls the pressure in 

an aircraft cabin within comfortable limits. If pressure 

control is not provided many physiological problems 

may occur, for instance, ear-ache and gastro-intestinal 

problems. 

      The inputs to the APS are ambient pressure, cabin 

pressure and a signal that indicates emergency.  
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Figure 1. Design Flow 

The outputs of the APS are signals that control three 

different valves namely pressure valve, release valve 

and dump valve. A high signal to any of these valves 

causes them to open while a low signal closes them. 

The pressure valve is used to pump air into the cabin 

to raise the cabin pressure. The release valve causes 

slow and steady release of cabin pressure. The dump 

valve is opened in case of emergency for a quick 

decay in cabin pressure. The inputs and outputs of the 

aircraft pressurization system are shown in Figure 3. 

The operation of the APS is illustrated by the detailed 

block diagram shown in Figure 4, and the finite state 

machine diagram in Figure 5. 

     If the aircraft is flying at altitudes of less than 5000 

ft the cabin can be comfortably maintained at ambient 

pressure and the APS is said to be in normal state of 

operation. In normal state the pressure valve is closed 

and the release valve is kept open to equalize the cabin 

pressure to ambient pressure. 
Altitude

Ambient
Pressure

1
Altitude

AmbientPressure

Figure 2. Altitude vs. Ambient Pressure
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As the aircraft flies to altitudes higher than 5000 ft, 

there is a fall in ambient pressure which makes it 

necessary to pressurize the cabin. The APS moves 

itself into isobar state to maintain a constant cabin 

pressure equivalent to the ambient pressure at 5000 ft, 

even when the real altitude is greater. 
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Figure 5. Finite state machine digram of APS

In isobar state, if necessary, the pressure valve is 

opened and the release valve remains closed. When 

the altitude of the aircraft reaches 24000 ft, the APS 

changes its state of operation from isobar to 

differential. In differential state the APS maintains a 

differential of 6.5 psi between cabin pressure and 

ambient pressure. This is accomplished either opening 

or closing the pressure or release valves. 

     The APS should be able to handle an emergency 

situation of excessive cabin pressure during any state 

of operation. The APS goes into emergency mode if 

the emergency signal is high. The emergency block 

checks if the emergency was real or just a glitch. If the 

emergency signal remains high continuously for 3 

clock cycles the APS goes to dump state, else APS 

returns to normal state to resume operation. In the 

dump state the dump valve is opened to cause a quick 

decay of the cabin pressure. Once the cabin pressure 

becomes less than or equal to ambient pressure and 

the emergency signal goes low, the APS goes back to 

normal state of operation. 

4. C/C++ Based Design Methodologies 

      SystemC is a modeling platform consisting of C++ 

class libraries and a simulation kernel for designing at 

the system and register transfer level. Besides, 

providing a common high-level language, for 

modeling, analyzing and simulating an embedded 

system, it can be also linked to commercial tools such 

as Synopsys design compiler [7], for hardware 

synthesis.

     SpecC is a super-set of the C language. It is a 

complete language, not just a library, and it was 

specifically conceived for the specification and design 

of digital embedded systems. Detailed information on 

the syntax and semantics of SpecC and SystemC is 

available in ref. [6] and [8]. 

     In this section, we briefly compare C++ based 

methodology (SystemC) and C based methodology 

(SpecC) with respect to three aspects: 1) capability of 

modeling functionality, 2) capability of modeling the 

transfer of information between functional blocks, and 

3) capability of modeling the execution sequence 

among functional blocks.  

     Both SpecC and SystemC support hierarchical 

modeling of system behavior. In SpecC, the term 

behavior indicates a consolidate representation of both 

functionality and structure. Behavior and structure of 

the system are represented by a hierarchy of 

behaviors. A leaf behavior may contain hierarchical 

calls to functions but it does not contain any further 
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sub-instance. SystemC isolates functionality and 

structure into processes and modules respectively 

     SpecC models data transfer among behaviors 

through the use of variables or channels. SystemC 

supports data transfer by connecting module ports 

through either signals or channels.  A channel is a 

class that encapsulates communication. In SpecC a 

channel consists of a set of variables and functions 

(also called methods), which operate on the variables 

and define the communication protocol. Similarly, in 

SystemC, a signal is a type of a channel. SystemC 

signal (sc_signal) is a primitive channel with no user 

defined communication behavior included. 

Communication is done in similar way, using 

channels, in both SystemC and SpecC. The difference 

in using variables and signals is that, changes on 

variables are scheduled immediately, while changes 

on signals are queued and scheduled at the occurrence 

of the next event (i.e., the value of the signal is 

updated only after a delta delay). SystemC does not 

allow binding of variables to ports of modules, thus 

the use of variables for data transfer between 

processes in different modules is not permitted.   

     In SpecC the order of execution is by default 

sequential, however two mechanisms are provided to 

alter the execution sequence: 1) static scheduling and 

2) dynamic scheduling. In static scheduling the 

sequence of execution is explicitly specified using 

dedicated constructs par (for parallel execution), pipe 

(for pipelined execution), fsm (for Finite State 

Machine execution).  For dynamic scheduling, both 

SpecC and SystemC rely on the data type event and 

the wait and notify statements for synchronization 

between behaviors. A process can wait and notify 

events. When a pending event is notified the process 

starts/resumes execution. However, in case of 

SystemC, ports of modules cannot be connected 

through an event (sc event), therefore the event-wait-

notify cannot be used for synchronization between 

processes in different modules. Designers have to 

encapsulate events into a channel in order to achieve 

synchronization between such processes. 

     In SpecC, static scheduling permits to precisely 

determine the execution sequence and as a 

consequence make architecture exploration much 

easier than with SystemC. In addition, since SystemC 

is a C++ library extension, the computation needs of 

the system under design are tightly coupled with the 

computational needs of the SystemC kernel, so the 

profiling of the model becomes prohibitive. 

     At the hardware level, in order to specify cycle-

accurate finite state machines SpecC provides the 

construct fsm, while SystemC provides two 

mechanisms: 1) implicit modeling using the class 

SC_THREAD and wait statement, and 2) explicit 

modeling using the class SC_METHOD and switch 

statement.  

     At the software level, in order to obtain C code 

compilable and executable on the target 

microprocessor from SpecC code, users need to 

remove all SpecC specific constructs (par, pipe, fsm, 

wait, etc.). The equivalent task in SystemC needs two 

steps, converting SystemC code to C++ code by 

removing SystemC specific constructs (module, port, 

channel), and converting C++ code to C code. 

5. Results 

     In order to validate the approach proposed we 

applied it to the design of an APS. The APS is mapped 

on a heterogeneous hardware/software platform 

consisting of two ASICs and a microcontroller, thus 

the 6 blocks forming the system can be implemented 

in 36=729 different ways. 

     The design of the APS has been completed both in 

SystemC and in SpecC. The effectiveness of the two 

methodologies has been evaluated with respect to 

many facets.      

     SpecC and SystemC are comparable in terms of 

time required to complete the design, and time taken 

to execute the system model. SystemC provides better 

support for the register transfer level (RTL) model of 

hardware design. However, the program length 

(number of lines of code) of the SystemC model is 

about 10% longer than the SpecC model. SystemC, 

being a C++ library, is hard to profile accurately, 

hence is not very suited for architecture exploration. 

SpecC, being a super-set of C language, is superior for 

architecture exploration both in terms of profiling and 

determination of execution sequence. As a result when 

many different design choices are possible the impact 

of SpecC in helping to optimize design time and 

design quality is considerably higher than SystemC. 

Fig. 6 through Fig.8 illustrate some of the capabilities 

provided by SpecC: Fig.6 shows one of the many 

possible mappings of the APS into the two ASICs and 

the microcontroller available for implementation. The 

small FSM symbol before behavior MyFSM, is 

automatically generated by SpecC and indicates that 
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the behavior is a FSM and is a clean behavior. 

Behaviors are defined hierarchically; each behavior 

can also contain a number of behavior instantiations of 

other behaviors. In clean leaf behavior, there is only a 

sequence of statements, without any behavior 

instances. Fig 7 summarizes the profiling of the 

system model. It shows all the variables used by our 

system, number of code expressions, computation 

operations etc. Fig. 8 indicates the computations 

performed by each component of the system. 

6. Conclusion 

Although both C and C++ design methodologies 

have many similarities, we observed that C based 

methodology is easier to use, and is better suited for 

architecture exploration. This results in smaller design 

time and better design quality, especially when there 

are many design alternatives to consider. On the other 

hand, currently, C++ methodology is better linked 

with commercial hardware synthesis tools.  

Figure 6. SpecC: mapping of the system into two ASICs and one Microcontroller. 
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Figure 7. SpecC: profiling of the system model. 

Figure 8. SpecC: computation profile for each component of the system. 
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