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Systems Design: A Simulation 
Modeling Framework 

J.W. Rozenblit 

This chapter surveys a model-based approach to the design of complex, 
multifaceted systems. The discussion is organized as follows: first, a brief 
introduction to the model-based design (MBD) methodology is given. 
Then, supporting concepts, knowledge representation and modeling 
techniques are discussed. Brief, illustrative examples are given to 
elucidate the theory-based notions. The chapter concludes with postulates 
for a computer-aided system that can automate the design of 
heterogeneous systems. 

7.1 Introduction and Motivation 

Modem engineering design is a highly complex process. It involves a 
multiplicity of objectives, constraints, materials, and configurations. Despite 
great strides in computational tools such as high performance workstations, 
distributed and concurrent processing environments intended to help to cope with 
this rising complexity, the design process remains error prone. Given the often 
severe constraints imposed by cost, environmental impacts, safety regulations, 
etc., designers are forced to make compromises that would not be necessary in 
an ideal world 

In the late nineteen eighties and early nineteen nineties, we had witnessed a 
proliferation of efforts to support the design process with computer aided tools 
and environments. Most successful in that undertaking was the electronic design 
automation community whose efforts led to the definition of "electronic design 
framework" and subsequent developments of design environments and tools 
such as Falcon and Synopsis. 

The term framework in electronic design automation denotes a computer
based, integrated design environment that binds and supports design tools [2]. In 
their seminal paper, Harrison et al. [8] defined a framework as " ... all the 
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underlying facilities provided to the CAD tool developer, the CAD system 
integrator, and the end user necessary to facilitate their tasks." 

The CAD Framework Initiative (CFI) viewed a framework as a collection of 
extensible programs/modules used to develop a unified CAD system [2] For the 
sake of brevity, we do not discuss the history of electronic CAD here nor do we 
trace the evolution of the framework concept. (Excellent summaries are given in 
[3,8,23]. 

Another notable thrust in the efforts to support complex design was the 
Defense Advanced Research Projects Agency (DARPA) program in concurrent 
engineering. In 1987, DARPA had asked experts from industry, academia, and 
government to investigate the shortcomings in the defense-related product 
development process. Japanese product development techniques were studied in 
which the so-called "tiger approach" was applied. In this approach, all personnel 
involved in the project were assembled at its conception in order to find a 
solution which addresses the participants' individual concerns but also benefits 
the team as a whole. From this relatively general description, stemmed the term 
"concurrent engineering" (CE). The term was refined by Winner et al. in [27] as 
" ... a systematic approach to the integrated, concurrent design of products and 
their related processes, including manufacture and support. [CE] is intended to 
cause the developer, from the outset, to consider all elements of the product life 
cycle from conception through disposal, including quality, cost, schedule, and 
user requirements." 

To transplant the approach into the American research and development 
environment, DARPA concluded that an advanced computer technology was 
needed to create virtual teams who might be scattered all over the country. Thus 
came about the DICE program (DARPA Initiative in Concurrent Engineering) 
[24]. Special issues of archival journals had reported extensively on CE [9,10]. 

Simulation modeling had long been recognized as a useful tool in assessing 
the quality of sub-optimal design choices and arriving at acceptable trade-offs 
prior to the physical realization of the system being designed. Often termed 
"virtual prototyping", or "simulation-based design" (SBD), this approach was 
endorsed by the concurrent engineering community and applied primarily in the 
mechanical engineering domain [5]. Subsequent, efforts focused on the 
development of techniques that would integrate distributed simulation 
technologies, physics-based modeling, virtual and collaborative environments. 
The long-range goal of such an integration is the application of these, and other, 
technologies that permit integrated process and product development (IPPD). 
The perceived benefits of simulation-based design clearly justify the research 
and development expenditures. If successfully applied to complex engineering 
enterprises, SBD can facilitate assessment of products and process designs early 
in the lifecycle and eliminate the cost of physical prototyping. 

Our position is that computer simulation and other advanced computational 
tools are of limited effectiveness without a methodology to induce a systematic 
handling of the multitude of goals and constraints impinging on the design 
process. Therefore, our work focuses on the development of techniques in which 
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design models can be synthesized and tested by simulation within a number of 
objectives, taken individually or in trade-off combinations. We strive to provide 
a uniform treatment of the design process at different levels of system 
representation and abstraction. By providing a spectrum of performance 
evaluation methods, including trade-off measurements and evaluation of 
multilevel, multicomponent, hierarchically specified models, our approach 
facilitates description of designs through quantitative and, more generally, 
comparative measures. 

Our approach, termed model-based design (MBD) [16,17,18,19], was 
initially strongly influenced by multifaceted modeling concepts developed by 
Zeigler [29] in the late seventies and mid-eighties. The approach is primarily 
intended to support the development of simulateable models of the system under 
design. It offers: a) representation methods to capture structural and behavioral 
design knowledge, b) heuristics for managing design space complexity, c) 
techniques for simulation-based design assessment and trade-offs, and d) 
methods for design partitioning [13]. 

This chapter surveys the fundamental tenets of the MBD framework. A high 
level example serves to illustrate the methodology and its various phases. For an 
comprehensive exposition of the formal concepts underlying the methodology 
and its phases, we refer the reader to [16,178,18,19]. 

7.1.1 System Design and Modeling: Synergies 

As opposed to system analysis where models are typically derived from an 
existing real system, in design the model comes first as a set of "blueprints" from 
which the system will be built, implemented or deployed. The blueprints take 
several forms; they could be simple verbal descriptions, a set of equations, an 
architectural drawing, or a netlist file. The goal of such defined systems design is 
to study models of design before they are physically realized. 

Here, a question arises: "How can modeling and simulation concepts support 
systems design?" To address this question, we enumerate some principal 
elements in the dynamics of the design process and relate them to simulation 
modeling. 

1. Designs are created by individuals who use basic problem solving 
techniques such as problem definition, proposal of a solution, and test 
of the solution against the problem statement and requirements. 
Modeling, as a creative act, follows similar steps. To build a model, the 
modeler interprets requirements and objectives of the project, proposes a 
suite of simulateable models that serve as "design blueprints." Simulation 
is a means of executing the models and testing how well they meet the 
project's requirements. 

2. Designs are often of a large scale. Thus, techniques are needed for 
decomposing the design problem into subproblems that are easily 
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comprehensible to the designers. Partial solutions could then be 
generated and integrated using proper aggregation techniques. 
Simulation modeling methodologies provide techniques for model 
decomposition, hierarchical specification and aggregation of model 
components. 

3. The attributes of design are described in the form that allows 
comparative studies and trade-off analyses. Simulation-based design 
performance evaluation uses model generated data for such analyses. 

4. Complex designs comprise heterogeneous components - techniques are 
needed to properly integrate them into a complete system. Recent 
advances in embedded systems modeling [1,4,6,11 ,13] and real-time 
systems modeling are a promising step in this direction. 

In what follows, we survey the MBD framework and illustrate its elements 
on an example. 

7.2 The MDB Methodology 

Our approach to design is shown in Figure 7.1. The process depicted in the figure 
uses simulateable models as virtual prototypes of the system under design 
(SUD). The core activities in the framework are system specification, modeling, 
simulation, refinement, and partitioning (technology assignment). 

Figure 7.1: Simulation-Based Design Methodology 
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To build a simulateable design model, we first construct object models, ie. 
representations of components from which a system will be built, their 
relationships, and attributes. Such models are given behavioral specification so 
that they can be simulated. 

Simulation is then used in a two-fold manner: a) as a means of verifying the 
functionality of the proposed solution, ie. the execution of the model's dynamics 
to ensure that the behaviors are consistent with those perceived for the system 
being designed, and b) as a way of assessing how well performance requirements 
are met by the proposed solution (for example, we can collect data on component 
utilization, system's throughput, etc.). 

An assessment of simulation data leads to either further model refinement 
and design modifications, or to the system partitioning and technology 
assignment phase. During this phase, decisions as to which components are 
realized in hardware, software and interfaces are made. (This particular phase is 
pertinent to design of heterogeneous systems that contain such mixed elements). 

Our overall design model combines various representations, simulation 
modeling, and heuristic techniques. They are now described in more detail. 

7.3 MBD Process Elements 

7.3.1 System Specifications 

In the first phase, the designer converts the system's requirements and 
constraints into a formal specification. This specification defines the interface 
between the system and its environment and the system's functionality. 
Nonfunctional requirements such as size, weight, etc. are also documented. Since 
our approach strives for implementation independence, designers can refine the 
specification without modifying any physically realized components. 

7.3.2 Modeling 

This is the core activity that leads to virtual design prototypes. In our approach, 
we take a holistic view that aims at the development of the overall system's 
model rather than its individual components. A model is a set of instructions for 
generating data. Valid model-generated data is a subset of the system's 
behavioral data. A specification of the system and its environment forms the 
basis for building models that correspond to a set of questions about the design, 
including its objectives and reason for being [15,17]. The modeling phase of 
MBD is depicted in Figure 7.2. 
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Figure 7.2: Generation of Simulateable Models 

7.3.2.1 Object Modeling 

Oblecl Model 
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The design model construction process begins with developing a representation 
of design components, their decompositions, variants, and attributes. As a step 
toward a complete knowledge representation scheme for design support, we 
combined the decomposition, taxonomic, and coupling relationships in a 
knowledge representation scheme called the system entity structure (SES). 
Previous work [16,17,18,19] identified the need for representing the structure 
and behavior of systems, in a declarative scheme related to frame-theoretic and 
object-based formalisms. The elements represented are motivated, on the one 
hand, by systems theory concepts of decomposition (ie. how a system is 
hierarchically broken down into components) and coupling (ie. how these 
components may be interconnected to reconstitute the original system). On the 
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other hand, systems theory has not focused on taxonomic relations, as 
represented for example in frame-hierarchy knowledge representation schemes. 
In the SES scheme, such representation concerns the admissible variants of 
components in decompositions and the further specializations of such variants. 

The interaction of decomposition, coupling and taxonomic relations in an SES 
affords a compact specification of a family of models for a given domain. In a 
system entity structure, entities refer to conceptual components of reality for which 
models may reside in a model base. Also associated with entities are slots for 
attribute knowledge representation. An entity may have several aspects, each 
denoting a decomposition, and therefore having several entities. An entity may also 
have several specializations, each representing a classification of possible variants 
of the entity. 

Object modeling requires several types of decisions on the part of design 
project engineers. The classical object model development process advocated by 
Rumbaugh et. al. [20] involves a syntactic analysis of the requirements 
document. Through this analysis, noun, verb, and adjective phrases are 
identified. Classes are then constructed to reflect the nouns (objects that 
represent system components). Association links are derived from the verb 
phrases. For example, a "has part" phrase can be directly expressed through a 
decomposition link while an "is a kind of' phrase can be reflected through the 
generalization relation. 

The syntactic analysis results in the initial object model. However, the model's 
refinement is a responsibility of the modelers who make the following decisions: 

a) further identify how components decompose into subcomponents in the 
project's domain and provide a set of alternative decompositions, 

b) identify sets of variants for components specified in various decompositions 
(for example, a computer display type could be an LCD or a CRT 
monochrome, or a CRT color display), 

c) identify attributes for the components that describe the components' properties 
and characteristics salient to the project at hand. 

The system entity structure organizes possibilities for a variety of system 
decompositions and taxonomies and, consequently, a variety of model 
constructions. Its generative capability facilitates convenient definition and 
representation of models and their attributes at multiple levels of aggregation and 
abstraction. More complete discussions of the system entity structure and its 
associated structure transformations are presented in [16,17]. The SES 
representation can be rendered using the Object Modeling Technique (OMT) 
notation (a less complex precursor to the Unified Modeling Language). Here, we 
illustrate its expressive power using the basic concepts from an Air Traffic 
Display/Collision Warning (and Monitoring) System (ATD/CWS) system design 
example. 

The ATD/CWM system is intended to monitor air traffic and issue warnings 
should a threat of collision between a host aircraft and other aircraft occur. 
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Figure 7.3 depicts the system entity structure of the ATD/CWS system rendered 
using the OMT notation. The A TD/CWS is a part of a larger distributed network. 
Through the aggregation symbol (diamond in Figure 7.3) we show its 
decomposition into a) location records library, b) collision warning monitor, c) 
external interfaces (in OMT, the filled circle denotes one or more elements; thus 
the plural interpretation of the class object "External Interface"), and d) CPUs. The 
external interface object is classified through the specialization relation (or, as 
termed in the OMT notation, through the generalization relation depicted by the 
triangle symbol) into radar, communication system, user inteiface, alarm device, 
and navigation system. Furthermore, the radar object is specialized into simple, and 
complex radar. The air traffic display has two variants: a) color display and b) 
monochrome display. 

Figure 7.3: Object Model of the ATD/CWM System 

The object model of Figure 7.3 can be refined further to show attributes of the 
system's components and their methods. In Figure 7.4, we refine the object 
instance of ATD/CWM to include the attribute mode (with a possible range 
normal, and degraded) and a method detect collision. This method would 
implement the collision detection algorithm. Similarly, we have refined the class 
object Location Records Library to show the structure of the Location Record 
object. Such an object has attributes that relay the flight information as shown in 
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Figure 7.5. In Figure 7.6, we illustrate a refinement of the Air Traffic Display and 
the Aircraft ID Icons. 
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Figure 7.4: Refined Class Object ATD/CWM 
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This high level representation, shown in the OMT diagrams, sets up an object 
model from which a specific design instance of system components (as well as 
their relationships) for the ATD/CWM system can be synthesized. We discuss 
this synthesis in the following section. 

ATD Display 

color 

display icon 
display advisory message 

Ai rcraft id icon 

color 
position 

Figure 7.6: Refinement of the Air Traffic Display Object 

7.3.2.2 Pruning 

In our methodology, a model is synthesized from elements stored in the model 
base. More specifically, behaviors are associated with design components 
identified in the object models. This synthesis is the result of pruning a 
substructure from the system entity structure or an OMT diagram. Pruning can 
be viewed as a knowledge-based search through the space of candidate solutions 
to the design problem. This is consistent with a commonly taken view that design 
is a search process in which a satisfactory design solution is produced from a 
number of alternatives [17,19]. Those alternatives come from knowledge of the 
relevant domain. We use production rules [19] to represent design objectives, 
constraints, requirements and performance expectations. The aim of pruning is to 
recommend plausible object model instances for further design assessment using 
simulation. 
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The following steps are required to provide the rules that guide pruning of the 
system entity structure: 

1. for each specialization (ie. generalization relationship), specify a set of 
rules for selecting an object; that is select an instance of a system's 
component from possible variants, 

2. for an entity with several aspects, ie. decompositions (or in the OMT 
terminology aggregations), specify rules for generating a unique aspect; 

3. for each aspect, ie. aggregation, specify rules that ensure that the 
objects selected from specializations are configurable, ie., the 
components they represent can be validly coupled. 

Thus, to guide the search through the design space defined by the object 
models, we specify a) selection rules for choosing a component instance from a 
variety of elements offered by the generalization relations, b) synthesis rules for 
combining the selected instances. 

To specify the pruning rules, the knowledge engineering team elicits domain 
expertise from subject matter experts (SMEs). The expertise is encoded in the 
form of if-then production rules that constrain the choices offered by 
specializations and provide a coupling recipe for aggregating components identified 
in decompositions. In addition to encoding the experts' domain knowledge, the 
rules may translate a requirements statement into an operational means of selecting 
the most adequate choice of object models for the system under design (SUD) (for 
example, when distributed processing is required, select a multiprocessor 
computing platform). 

Several attributes playa role in this phase of the SBD process: 

a) in the elicitation process, subject matter experts provide knowledge that is 
biased by personal experiences and preference, 

b) communication skills of the elicitors, ie. knowledge engineers, as well as 
SMEs impact the confidence in information provided; thus, confidence factors 
are typically embedded in the rules (they are based on the assessment of how 
reliable the information provided by experts is), 

c) the pruning methodology may be driven by designers' preferences that stem 
from their experience and intuition. 

We now illustrate the pruning concepts by using the ATD/CWM example. 
Recall the object model of Figure 7.3. Through the specialization relations 
(captured in OMT using the triangle symbol) we outline the choices for 
component selections. More specifically, a simple or a complex radar can be 
selected for the radar components. A choice of a color or a monochrome display 
is given for the air traffic display device. Moreover, through the one-to-many 
relation (depicted in OMT by the filled circle), the ATD/CWM system may have 
more than one Cpu. 
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The following production rules can be used in the selection and synthesis of a 
specific instance of the system. 

Rules for Radar Selection 

If required aircraft_bearing is two-dimensional and 

range is <= 250 miles 
then radar_type is simple 

If required aircraft_bearing is three-dimensional and 

range is > 250 miles 
then radar_type is complex 

Rules for Display Selection 

If aircraft type classification based on color separation 

then display_type is color 

If aircraft type classification based on brilliance and 

shape separation 
then display_type is monochrome 

Synthesis Rule for ATD/CWM 

If selected radar_type is simple and 
selected display_type is color and 
required emergency mode is degraded 
then the ATD/CWM system is configurable and 

it has at least 2 CPUs and 
it has a simple radar and 
it has a color display and 
it has a location records library and 

it has a collision warning monitor and 

it has a communication system and 

it has an alarm device and 

it has an navigation system and 

it has a user interface. 

In our methodology, the selection and synthesis rules (given in the form of 
production rules) are used by a reasoning engine that generates a specific design 
instance given specific values of design variables [19]. Such values instantiate 
design parameters which are associated as attributes with various entities (object 
classes). For example, a design requirement may impose a choice of two
dimensional 
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Figure 7.7: Pruned Instance of the ATD/CWM Object Model 

aircraft bearing or a color-based identification of aircraft type on the air traffic 
display. Those values are entered by the designer during the pruning process. 
Their combinations result in a specific object model instance that results from 
the family of design configurations given by the overall system's object model. 
In Figure 7.7, we show a possible instance of the ATD/CWM that can be pruned 
from the system entity structure object model (Figure 7.3). 

7.3.2.3 Behavioral Model Specification 

Behaviors can be associated with object models instances selected through the 
pruning process using Petri nets, StateCharts [7], Discrete Event System 
Specification (DEVS) [29], other finite state machine based formalisms, or 
continuous system specifications. In MBD, we strive to use formal modeling 
methods that allow the designer to construct a hierarchy of models using 
representations that are closed under coupling. The type of specification 
language used in modeling is very important. The specification must 
accommodate different levels of granularity so that the developer can map 
components at different levels of abstraction to corresponding hardware or 
software modules. 
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In our framework, we have worked extensively with the Discrete Event 
System Specification formalism [29]. DEVS is a general, formal specification 
language that allows the designers to specify a system as a mathematical object. 
The specification comprises a time base, inputs, states, and outputs and functions 
of determining next states and outputs. Designers make no decisions about how 
to build the components at this stage; they connect elementary blocks 
hierarchically until they arrive at a preliminary model that conforms to the 
project's requirements. We have used DEVS and its implementation 
environment DEVSJA V A to build models in a hierarchical and modular fashion 
[21]. This manner of model development permits a systems-oriented approach 
that has not been possible in the past with such simulation languages as Simscript 
or SIMAN. We must note, however, modularity and module composition 
features are now common in object-oriented simulation languages such as 
MODSIM or Modula. 

7.3.3 Simulation 

In this phase, execution of design models is carried out using the experimental 
frame paradigm [10,12,17]. Experimental frames define conditions under which 
models can be observed and experimented with. An experimental frame reflects 
modeling objectives. The statement of objectives is translated into specific 
performance measures. Necessary output, input and control variables are defined 
so that such measures can be obtained through simulation experiments. An 
experimental frame plays the following roles: a) it subjects a model to input 
stimuli (which represent potential interventions into the model's operation), b) it 
observes the model's reactions to the input stimuli and collects the data about 
such reactions (output data), and c) it controls the experimentation by placing 
relevant constraints on values of the designated model state variables and by 
monitoring these constraints. 
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Figure 7.8 illustrates the separation of a model and its experimental frame. A 
model can be executed in various experimental frames, each reflecting a specific 

Model 

Input Stimuli [00 1 D Outputs 

'---- Generator [ Acceptor 1 Transducer -
Experimental Frame 

Figure 7.8: ModellExperimental Frame Coupling 

objective of a simulation study. An experimental frame can be coupled to several 
design models (each reflecting an alternative, virtual design solution) so that trade
offs can be made and the best model can be selected with respect to the specific 
assessment objective that this frame represents. 

Therefore, the experimental frames provide the design team with a quantifiable 
means of trading off design solutions (in the form of simulation models) with 
respect to the set of design objectives. Such trade-off decisions can be made by 
team members using multiple criteria decision making (MCDM) techniques as 
depicted in Figure 7.9. In the scenario shown in the figure, alternative design 
solutions are given as models Ml' ... ,Mn. The experimental frames, EFJ and EF2 
reflect two performance objectives, ego component utilization (EF) and task 
throughput (EF). The models can now be cross evaluated in both frames and the 
tradeoff solution (the model M*) can be selected. 
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M* 

Figure 7.9: Trading-off Design Solutions using Experimental Frames and MCDM 

Experimental frames are given concrete form - employing the concepts of 
automata theory, a frame can be defined as a composition of a generator which 
produces the input segments sent to a model, an acceptor, ie., a device that 
continually monitors the simulation run for satisfaction of constraints, and a 
transducer which collects the input/output data and computes summary 
performance measures. Experimental frame template specifications can be stored 
in the experimental frame base (recall Figure 7.1) for reuse and rapid simulation 
run setup. 

We refer again to the A TD/CWM system example to illustrate the experimental 
frame concept. Assume that one of the objectives of the simulation based design 
process is to determine the optimal number of the CPUs in the system so that their 
utilization is maximized. Gaining introspection into this aspect of the system's 
performance would assist designers in selecting an appropriate number of 
processors in the air traffic detection system. 

First, we translate the utilization objective into a specific performance measure. 
Utilization is measured by monitoring the busy/idle ratio of the CPUs' operation. In 
addition, we introduce a variable that computes the joint utilization of the system's 
processors so that we can determine the fraction of time that both processors are 
simultaneously busy (the "and" is a logical conjunction in the formula below that 
we use for computing the joint utilization). We now specify the requisite elements 
of an experimental frame derived from these desiderata. 
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7.3.4 Experimental Frame CPUs Utilization 

7.3.4.1 Generator 

Generate input segments: 
radar sweep once per one-quarter second 
communication messages (a sequence of randomly distributed 
events) 
operator messages (a sequence ofrandomly distributed events) 

7.3.4.2 Transducer 

Monitor model variables: 
CPUl.Status (with range: busy, idle, fail) 
CPU2.Status (with range: busy, idle, fail) 
Time (with range: non-negative reals) 

Compute measures: 
CPUl.Utilization = Time.CPUl.Busy / Global.Observation.Time 
CPU2.Utilization = Time.CPU2.Busy / Global.Observation.Time 

CPUJoint.Utilization = Time (CPUl.Busy and CPU2.Busy) / 
Global.Observation. Time 

7.3.4.3 Acceptor 

Monitor simulation run 
Run until CPU 1. Status = Failor CPU2.Status = Failor 

Global.Observation.Time >= End.Time 

Simulation (driven by a set of experimental frames) is followed by analysis of 
how well design functionality and performance are met. Based on this analysis, the 
design model at hand may be further refined and modified. 

7.3.5 Design Modifications and Refinement 

The ability to modify and refine designs in an iterative manner at the level of 
virtual prototypes is not well addressed in the systems engineering community. 
The development of design modification procedures and thereby the 
incorporation of simulation into a design feedback and iteration loop is an open, 
general research challenge. 

A simple case would be to define methods to identify which elements and 
components of the design fail to meet the specification and provide this 
information to designers. The designers would then change the requirements or 
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refine the design models including their behavior, and would repeat the 
assessment using simulation. 

A complex approach would incorporate reasoning and heuristic procedures 
that would automatically iterate through the design space by changing various 
parameters and would arrive at the optimal solution. Such procedures are 
possible for well-defined domains (for instance see [22] for examples in the 
VLSI interconnect design domain). However, for projects that do not afford a 
high degree of design automation, the refinement heuristics would be driven by 
attributes such as the experience of design engineers, confidence in validity of 
simulation models, ability of team members to reach a consensus, and change 
risk tolerance. 

7.3.6 Partitioning and Technology Assignment 

After the system design is completed and evaluated at the virtual model level, a 
physical realization of the system must be carried out. The translation from the 
model to the actual implementation is typically done based on the available 
technology constraints and performance estimates for realizations of components 
in software or hardware. In traditional design, the partitioning scheme is often 
tied to the target architecture. In our approach, mapping model components to 
hardware and software is not as limited since the design is independent of the 
implementation until this phase, which is relatively late in the design. 

There is a great body of partitioning work that is well documented in the 
literature [1,12,26]. [1] provides an excellent review of the major classes of 
partitioning algorithms that not only can be used for VLSI circuit design, but for 
any system in which components are grouped and whose inter-group 
communication must be kept to a minimum. Among these classes of partitioning 
algorithms are the following: (1) move-based approaches such as greedy and 
iterative exchange algorithms, (2) geometric approaches such as vector 
partitioning, (3) combinatorial approaches such as max-flow min-cut, and (4) 
clustering-based approaches [1,26]. In addition, other researchers have either 
augmented the general algorithms (for example, Vahid [26] modified the min-cut 
algorithm for functional partitioning), or introduced new types of algorithms 
(such as Wolf who employed an object-oriented approach [28]). 

In the design of heterogeneous systems, the choice of how to implement the 
system architecture can make significant differences in performance and 
reliability. In the past, a hardware platform was often chosen and then software 
was written for correcting the inadequacies of the hardware. Currently, however, 
research has progressed from the idea of partitioning hardware elements, to that 
of partitioning a high level functional model of a system. Figure 7.10 shows an 
example partitioning into hardware and software, with the system model 
containing four functional components (A, B, C, D) that are partitioned into 
hardware (A, C, D) and software (B). 
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Figure 7.10: An illustration of the partitioning problem. 

We have been exploring the application of Bayesian Belief Networks (BBN) 
[14] to the partitioning problem. The application of BBN to hardware/software 
partitioning was first introduced by Olson and Rozenblit [13]. Before 
classification into hardware or software can begin, a functional description of the 
model is created (in a manner similar to the Specification Level Intermediate 
Format (SLIF) [25]). Next, the BBN is generated with nodes representing 
functional components, and causal links corresponding to component couplings, 
function accesses, and functional independence of components. The choice of 
which values to place inside the conditional matrices associated with each link 
depends on the communication needs between the given pair of elements, and 
how tightly their performance is coupled. Once the BBN is created, it can be 
used to evaluate the current design by incorporating the simulation results as 
evidences. 

Results are obtained from simulation and converted into evidence that is 
propagated throughout the BBN. The beliefs for each available type of 
classification are calculated at each component node and the system model (now 
possibly with some classified components) is altered to reflect the new 
classifications. Simulation is performed again, and the process is repeated until 
the components of the system model reach a level that requires the introduction 
of structural requirements for any further classification. The result of the 
refinement of the behavioral simulation is a functionally correct virtual prototype 
of the design. Each component is assigned to a general classification of a type of 
hardware or software. 
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7.4 Towards an Integrated Design Support 
Environment 

Clearly, the efficacy of a design methodology can only be conftrmed through its 
application in a design environment. Although much research has been done on 
codesign, only few successfully implemented environments have emerged that 
support heterogeneous embedded systems design. At the University of Arizona, 
we are developing a computer-aided design environment called SONORA [4]. 
This environment implements the theory-based tenets of the model-based 
codesign. We are striving to provide an integrated tool set that will support the 
design automation of complex, real-time embedded systems. 

We are currently implementing SONORA on a network of UNIX workstations 
by integrating commercial and academic tools. We are planning to work with 
the graphical interfaces provided by commercial tools for design entry as well as 
informal text descriptions. Requirements can be entered prior to the modeling 
phase and updated during model reftnement using the ST A TEMATE 
MAGNUM Requirements Tracer'fM. The requirements will be formatted in a 
semi-formal manner and extracted to allow custom tools to generate top level 
functional model structures and test cases for experimental frame construction. 
Various modeling formalisms will be used in combination to be able to 
accurately reflect the different modeling aspects: DEVS, SES, and StateCharts to 
build a complete model speciftcation. The resulting model will then be 
simulated with the appropriate simulation engines. We currently use DEVS
Java, the most recent implementation of the DEVS formalism, to simulate 
models of a system. However, we are investigating the automatic generation of 
DEVS models from StateChart descriptions as well as the use of DEV and DESS 
(Difference Equation System Specification) to represent system components that 
are more appropriately modeled in the continuous time domain. 

Research is being conducted on introducing simulation results into a BBN 
during the simulation cycle. When the model is refined to a synthesizable level, 
the information from the BBN is used by model-to-realization mapping 
algorithms to prepare the verified model for prototype synthesis. The use of the 
hardware and software language synthesis tools within STATEMA TE [7] is 
ftnally considered for use in SONORA to provide the realization descriptions for 
functions (e.g., C and VHDL). Synthesis of control and communication 
descriptions requires further research in order to realize a fully automated 
prototype synthesis. The advantage of SONORA over other environments is that it 
will be able to heavily leverage from the beneftts offered by model-based 
codesign. 
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7.5 Summary 

To gather the strands up, we now summarize the steps and phases in the MBD 
process. The phases required to execute the methodology are: 

• Decompositions, specializations, and attributes of components of the 
system being designed are conceptualized using the object modeling 
approach. We utilize the object model base as a repository of previous 
design modeling experience. Thus, we may retrieve an object model 
from this base that is applicable to the modeling domain at hand. Such a 
model is modified and enhanced with entities required in the new 
project. 

• A rule base to be used in the pruning process is developed. 
Requirements and constraints are translated into production rules. 

• Pruning is invoked which generates recommendations for candidate 
solutions to the design problem in the form of object model instances. 

• Behaviors are associated with the object model instances. 
• Relevant experimental frames that reflect design objectives are defined. 
• Simulation is run and results are evaluated and design models are 

ranked. They are assessed and refined until a final design model is 
obtained. The above phases may be iterated in a feedback process. 

• The final model (ie. virtual design prototype) is handed over to 
partitioning and technology assignment. 
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