
Embedded System Engineering Using C/C++ Based Design Methodologies

Claudio Talarico
†
, Aseem Gupta

‡
, Ebenezer Peter

†
, and Jerzy W. Rozenblit

†

†
Department of Electrical and Computer Engineering

The University of Arizona

Tucson, AZ 85721-0104, USA

‡
Department of Electrical Engineering and Computer Science

University of California, Irvine

Irvine, CA 92697, USA

Abstract

 This paper analyzes and compares the effectiveness
of various system level design methodologies in

assessing performance of embedded computing

systems from the earliest stages of the design flow.
The different methodologies are illustrated and

evaluated by applying them to the design of an

aircraft pressurization system (APS). The APS is
mapped on a heterogeneous hardware/software

platform consisting of two ASICs and a

microcontroller. The results demonstrate the high
impact of computer aided design (CAD) tools on

design time and quality.

1. Introduction

 In recent years, growing system complexity and

shrinking time-to-market requirements have resulted

in a strong need for new design methods and tools. In

order to keep pace with the increased system

complexity, designers must work at a higher level of

abstraction [1]. Depending on the abstraction level

(namely, the number of details used to model the

system) different concerns can be addressed and

solved. At each step of the design process, the key to

cope with complexity is to model the systems, only

with the minimum number of details needed. Tools

support is needed throughout all steps of the design

flow, from the formal specification of the system to its

physical implementation.

 Traditionally, the design of embedded systems has

been carried out by decomposing and allocating the

system to hardware and software, then allowing

separate hardware and software design teams to

design their respective parts, and finally integrating

hardware and software. This separation of design tasks

leads to the potential for initial design mistakes to be

carried until the integration phase, where they are

much more difficult and costly to correct. We address

this issue by using the same high level language, i.e.

C/C++, for describing both hardware and software.

The idea is to keep the hardware and software design

activities tightly coupled [2].

 Given system functionality the goal is to find the

best architecture and the best partitioning of

functionality into the architectural components. Here,

the term architecture is used to mean not only the set

of hardware and software components forming the

system but also their topology. Starting from the same

specification, many different architectures and

functionality-architecture mapping may be produced.

The exploration of all these alternatives requires the

ability to rapidly estimate the performance resulting

from a particular partitioning. In order to evaluate

performance, we cannot afford to synthesize and

simulate at the cycle level, every possible design

alternative. The use of a C/C++ based methodology

simplifies the system modeling task and maintains

computation time within feasible ranges [3]. As a

result: 1) design assessment can be done much earlier

in the design cycle, and 2) execution time to explore

different design tradeoffs is much shorter.

 The rest of this paper is organized as follows. First

we propose a top-down C/C++ based system design

process that can be used from executable specification

of the system to silicon. Then, we illustrate the

viability of our approach by introducing an APS

design example and applying different C/C++ design

based methodologies on it. Last we compare the

results obtained and provide conclusions.

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

2. Design Flow

 Designing an embedded system requires many

capabilities: 1) describing the interaction between the

system and the external environment, 2) describing the

system architecture, 3) modeling the behavior of

hardware and software components forming the

system, 4) describing system constraints and

requirements, 5) describing the test scenarios used to

simulate the system, and 6) defining a set of gauges to

measure various performance metrics during

simulation execution. As a consequence, the

complexity of the design process is determined by the

semantic and syntax of the system level design

language (SLDL) adopted as implementation vehicle.

 System level design approaches can be broadly

classified into three groups: system-level synthesis,

platform-based design, and component-based design

[4]. In system-level synthesis the design starts by

describing system behavior. Then system architecture

is generated by the behavior and finally a register

transfer level (RTL) model or an instruction set

simulation (ISS) model are generated depending

whether the behavior is going to be mapped on

hardware or software. In platform based design the

system behavior is mapped to a predefined system

architecture, instead of being generated from the

behavior as in the system level synthesis approach. In

component-based design the task of selecting

components and combining them in a proper

architecture is not defined a priori. Compared with

platform based design this solution provides a higher

flexibility, however it requires a well developed

database of components (also known as intellectual

properties or virtual components) before it can be

effectively implemented.

 In general a SLDL requires two essential attributes:

1) it should support modeling at all levels of

abstraction, from purely behavioral un-timed models

to cycle accurate RTL/ISS models, and 2) the models

should be executable and simulatable, so that

functionality and constraints can be validated. The two

most commonly used SLDL in embedded system

engineering are: SystemC [5] and SpecC [6].

 The objective of system level design is to generate

system implementation from behavior. To that end,

we propose a design process based on the use of finite

state machines as mathematical model of computation

to describe behavior, and either SystemC or SpecC as

implementation vehicle. In order to reduce the

complexity of system design a number of intermediate

models are built. Each intermediate model describes

specific design tasks and objectives and can be

independently executed and simulated.

 The design process we propose belongs to the

system-level synthesis group and is illustrated in

Figure 1. Here, we decompose the design process in

four main steps: 1) specification modeling, 2)

architecture modeling, 3) communication modeling

and 4) implementation modeling. The specification

model is a formal description of the system

functionality, but does not carry any implementation

details, and it is un-timed in terms of both

computation and communication. After the

specification model is analyzed and validated the

system functionality is partitioned and the various

partitions are mapped to different components. The

architecture model defines the final set of components

into which the functionality is mapped and its

topology. The execution delays of the processes

assigned to the components are modeled by means of

unit delta delays, while communication among

components is modeled via message passing. Hence at

this level, computation is approximate-timed, while

communication is un-timed. The communication
model defines the protocol and the accurate timing

followed by the various components to exchange

information. The implementation model represents the

hardware components in terms of resister transfers and

the software components in terms of instruction set

architecture. At this level, computation components as

well as communication components are refined down

to individual clock cycles.

3. A Design Example

 To illustrate the details of our approach we apply it

to the design of an Aircraft Pressurization System

(APS). As altitude increases it becomes increasingly

difficult for humans to handle the air pressure.

Atmospheric pressure decreases as altitude increases

(Figure 2), so in aircrafts flying at high altitudes, the

cabin pressure has to be controlled. The APS is an

automated control system that controls the pressure in

an aircraft cabin within comfortable limits. If pressure

control is not provided many physiological problems

may occur, for instance, ear-ache and gastro-intestinal

problems.

 The inputs to the APS are ambient pressure, cabin

pressure and a signal that indicates emergency.

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

Specification
Refinement

Behavior Model

Architecture Refinement

Architecture Model

Communication
Refinememt

Communication
Model

InterfaceHardware Software

Implementation
Model

Manufacturing

Algorithms
base

Components
base

System Specification

Protocol
base

RTOSRTL

Requirements

Function

Transaction

Bus Protocol

RTL / IS

Abstraction Level Timing Accuracy

Constraints

untimed

estimated timing

Computation &
Communication
cycle accurate

Computation estimated &
Communication
cycle accurate

Figure 1. Design Flow

The outputs of the APS are signals that control three

different valves namely pressure valve, release valve

and dump valve. A high signal to any of these valves

causes them to open while a low signal closes them.

The pressure valve is used to pump air into the cabin

to raise the cabin pressure. The release valve causes

slow and steady release of cabin pressure. The dump

valve is opened in case of emergency for a quick

decay in cabin pressure. The inputs and outputs of the

aircraft pressurization system are shown in Figure 3.

The operation of the APS is illustrated by the detailed

block diagram shown in Figure 4, and the finite state

machine diagram in Figure 5.

 If the aircraft is flying at altitudes of less than 5000

ft the cabin can be comfortably maintained at ambient

pressure and the APS is said to be in normal state of

operation. In normal state the pressure valve is closed

and the release valve is kept open to equalize the cabin

pressure to ambient pressure.
Altitude

Ambient
Pressure

1
Altitude

AmbientPressure

Figure 2. Altitude vs. Ambient Pressure

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

APS

pres_valve

release_valve

dump_valve

amb_pres

cab_pres

emer

Figure 3. Basic block diagram of APS

Control

Normal

Isobar

Differential

Emergency Dump

amb_pres

amb_pres

amb_pres

amb_pres

cab_pres

cab_pres

cab_pres

cab_pres

emer

emer_en

dump_en

iso_en

normal_en

diff_en

pres_valve

release_valve

dump_valve

dump_on

APS

Figure 4. Detailed block diagram of APS

As the aircraft flies to altitudes higher than 5000 ft,

there is a fall in ambient pressure which makes it

necessary to pressurize the cabin. The APS moves

itself into isobar state to maintain a constant cabin

pressure equivalent to the ambient pressure at 5000 ft,

even when the real altitude is greater.

NORMAL

DIFFERENTIAL

ISOBAR

EMERGENCY

DUMPAltitude >= 5,000 ft

Altitude < 5,000 ft

Altitude >= 24,000 ft

Altitude < 24,000 ft

Emergency = 1

Emergency = 1

Count >= 3

Count < 3

Emergency = 0

Emergency = 1

Figure 5. Finite state machine digram of APS

In isobar state, if necessary, the pressure valve is

opened and the release valve remains closed. When

the altitude of the aircraft reaches 24000 ft, the APS

changes its state of operation from isobar to

differential. In differential state the APS maintains a

differential of 6.5 psi between cabin pressure and

ambient pressure. This is accomplished either opening

or closing the pressure or release valves.

 The APS should be able to handle an emergency

situation of excessive cabin pressure during any state

of operation. The APS goes into emergency mode if

the emergency signal is high. The emergency block

checks if the emergency was real or just a glitch. If the

emergency signal remains high continuously for 3

clock cycles the APS goes to dump state, else APS

returns to normal state to resume operation. In the

dump state the dump valve is opened to cause a quick

decay of the cabin pressure. Once the cabin pressure

becomes less than or equal to ambient pressure and

the emergency signal goes low, the APS goes back to

normal state of operation.

4. C/C++ Based Design Methodologies

 SystemC is a modeling platform consisting of C++

class libraries and a simulation kernel for designing at

the system and register transfer level. Besides,

providing a common high-level language, for

modeling, analyzing and simulating an embedded

system, it can be also linked to commercial tools such

as Synopsys design compiler [7], for hardware

synthesis.

 SpecC is a super-set of the C language. It is a

complete language, not just a library, and it was

specifically conceived for the specification and design

of digital embedded systems. Detailed information on

the syntax and semantics of SpecC and SystemC is

available in ref. [6] and [8].

 In this section, we briefly compare C++ based

methodology (SystemC) and C based methodology

(SpecC) with respect to three aspects: 1) capability of

modeling functionality, 2) capability of modeling the

transfer of information between functional blocks, and

3) capability of modeling the execution sequence

among functional blocks.

 Both SpecC and SystemC support hierarchical

modeling of system behavior. In SpecC, the term

behavior indicates a consolidate representation of both

functionality and structure. Behavior and structure of

the system are represented by a hierarchy of

behaviors. A leaf behavior may contain hierarchical

calls to functions but it does not contain any further

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

sub-instance. SystemC isolates functionality and

structure into processes and modules respectively

 SpecC models data transfer among behaviors

through the use of variables or channels. SystemC

supports data transfer by connecting module ports

through either signals or channels. A channel is a

class that encapsulates communication. In SpecC a

channel consists of a set of variables and functions

(also called methods), which operate on the variables

and define the communication protocol. Similarly, in

SystemC, a signal is a type of a channel. SystemC

signal (sc_signal) is a primitive channel with no user

defined communication behavior included.

Communication is done in similar way, using

channels, in both SystemC and SpecC. The difference

in using variables and signals is that, changes on

variables are scheduled immediately, while changes

on signals are queued and scheduled at the occurrence

of the next event (i.e., the value of the signal is

updated only after a delta delay). SystemC does not

allow binding of variables to ports of modules, thus

the use of variables for data transfer between

processes in different modules is not permitted.

 In SpecC the order of execution is by default

sequential, however two mechanisms are provided to

alter the execution sequence: 1) static scheduling and

2) dynamic scheduling. In static scheduling the

sequence of execution is explicitly specified using

dedicated constructs par (for parallel execution), pipe

(for pipelined execution), fsm (for Finite State

Machine execution). For dynamic scheduling, both

SpecC and SystemC rely on the data type event and

the wait and notify statements for synchronization

between behaviors. A process can wait and notify

events. When a pending event is notified the process

starts/resumes execution. However, in case of

SystemC, ports of modules cannot be connected

through an event (sc event), therefore the event-wait-

notify cannot be used for synchronization between

processes in different modules. Designers have to

encapsulate events into a channel in order to achieve

synchronization between such processes.

 In SpecC, static scheduling permits to precisely

determine the execution sequence and as a

consequence make architecture exploration much

easier than with SystemC. In addition, since SystemC

is a C++ library extension, the computation needs of

the system under design are tightly coupled with the

computational needs of the SystemC kernel, so the

profiling of the model becomes prohibitive.

 At the hardware level, in order to specify cycle-

accurate finite state machines SpecC provides the

construct fsm, while SystemC provides two

mechanisms: 1) implicit modeling using the class

SC_THREAD and wait statement, and 2) explicit

modeling using the class SC_METHOD and switch

statement.

 At the software level, in order to obtain C code

compilable and executable on the target

microprocessor from SpecC code, users need to

remove all SpecC specific constructs (par, pipe, fsm,

wait, etc.). The equivalent task in SystemC needs two

steps, converting SystemC code to C++ code by

removing SystemC specific constructs (module, port,

channel), and converting C++ code to C code.

5. Results

 In order to validate the approach proposed we

applied it to the design of an APS. The APS is mapped

on a heterogeneous hardware/software platform

consisting of two ASICs and a microcontroller, thus

the 6 blocks forming the system can be implemented

in 36=729 different ways.

 The design of the APS has been completed both in

SystemC and in SpecC. The effectiveness of the two

methodologies has been evaluated with respect to

many facets.

 SpecC and SystemC are comparable in terms of

time required to complete the design, and time taken

to execute the system model. SystemC provides better

support for the register transfer level (RTL) model of

hardware design. However, the program length

(number of lines of code) of the SystemC model is

about 10% longer than the SpecC model. SystemC,

being a C++ library, is hard to profile accurately,

hence is not very suited for architecture exploration.

SpecC, being a super-set of C language, is superior for

architecture exploration both in terms of profiling and

determination of execution sequence. As a result when

many different design choices are possible the impact

of SpecC in helping to optimize design time and

design quality is considerably higher than SystemC.

Fig. 6 through Fig.8 illustrate some of the capabilities

provided by SpecC: Fig.6 shows one of the many

possible mappings of the APS into the two ASICs and

the microcontroller available for implementation. The

small FSM symbol before behavior MyFSM, is

automatically generated by SpecC and indicates that

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

the behavior is a FSM and is a clean behavior.

Behaviors are defined hierarchically; each behavior

can also contain a number of behavior instantiations of

other behaviors. In clean leaf behavior, there is only a

sequence of statements, without any behavior

instances. Fig 7 summarizes the profiling of the

system model. It shows all the variables used by our

system, number of code expressions, computation

operations etc. Fig. 8 indicates the computations

performed by each component of the system.

6. Conclusion

Although both C and C++ design methodologies

have many similarities, we observed that C based

methodology is easier to use, and is better suited for

architecture exploration. This results in smaller design

time and better design quality, especially when there

are many design alternatives to consider. On the other

hand, currently, C++ methodology is better linked

with commercial hardware synthesis tools.

Figure 6. SpecC: mapping of the system into two ASICs and one Microcontroller.

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

Figure 7. SpecC: profiling of the system model.

Figure 8. SpecC: computation profile for each component of the system.

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

7. References

[1] K. Keutzer, S. Malik, A.R. Newton, J.M.

Rabaey, and A. Sangiovanni-Vincentelli,

“System-Level Design: Orthogonalization of

Concerns and Platform-Based Design,”, IEEE
Trans. CAD Integrated Circuits and Systems,

vol. 19, no. 12, 2000, pp. 1523-1543.

[2] C. Talarico, J.W. Rozenblit, A. Gupta, and E.

Peter, “Performance Analysis of Embedded

Systems with SystemC,” Proc. Int’l Conf.
Computing, Communications and Control

Technologies (CCCT 2004), IIIS Press, 2004, pp.

46-51.

[3] T. Givargis, F. Vahid, and J. Henkel, “System-

Level Exploration for Pareto-Optimal

Configurations in parameterized System-on a-

Chip,” IEEE Trans. VLSI Systems, vol. 10, no. 4,

2002, pp. 416-422.

[4] D.D. Gajski, J. Zhu, R. Doemer, A. Gerstauler,

and S. Zhao, SpecC: Specification Language and

Methodology, Kluwer Academic, 2000.

[5] Open SystemC Initiative, Functional
Specification for SystemC 2.0, 2002,

http://www.systemc.org

[6] SpecC Open Technology Consortium, SpecC

Language Reference Manual, version 2.0, 2004,

http://www.specc.org

[7] Synopsys, Design Compiler Reference Manual,

June 2003

[8] Open SystemC Initiative, SystemC 2.0 Version

2.0 User’s Guide, 2002, www.systemc.org

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

