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R E S E A R C H  F E A T U R E

P u b l i s h e d  b y  t h e  I E E E  C o m p u t e r  S o c i e t y

A New Framework for
Power Estimation of
Embedded Systems

T he overall goal of system design is to 
minimize development time and costs,
subject to various performance and func-
tionality constraints. To cope with the
rapidly growing complexity of embedded

systems, designers must work at higher levels of
abstraction.1

Depending on the abstraction layer—the level of
detail used to describe the system—designers can
address different concerns. The key is to model the
system at each abstraction layer with as little detail
as possible and then collect performance metrics
that help the development team make sound engi-
neering decisions.

Among the many metrics used to characterize the
quality of an embedded system-on-chip (SoC)
design, power consumption has emerged as one of
the most important. This is largely due to the pro-
liferation of mobile battery-powered computing
devices, the increasing speed and density of CMOS
(complementary metal-oxide semiconductor) VLSI
(very large-scale integration) circuits, and continu-
ous shrinking of the transistor feature size of deep-
submicron technologies.2

Designers can estimate power consumption at
four different abstraction levels:

• Circuit-level approaches simulate the circuit at
the transistor or switch level and monitor the
supply current.3

• Logic-level techniques simulate a design at the
logic-gate level and calculate power by consid-
ering the switching activity and node capaci-
tance. Logic-level approaches execute orders of
magnitude faster than circuit-level approaches
but at the expense of accuracy.4

• Register-transfer-level approaches5 model the
power consumption of more abstract com-
ponents such as muxes, adders, multipliers,
and registers. They have satisfactory accuracy
(5-10 percent of gate-level power estimates),
but their computational time, while orders of 
magnitude smaller than with logic-level
approaches, is too slow when applied to large
designs. 

• System-level approaches6 estimate power con-
sumption based on simple high-level descrip-
tions of the system’s behavior and its intended
application, using an abstract notion of capac-
itance and switching.

Different estimation techniques are best suited to
different parts of a design or different stages in the
design flow. 

We have developed a technique that derives
power figures from the execution of high-level mod-
els rather than gate- or transistor-level precharac-
terizations. This technique makes it possible to
assess embedded SoC designs much earlier in the
design cycle, contributing to sounder decisions

A proposed modular framework for assessing power consumption of 
embedded systems early in the design cycle can be extended to any 
performance metric and uses a high level of abstraction, leading to a 
faster execution time. Experimental results indicate that the approach is
within 20 percent of gate-level estimation and executes three orders of
magnitude faster.
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throughout the entire development process and
leading to a faster execution time. 

To validate our methodology, we applied it to a
peripheral core—a baud rate generator—and com-
pared the results with those obtained using a gate-
level approach. 

POWER CONSUMPTION MODELS 
Researchers have developed several techniques

for estimating software power consumption for
microprocessor and digital signal processor cores,
mainly at the instruction level.2,7,8 Given a program
execution trace, this approach computes the energy
that each executed instruction consumes. Energy
consumption depends on the specific instruction
being executed as well as on previously executed
instructions and on the data on which the instruc-
tion operates. This process can be accelerated by
deriving a trace file of reduced size that generates
equal power dissipation.9

Other researchers have explored software power
optimization techniques.10 In addition, a proposed
mathematical model of a generic 32-bit processor,
obtained through functional decomposition, classi-
fies instructions based on the functional units exer-
cised.11 This model estimates the static power
consumption of the single instructions executed, but

it does not consider the dynamic power informa-
tion associated with the actual applied input data. 

Another technique estimates power consumption
of peripheral cores.12 Finally, a number of proposed
system-level models for cache, memory, and bus
power consumption consist mainly of closed-form
equations that express power consumption as a
function of usage/traffic and component parame-
ters.13-15

All of these system-level techniques use gate- or
transistor-level precharacterizations, which require
detailed knowledge of the components’ internal
structure, to develop energy consumption models.
However, such information may not be available
early in the design process, or IP providers may not
want to disclose it. In addition, a given application’s
power consumption provides little information
about the power consumption of other applications
for the same system. Consequently, characteriza-
tion-based power models are highly accurate only
if evaluated in the same context as that used for
characterization.

POWER ESTIMATION FRAMEWORK
Figure 1 illustrates our proposed framework for

estimating the power consumption of a generic
embedded system. The framework functions as a
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generic wrapper around the system components,
each of which has an associated simulation model
and monitor. The monitor observes the model’s
execution and probes the data needed to charac-
terize the component’s behavior. Various power
analyzers then compute the performance indices of
interest.

Our framework generalizes and extends the
schema developed by Tony Givargis, Frank Vahid,
and Jörg Henkel.12 The key difference is that our
framework does not rely on gate-level simulation to
characterize each core’s per-instruction power con-
sumption. In our view, a core’s behavior can be seen
as the execution of a sequence of instructions, in
which the term “instruction” is synonymous with
“action” and is not necessarily atomic. 

The framework’s distinguishing feature is its
modularity, which helps isolate the various system
components from one another and to abstract their
implementation details. This makes it possible to
assess designs early in the process, when the impact
of decisions is critical to avoid expensive and time-
consuming iterations. The modeling concepts’ gen-
erality also extends our framework beyond power
consumption for use in evaluating other perfor-
mance metrics.

System power consumption
Our framework consists of four steps that lead to

an estimate of overall system power consumption: 

• translating each core’s functionality to a set of
primitive instructions, 

• simulating the application program, 
• mapping the instructions requested by the

application program into abstract functional
units, and 

• computing aggregate power consumption of
the entire system. 

The first step consists of breaking each core’s
functionality into a set of instructions. A compo-
nent’s functionality represents all possible behav-
iors it can assume, with behavior meaning the set
of actions that the component performs during exe-
cution of an application. The goal is to devise a
high-level executable model of the core that can
output power consumption data during system
simulation. 

This first step hides the complexity of the core’s
internal implementation behind the simple inter-
face offered by the instruction set. There is a trade-
off in selecting the right set of instructions: Having
many fine-grained instructions can lead to greater

accuracy, but it requires a longer simulation
time than having fewer coarse-grained
instructions.12 The framework associates
with each core’s instruction set only the infor-
mation needed to describe the performance
metric of interest—in this case, power con-
sumption. 

The second step involves simulating the
application program and extracting a trace
file for the core. A trace is the sequence of
instructions/data items a core executes during
its simulation. The aim is to estimate the
core’s switching activity. 

The third step consists of mapping the
instructions requested by the various tasks
performed by the core into abstract func-
tional units that are used to estimate complexity—
that is, gate count. Given switching activity and
complexity, the framework can compute the core’s
power per instruction. 

The fourth step involves connecting all the core
models to compute the power consumption of the
entire system.

Power analyzer modules
Each of the power analyzer modules shown 

in Figure 1 embodies the analytical expressions
needed to compute the power consumed by the var-
ious types of cores: processor, cache, main mem-
ory, bus, and peripherals. 

The input of the power estimation flow is the
application program, which feeds into the target
CPU’s instruction set simulator (ISS) to produce a
program trace. A software power analyzer then
postprocesses the program trace to estimate the
power the processor consumes during software exe-
cution. 

The application program also feeds into a mem-
ory trace profiler, which records all memory access
traces and then calculates the number of cache
demand misses for both data and instructions. The
software power analyzer uses this information to
account for additional power consumption due to
cache-miss stalls. The main memory power ana-
lyzer and cache power analyzer also use this data to
compute the power consumption of the main mem-
ory and cache accesses. 

Depending on whether peripherals are accessed
through memory-mapped or dedicated I/O, it is
possible to extract a peripheral access trace from
either the memory access traces or program traces.
Any access to or from main memory, caches, and
peripherals translates eventually into information
traffic over the communication buses. Specific bus
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power analyzers compute the power that
each bus in the system consumes.

Component power consumption
Because gate-level representation of most

cores may not be available early in the design
process, our framework computes power dis-
sipation analytically, combining the technol-
ogy parameters obtainable from data sheets
with the data gathered by executing the core’s
high-level model.

The framework uses ad hoc correction
methods to evaluate the power consumed by

nonlinear components. A typical example is the
interaction between cache and processor. In this
case, it is necessary to first evaluate processor power
consumption by assuming the ideal case in which
all instructions and data can be retrieved from the
cache and then account for the energy penalty
caused by the processor stalling due to read or write
misses in the data cache and fetch misses in the
instruction cache.

Processor. Our framework relies on an ISS to esti-
mate the power the CPU consumes to execute the
application software. The ISS maintains detailed
statistics of the processor’s internal activity—such
as fetches, stalls, instruction execution frequency,
and internal register accesses—that the software
power analyzer can postprocess to compute power
consumption. This technique is an extension of
earlier instruction-based approaches.2,12 The idea
behind such approaches is that “by measuring the
current drawn by the processor as it repeatedly
executes certain instructions, it is possible to obtain
most of the information that is needed to evaluate
the power cost of a program for that processor.”2

Cache. To estimate cache energy consumption,
we adapted analytical models developed by Milind
Kamble and Kanad Ghose.13 Accurate estimation
requires that the cache simulator maintains activ-
ity statistics for several metrics including number
of hits and misses, number of tag comparisons,
word-line activity, and bit-line activity. 

The major components of energy consumption
are in the bit lines, word lines, output lines, and
input lines: Ecache = Ebitline + Ewordline + Eoutput + Einput.
The energy dissipated in other cache components
such as comparators, registers, data steering logic,
control logic, and sense amplifiers is relatively small
and can be neglected.

Main memory. To compute the energy that main
memory consumes, our framework uses the ana-
lytical models described by Kiyoo Itoh.14 The main
sources of power dissipation are the memory cell

array, row decoder, column decoder, and periph-
ery circuits.

Bus. In deep-submicron technologies, bus power
is a significant part of total power. Execution time
and bus power are inversely related: A smaller bus
width implies less wire capacitance and hence less
power, but it requires more bus transfers and hence
a longer execution time. 

Every memory and peripheral access implies a
data transfer over a communication bus. The total
number of cache accesses Nacc measures traffic on
the CPU-cache bus, the number of cache misses
Nmiss measures traffic on the cache-main memory
bus, and the number of peripheral references Nper

measures traffic on the peripheral bus—the bus
between main memory and the peripheral devices.
Given this traffic and assuming that on average at
most half of the bits will toggle, our framework can
then compute bus switching activity. It uses this
value and bus capacitance to compute power con-
sumption.

Peripherals. For a processor, the term “instruc-
tion” generally means an atomic action for pro-
gramming the desired behavior. However, for a
peripheral, an instruction is an action that,
together with all other instruction set actions,
describes the peripheral’s functionality.12 Our
framework models the peripheral in terms of a set
of instructions and a set of power modes. Power
modes take into account that certain instructions
can significantly change power consumption.

The framework follows a four-step procedure to
obtain peripheral power consumption. First, it pro-
files the application program for requests to and
from the peripheral. The number and frequency of
peripheral accesses is a measure of its switching
activity. Second, it decomposes the various types of
tasks requested into instructions and maps them
into abstract functional units for use in estimating
complexity. Given switching activity and com-
plexity, the framework then creates a power-per-
instruction lookup table. Third, the framework
executes the peripheral model to generate the cor-
responding trace. Finally, given the instructions
trace, it uses the power-per-instruction lookup table
to compute power consumption.

EXAMPLE SIMULATION
To validate our system-level approach, we used

SystemC to model a baud generator unit that clocks
the universal asynchronous receiver/transmitter
inside the Infineon XC161CJ microcontroller.
Embedded systems are inherently heterogeneous—
they consist of an intricate intermix of both hard-
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ware and software components. Using the same
high-level language to describe both hardware and
software makes the modeling task easier. 

As Figure 2a shows, the baud generator consists
of three functional units: a prescaler containing a
selectable fractional divider and two fixed-integer
dividers, a 13-bit timer, and an output stage pro-
viding the baud rate. 

Modeling power consumption requires only a
small amount of detail. As Figure 2b illustrates, our
framework uses a finite state machine to describe
power behavior. Each state represents a power
mode, and the transition from state to state depends
on the instructions from the application program. 

The total energy that the baud generator con-
sumes during execution of the application program
is given by

where Tclock is the clock-cycle period, pinstr,j is the
power dissipated during execution of instruction j,
and ncyc,j is the number of clock cycles taken to exe-
cute instruction j. The power per instruction can
be computed as

where Vdd is the power supply voltage, NF is the
number of functional units composing the baud gen-
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erator, Ck is the total capacitance of functional unit
k, and αk,j is the switching activity occurring within
the functional unit k to execute instruction j.

Experimental setup 
To test our approach, we implemented a system-

level model of the baud generator. The model rep-
resents the peripheral module of the power
estimation framework shown in Figure 1. We used
the C++ language—the availability of SystemC
makes this an ideal match for a unified HW/SW
framework. 

The baud generator model includes only the
power behavior. To achieve good accuracy, we used
a state machine to express each instruction’s depen-
dency on the previous ones, with the instructions
triggering transitions from one state to the other. 

To compute the power per cycle of each core’s
instruction, we employed Infineon’s 0.25-µm
CMOS technology. We estimated the average
capacitance of combinational cells and sequential
cells separately, averaging the intrinsic capacitance
of cells in the target technology, and stored the
resulting values in a lookup table to facilitate access
during model execution. 

Figure 3a shows implementation details of our
framework’s peripherals module. 

The design explorer analyzes the functional
units forming the various components, estimates
their complexity (total capacitance) based on the
target technology, and evaluates each unit’s power
consumption. 

The application profiler parses the application
program and extracts the instructions that affect
the peripherals and distributes them accordingly. 
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mode, and the 
transition from state
to state depends on
the instructions
from the application
program. 
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Different models and monitors are associated
with different peripherals or various refinements of
the same peripheral. The monitors observe the asso-
ciated models’ execution and characterize their
power behavior. The power analyzer collects the
information that the monitors capture and com-
putes power consumption. 

A distinguishing feature of our system-level
approach is that it does not require gate-level syn-
thesis and simulation. However, to validate its effec-
tiveness and efficiency, we compared our results
against those obtained using gate-level power esti-
mation, as shown in Figure 3b.  

The experiments consisted of running 20 randomly
generated application programs for 2,000 clock
cycles. To perform a comparative analysis, we used
a VHSIC Hardware Description Language model of
the baud generator implemented at the register trans-
fer level and then used Synopsys tools to synthesize
it down to the gate level. To perform the gate-level
power estimation, we used Synopsys power-estima-
tion tools and a set of VHDL test benches generated
by replicating the application programs. 

Experimental results
Figure 4 summarizes the power per cycle dissi-

pated by each instruction using both approaches.
The average error is 9.71 percent, and the standard
deviation is 9.36 percent. System-level estimation is

consistently lower than gate-level estimation
because the former always considers a lower level
of detail than the latter. Power consumption under-
estimation represents a serious problem in scenar-
ios that focus on worst-case design analysis rather
than design tradeoffs. 

Profiling energy consumption is particularly use-
ful to gain insight into system hot spots. Figure 5a
shows the energy the system consumes while exe-
cuting three of the benchmarked application pro-
grams. Figure 5b shows a scatter plot of the power
that all 20 benchmarks dissipated over 2,000
cycles. The average error is less than 20 percent,
and the standard deviation is 8.26 percent. 

Each point on the scatter plot depicts a bench-
mark’s average power. The abscissa represents the
average power obtained using our system-level
approach, while the ordinate represents the average
power obtained using the gate-level technique. If
there was no difference between the two methods, all
dots would lie on the solid line. Compared to gate-
level power estimation, our approach achieves a
speedup of 1,343—three orders of magnitude faster. 

T he primary goal of our approach is to make
power-related system-level design decisions as
early as possible in the design cycle. Therefore,

20 percent accuracy can be considered satisfactory

Figure 3. Two
approaches to 
measuring power
consumption in a
baud generator. 
(a) System-level
approach. (b) 
Gate-level
approach.
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and, in fact, may be the only viable alternative
when gate-level or transistor-level precharacteriza-
tion is impossible. Indeed, at this level, the key is
to provide fidelity—a high percentage of correctly
predicted comparisons between design implemen-
tations—rather than very high estimation accuracy. 

Future work will include validation on larger-
scale designs and iterative refinements of the mod-
els based on earlier results. We also plan to extend
the framework to as many performance indices as

possible including response time, throughput, chip
area, software size, and production costs. �
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