
Chapter 7

Systems Design: A Simulation
Modeling Framework

J.W. Rozenblit

This chapter surveys a model-based approach to the design of complex,
multifaceted systems. The discussion is organized as follows: first, a brief
introduction to the model-based design (MBD) methodology is given.
Then, supporting concepts, knowledge representation and modeling
techniques are discussed. Brief, illustrative examples are given to
elucidate the theory-based notions. The chapter concludes with postulates
for a computer-aided system that can automate the design of
heterogeneous systems.

7.1 Introduction and Motivation

Modem engineering design is a highly complex process. It involves a
multiplicity of objectives, constraints, materials, and configurations. Despite
great strides in computational tools such as high performance workstations,
distributed and concurrent processing environments intended to help to cope with
this rising complexity, the design process remains error prone. Given the often
severe constraints imposed by cost, environmental impacts, safety regulations,
etc., designers are forced to make compromises that would not be necessary in
an ideal world

In the late nineteen eighties and early nineteen nineties, we had witnessed a
proliferation of efforts to support the design process with computer aided tools
and environments. Most successful in that undertaking was the electronic design
automation community whose efforts led to the definition of "electronic design
framework" and subsequent developments of design environments and tools
such as Falcon and Synopsis.

The term framework in electronic design automation denotes a computer
based, integrated design environment that binds and supports design tools [2]. In
their seminal paper, Harrison et al. [8] defined a framework as " ... all the

H. S. Sarjoughian et al. (eds.), Discrete Event Modeling and Simulation Technologies
© Springer Science+Business Media New York 2001

108 l.W. Rozenblit

underlying facilities provided to the CAD tool developer, the CAD system
integrator, and the end user necessary to facilitate their tasks."

The CAD Framework Initiative (CFI) viewed a framework as a collection of
extensible programs/modules used to develop a unified CAD system [2] For the
sake of brevity, we do not discuss the history of electronic CAD here nor do we
trace the evolution of the framework concept. (Excellent summaries are given in
[3,8,23].

Another notable thrust in the efforts to support complex design was the
Defense Advanced Research Projects Agency (DARPA) program in concurrent
engineering. In 1987, DARPA had asked experts from industry, academia, and
government to investigate the shortcomings in the defense-related product
development process. Japanese product development techniques were studied in
which the so-called "tiger approach" was applied. In this approach, all personnel
involved in the project were assembled at its conception in order to find a
solution which addresses the participants' individual concerns but also benefits
the team as a whole. From this relatively general description, stemmed the term
"concurrent engineering" (CE). The term was refined by Winner et al. in [27] as
" ... a systematic approach to the integrated, concurrent design of products and
their related processes, including manufacture and support. [CE] is intended to
cause the developer, from the outset, to consider all elements of the product life
cycle from conception through disposal, including quality, cost, schedule, and
user requirements."

To transplant the approach into the American research and development
environment, DARPA concluded that an advanced computer technology was
needed to create virtual teams who might be scattered all over the country. Thus
came about the DICE program (DARPA Initiative in Concurrent Engineering)
[24]. Special issues of archival journals had reported extensively on CE [9,10].

Simulation modeling had long been recognized as a useful tool in assessing
the quality of sub-optimal design choices and arriving at acceptable trade-offs
prior to the physical realization of the system being designed. Often termed
"virtual prototyping", or "simulation-based design" (SBD), this approach was
endorsed by the concurrent engineering community and applied primarily in the
mechanical engineering domain [5]. Subsequent, efforts focused on the
development of techniques that would integrate distributed simulation
technologies, physics-based modeling, virtual and collaborative environments.
The long-range goal of such an integration is the application of these, and other,
technologies that permit integrated process and product development (IPPD).
The perceived benefits of simulation-based design clearly justify the research
and development expenditures. If successfully applied to complex engineering
enterprises, SBD can facilitate assessment of products and process designs early
in the lifecycle and eliminate the cost of physical prototyping.

Our position is that computer simulation and other advanced computational
tools are of limited effectiveness without a methodology to induce a systematic
handling of the multitude of goals and constraints impinging on the design
process. Therefore, our work focuses on the development of techniques in which

7. Systems Design: A Simulation Modeling Framework 109

design models can be synthesized and tested by simulation within a number of
objectives, taken individually or in trade-off combinations. We strive to provide
a uniform treatment of the design process at different levels of system
representation and abstraction. By providing a spectrum of performance
evaluation methods, including trade-off measurements and evaluation of
multilevel, multicomponent, hierarchically specified models, our approach
facilitates description of designs through quantitative and, more generally,
comparative measures.

Our approach, termed model-based design (MBD) [16,17,18,19], was
initially strongly influenced by multifaceted modeling concepts developed by
Zeigler [29] in the late seventies and mid-eighties. The approach is primarily
intended to support the development of simulateable models of the system under
design. It offers: a) representation methods to capture structural and behavioral
design knowledge, b) heuristics for managing design space complexity, c)
techniques for simulation-based design assessment and trade-offs, and d)
methods for design partitioning [13].

This chapter surveys the fundamental tenets of the MBD framework. A high
level example serves to illustrate the methodology and its various phases. For an
comprehensive exposition of the formal concepts underlying the methodology
and its phases, we refer the reader to [16,178,18,19].

7.1.1 System Design and Modeling: Synergies

As opposed to system analysis where models are typically derived from an
existing real system, in design the model comes first as a set of "blueprints" from
which the system will be built, implemented or deployed. The blueprints take
several forms; they could be simple verbal descriptions, a set of equations, an
architectural drawing, or a netlist file. The goal of such defined systems design is
to study models of design before they are physically realized.

Here, a question arises: "How can modeling and simulation concepts support
systems design?" To address this question, we enumerate some principal
elements in the dynamics of the design process and relate them to simulation
modeling.

1. Designs are created by individuals who use basic problem solving
techniques such as problem definition, proposal of a solution, and test
of the solution against the problem statement and requirements.
Modeling, as a creative act, follows similar steps. To build a model, the
modeler interprets requirements and objectives of the project, proposes a
suite of simulateable models that serve as "design blueprints." Simulation
is a means of executing the models and testing how well they meet the
project's requirements.

2. Designs are often of a large scale. Thus, techniques are needed for
decomposing the design problem into subproblems that are easily

110 J.W. Rozenblit

comprehensible to the designers. Partial solutions could then be
generated and integrated using proper aggregation techniques.
Simulation modeling methodologies provide techniques for model
decomposition, hierarchical specification and aggregation of model
components.

3. The attributes of design are described in the form that allows
comparative studies and trade-off analyses. Simulation-based design
performance evaluation uses model generated data for such analyses.

4. Complex designs comprise heterogeneous components - techniques are
needed to properly integrate them into a complete system. Recent
advances in embedded systems modeling [1,4,6,11 ,13] and real-time
systems modeling are a promising step in this direction.

In what follows, we survey the MBD framework and illustrate its elements
on an example.

7.2 The MDB Methodology

Our approach to design is shown in Figure 7.1. The process depicted in the figure
uses simulateable models as virtual prototypes of the system under design
(SUD). The core activities in the framework are system specification, modeling,
simulation, refinement, and partitioning (technology assignment).

Figure 7.1: Simulation-Based Design Methodology

7. Systems Design: A Simulation Modeling Framework 111

To build a simulateable design model, we first construct object models, ie.
representations of components from which a system will be built, their
relationships, and attributes. Such models are given behavioral specification so
that they can be simulated.

Simulation is then used in a two-fold manner: a) as a means of verifying the
functionality of the proposed solution, ie. the execution of the model's dynamics
to ensure that the behaviors are consistent with those perceived for the system
being designed, and b) as a way of assessing how well performance requirements
are met by the proposed solution (for example, we can collect data on component
utilization, system's throughput, etc.).

An assessment of simulation data leads to either further model refinement
and design modifications, or to the system partitioning and technology
assignment phase. During this phase, decisions as to which components are
realized in hardware, software and interfaces are made. (This particular phase is
pertinent to design of heterogeneous systems that contain such mixed elements).

Our overall design model combines various representations, simulation
modeling, and heuristic techniques. They are now described in more detail.

7.3 MBD Process Elements

7.3.1 System Specifications

In the first phase, the designer converts the system's requirements and
constraints into a formal specification. This specification defines the interface
between the system and its environment and the system's functionality.
Nonfunctional requirements such as size, weight, etc. are also documented. Since
our approach strives for implementation independence, designers can refine the
specification without modifying any physically realized components.

7.3.2 Modeling

This is the core activity that leads to virtual design prototypes. In our approach,
we take a holistic view that aims at the development of the overall system's
model rather than its individual components. A model is a set of instructions for
generating data. Valid model-generated data is a subset of the system's
behavioral data. A specification of the system and its environment forms the
basis for building models that correspond to a set of questions about the design,
including its objectives and reason for being [15,17]. The modeling phase of
MBD is depicted in Figure 7.2.

112 J.W. Rozenblit

Rule
Base

~
Object Model

Instances

Behavioral
Model Specification

oo[§J-
Simulatable Models

+
To Simulation

.. .

Figure 7.2: Generation of Simulateable Models

7.3.2.1 Object Modeling

Oblecl Model
Base

Model Base

The design model construction process begins with developing a representation
of design components, their decompositions, variants, and attributes. As a step
toward a complete knowledge representation scheme for design support, we
combined the decomposition, taxonomic, and coupling relationships in a
knowledge representation scheme called the system entity structure (SES).
Previous work [16,17,18,19] identified the need for representing the structure
and behavior of systems, in a declarative scheme related to frame-theoretic and
object-based formalisms. The elements represented are motivated, on the one
hand, by systems theory concepts of decomposition (ie. how a system is
hierarchically broken down into components) and coupling (ie. how these
components may be interconnected to reconstitute the original system). On the

7. Systems Design: A Simulation Modeling Framework 113

other hand, systems theory has not focused on taxonomic relations, as
represented for example in frame-hierarchy knowledge representation schemes.
In the SES scheme, such representation concerns the admissible variants of
components in decompositions and the further specializations of such variants.

The interaction of decomposition, coupling and taxonomic relations in an SES
affords a compact specification of a family of models for a given domain. In a
system entity structure, entities refer to conceptual components of reality for which
models may reside in a model base. Also associated with entities are slots for
attribute knowledge representation. An entity may have several aspects, each
denoting a decomposition, and therefore having several entities. An entity may also
have several specializations, each representing a classification of possible variants
of the entity.

Object modeling requires several types of decisions on the part of design
project engineers. The classical object model development process advocated by
Rumbaugh et. al. [20] involves a syntactic analysis of the requirements
document. Through this analysis, noun, verb, and adjective phrases are
identified. Classes are then constructed to reflect the nouns (objects that
represent system components). Association links are derived from the verb
phrases. For example, a "has part" phrase can be directly expressed through a
decomposition link while an "is a kind of' phrase can be reflected through the
generalization relation.

The syntactic analysis results in the initial object model. However, the model's
refinement is a responsibility of the modelers who make the following decisions:

a) further identify how components decompose into subcomponents in the
project's domain and provide a set of alternative decompositions,

b) identify sets of variants for components specified in various decompositions
(for example, a computer display type could be an LCD or a CRT
monochrome, or a CRT color display),

c) identify attributes for the components that describe the components' properties
and characteristics salient to the project at hand.

The system entity structure organizes possibilities for a variety of system
decompositions and taxonomies and, consequently, a variety of model
constructions. Its generative capability facilitates convenient definition and
representation of models and their attributes at multiple levels of aggregation and
abstraction. More complete discussions of the system entity structure and its
associated structure transformations are presented in [16,17]. The SES
representation can be rendered using the Object Modeling Technique (OMT)
notation (a less complex precursor to the Unified Modeling Language). Here, we
illustrate its expressive power using the basic concepts from an Air Traffic
Display/Collision Warning (and Monitoring) System (ATD/CWS) system design
example.

The ATD/CWM system is intended to monitor air traffic and issue warnings
should a threat of collision between a host aircraft and other aircraft occur.

114 lW. Rozenblit

Figure 7.3 depicts the system entity structure of the ATD/CWS system rendered
using the OMT notation. The A TD/CWS is a part of a larger distributed network.
Through the aggregation symbol (diamond in Figure 7.3) we show its
decomposition into a) location records library, b) collision warning monitor, c)
external interfaces (in OMT, the filled circle denotes one or more elements; thus
the plural interpretation of the class object "External Interface"), and d) CPUs. The
external interface object is classified through the specialization relation (or, as
termed in the OMT notation, through the generalization relation depicted by the
triangle symbol) into radar, communication system, user inteiface, alarm device,
and navigation system. Furthermore, the radar object is specialized into simple, and
complex radar. The air traffic display has two variants: a) color display and b)
monochrome display.

Figure 7.3: Object Model of the ATD/CWM System

The object model of Figure 7.3 can be refined further to show attributes of the
system's components and their methods. In Figure 7.4, we refine the object
instance of ATD/CWM to include the attribute mode (with a possible range
normal, and degraded) and a method detect collision. This method would
implement the collision detection algorithm. Similarly, we have refined the class
object Location Records Library to show the structure of the Location Record
object. Such an object has attributes that relay the flight information as shown in

7. Systems Design: A Simulation Modeling Framework 115

Figure 7.5. In Figure 7.6, we illustrate a refinement of the Air Traffic Display and
the Aircraft ID Icons.

ATO/CWS '\
System ~

IV
mode: (normal,
degraded)

detect collision

/'

Figure 7.4: Refined Class Object ATD/CWM

f

Location Records
Library

1
location Record

Aircraft id: (alphanumeric)
Airspeed: (knots)
Altitude: (feet)
Posttion: (x,Y)
Bearing: (degrees)

Network

Figure 7.5: Refined Instance of Location Records Library Class

,

116 J.W. Rozenblit

This high level representation, shown in the OMT diagrams, sets up an object
model from which a specific design instance of system components (as well as
their relationships) for the ATD/CWM system can be synthesized. We discuss
this synthesis in the following section.

ATD Display

color

display icon
display advisory message

Ai rcraft id icon

color
position

Figure 7.6: Refinement of the Air Traffic Display Object

7.3.2.2 Pruning

In our methodology, a model is synthesized from elements stored in the model
base. More specifically, behaviors are associated with design components
identified in the object models. This synthesis is the result of pruning a
substructure from the system entity structure or an OMT diagram. Pruning can
be viewed as a knowledge-based search through the space of candidate solutions
to the design problem. This is consistent with a commonly taken view that design
is a search process in which a satisfactory design solution is produced from a
number of alternatives [17,19]. Those alternatives come from knowledge of the
relevant domain. We use production rules [19] to represent design objectives,
constraints, requirements and performance expectations. The aim of pruning is to
recommend plausible object model instances for further design assessment using
simulation.

7. Systems Design: A Simulation Modeling Framework 117

The following steps are required to provide the rules that guide pruning of the
system entity structure:

1. for each specialization (ie. generalization relationship), specify a set of
rules for selecting an object; that is select an instance of a system's
component from possible variants,

2. for an entity with several aspects, ie. decompositions (or in the OMT
terminology aggregations), specify rules for generating a unique aspect;

3. for each aspect, ie. aggregation, specify rules that ensure that the
objects selected from specializations are configurable, ie., the
components they represent can be validly coupled.

Thus, to guide the search through the design space defined by the object
models, we specify a) selection rules for choosing a component instance from a
variety of elements offered by the generalization relations, b) synthesis rules for
combining the selected instances.

To specify the pruning rules, the knowledge engineering team elicits domain
expertise from subject matter experts (SMEs). The expertise is encoded in the
form of if-then production rules that constrain the choices offered by
specializations and provide a coupling recipe for aggregating components identified
in decompositions. In addition to encoding the experts' domain knowledge, the
rules may translate a requirements statement into an operational means of selecting
the most adequate choice of object models for the system under design (SUD) (for
example, when distributed processing is required, select a multiprocessor
computing platform).

Several attributes playa role in this phase of the SBD process:

a) in the elicitation process, subject matter experts provide knowledge that is
biased by personal experiences and preference,

b) communication skills of the elicitors, ie. knowledge engineers, as well as
SMEs impact the confidence in information provided; thus, confidence factors
are typically embedded in the rules (they are based on the assessment of how
reliable the information provided by experts is),

c) the pruning methodology may be driven by designers' preferences that stem
from their experience and intuition.

We now illustrate the pruning concepts by using the ATD/CWM example.
Recall the object model of Figure 7.3. Through the specialization relations
(captured in OMT using the triangle symbol) we outline the choices for
component selections. More specifically, a simple or a complex radar can be
selected for the radar components. A choice of a color or a monochrome display
is given for the air traffic display device. Moreover, through the one-to-many
relation (depicted in OMT by the filled circle), the ATD/CWM system may have
more than one Cpu.

118 J.W. Rozenblit

The following production rules can be used in the selection and synthesis of a
specific instance of the system.

Rules for Radar Selection

If required aircraft_bearing is two-dimensional and

range is <= 250 miles
then radar_type is simple

If required aircraft_bearing is three-dimensional and

range is > 250 miles
then radar_type is complex

Rules for Display Selection

If aircraft type classification based on color separation

then display_type is color

If aircraft type classification based on brilliance and

shape separation
then display_type is monochrome

Synthesis Rule for ATD/CWM

If selected radar_type is simple and
selected display_type is color and
required emergency mode is degraded
then the ATD/CWM system is configurable and

it has at least 2 CPUs and
it has a simple radar and
it has a color display and
it has a location records library and

it has a collision warning monitor and

it has a communication system and

it has an alarm device and

it has an navigation system and

it has a user interface.

In our methodology, the selection and synthesis rules (given in the form of
production rules) are used by a reasoning engine that generates a specific design
instance given specific values of design variables [19]. Such values instantiate
design parameters which are associated as attributes with various entities (object
classes). For example, a design requirement may impose a choice of two
dimensional

7. Systems Design: A Simulation Modeling Framework 119

Figure 7.7: Pruned Instance of the ATD/CWM Object Model

aircraft bearing or a color-based identification of aircraft type on the air traffic
display. Those values are entered by the designer during the pruning process.
Their combinations result in a specific object model instance that results from
the family of design configurations given by the overall system's object model.
In Figure 7.7, we show a possible instance of the ATD/CWM that can be pruned
from the system entity structure object model (Figure 7.3).

7.3.2.3 Behavioral Model Specification

Behaviors can be associated with object models instances selected through the
pruning process using Petri nets, StateCharts [7], Discrete Event System
Specification (DEVS) [29], other finite state machine based formalisms, or
continuous system specifications. In MBD, we strive to use formal modeling
methods that allow the designer to construct a hierarchy of models using
representations that are closed under coupling. The type of specification
language used in modeling is very important. The specification must
accommodate different levels of granularity so that the developer can map
components at different levels of abstraction to corresponding hardware or
software modules.

120 J.W. Rozenblit

In our framework, we have worked extensively with the Discrete Event
System Specification formalism [29]. DEVS is a general, formal specification
language that allows the designers to specify a system as a mathematical object.
The specification comprises a time base, inputs, states, and outputs and functions
of determining next states and outputs. Designers make no decisions about how
to build the components at this stage; they connect elementary blocks
hierarchically until they arrive at a preliminary model that conforms to the
project's requirements. We have used DEVS and its implementation
environment DEVSJA V A to build models in a hierarchical and modular fashion
[21]. This manner of model development permits a systems-oriented approach
that has not been possible in the past with such simulation languages as Simscript
or SIMAN. We must note, however, modularity and module composition
features are now common in object-oriented simulation languages such as
MODSIM or Modula.

7.3.3 Simulation

In this phase, execution of design models is carried out using the experimental
frame paradigm [10,12,17]. Experimental frames define conditions under which
models can be observed and experimented with. An experimental frame reflects
modeling objectives. The statement of objectives is translated into specific
performance measures. Necessary output, input and control variables are defined
so that such measures can be obtained through simulation experiments. An
experimental frame plays the following roles: a) it subjects a model to input
stimuli (which represent potential interventions into the model's operation), b) it
observes the model's reactions to the input stimuli and collects the data about
such reactions (output data), and c) it controls the experimentation by placing
relevant constraints on values of the designated model state variables and by
monitoring these constraints.

7. Systems Design: A Simulation Modeling Framework 121

Figure 7.8 illustrates the separation of a model and its experimental frame. A
model can be executed in various experimental frames, each reflecting a specific

Model

Input Stimuli [00 1 D Outputs

'---- Generator [Acceptor 1 Transducer -
Experimental Frame

Figure 7.8: ModellExperimental Frame Coupling

objective of a simulation study. An experimental frame can be coupled to several
design models (each reflecting an alternative, virtual design solution) so that trade
offs can be made and the best model can be selected with respect to the specific
assessment objective that this frame represents.

Therefore, the experimental frames provide the design team with a quantifiable
means of trading off design solutions (in the form of simulation models) with
respect to the set of design objectives. Such trade-off decisions can be made by
team members using multiple criteria decision making (MCDM) techniques as
depicted in Figure 7.9. In the scenario shown in the figure, alternative design
solutions are given as models Ml' ... ,Mn. The experimental frames, EFJ and EF2
reflect two performance objectives, ego component utilization (EF) and task
throughput (EF). The models can now be cross evaluated in both frames and the
tradeoff solution (the model M*) can be selected.

122 J.W. Rozenblit

M*

Figure 7.9: Trading-off Design Solutions using Experimental Frames and MCDM

Experimental frames are given concrete form - employing the concepts of
automata theory, a frame can be defined as a composition of a generator which
produces the input segments sent to a model, an acceptor, ie., a device that
continually monitors the simulation run for satisfaction of constraints, and a
transducer which collects the input/output data and computes summary
performance measures. Experimental frame template specifications can be stored
in the experimental frame base (recall Figure 7.1) for reuse and rapid simulation
run setup.

We refer again to the A TD/CWM system example to illustrate the experimental
frame concept. Assume that one of the objectives of the simulation based design
process is to determine the optimal number of the CPUs in the system so that their
utilization is maximized. Gaining introspection into this aspect of the system's
performance would assist designers in selecting an appropriate number of
processors in the air traffic detection system.

First, we translate the utilization objective into a specific performance measure.
Utilization is measured by monitoring the busy/idle ratio of the CPUs' operation. In
addition, we introduce a variable that computes the joint utilization of the system's
processors so that we can determine the fraction of time that both processors are
simultaneously busy (the "and" is a logical conjunction in the formula below that
we use for computing the joint utilization). We now specify the requisite elements
of an experimental frame derived from these desiderata.

7. Systems Design: A Simulation Modeling Framework 123

7.3.4 Experimental Frame CPUs Utilization

7.3.4.1 Generator

Generate input segments:
radar sweep once per one-quarter second
communication messages (a sequence of randomly distributed
events)
operator messages (a sequence ofrandomly distributed events)

7.3.4.2 Transducer

Monitor model variables:
CPUl.Status (with range: busy, idle, fail)
CPU2.Status (with range: busy, idle, fail)
Time (with range: non-negative reals)

Compute measures:
CPUl.Utilization = Time.CPUl.Busy / Global.Observation.Time
CPU2.Utilization = Time.CPU2.Busy / Global.Observation.Time

CPUJoint.Utilization = Time (CPUl.Busy and CPU2.Busy) /
Global.Observation. Time

7.3.4.3 Acceptor

Monitor simulation run
Run until CPU 1. Status = Failor CPU2.Status = Failor

Global.Observation.Time >= End.Time

Simulation (driven by a set of experimental frames) is followed by analysis of
how well design functionality and performance are met. Based on this analysis, the
design model at hand may be further refined and modified.

7.3.5 Design Modifications and Refinement

The ability to modify and refine designs in an iterative manner at the level of
virtual prototypes is not well addressed in the systems engineering community.
The development of design modification procedures and thereby the
incorporation of simulation into a design feedback and iteration loop is an open,
general research challenge.

A simple case would be to define methods to identify which elements and
components of the design fail to meet the specification and provide this
information to designers. The designers would then change the requirements or

124 J.W. Rozenblit

refine the design models including their behavior, and would repeat the
assessment using simulation.

A complex approach would incorporate reasoning and heuristic procedures
that would automatically iterate through the design space by changing various
parameters and would arrive at the optimal solution. Such procedures are
possible for well-defined domains (for instance see [22] for examples in the
VLSI interconnect design domain). However, for projects that do not afford a
high degree of design automation, the refinement heuristics would be driven by
attributes such as the experience of design engineers, confidence in validity of
simulation models, ability of team members to reach a consensus, and change
risk tolerance.

7.3.6 Partitioning and Technology Assignment

After the system design is completed and evaluated at the virtual model level, a
physical realization of the system must be carried out. The translation from the
model to the actual implementation is typically done based on the available
technology constraints and performance estimates for realizations of components
in software or hardware. In traditional design, the partitioning scheme is often
tied to the target architecture. In our approach, mapping model components to
hardware and software is not as limited since the design is independent of the
implementation until this phase, which is relatively late in the design.

There is a great body of partitioning work that is well documented in the
literature [1,12,26]. [1] provides an excellent review of the major classes of
partitioning algorithms that not only can be used for VLSI circuit design, but for
any system in which components are grouped and whose inter-group
communication must be kept to a minimum. Among these classes of partitioning
algorithms are the following: (1) move-based approaches such as greedy and
iterative exchange algorithms, (2) geometric approaches such as vector
partitioning, (3) combinatorial approaches such as max-flow min-cut, and (4)
clustering-based approaches [1,26]. In addition, other researchers have either
augmented the general algorithms (for example, Vahid [26] modified the min-cut
algorithm for functional partitioning), or introduced new types of algorithms
(such as Wolf who employed an object-oriented approach [28]).

In the design of heterogeneous systems, the choice of how to implement the
system architecture can make significant differences in performance and
reliability. In the past, a hardware platform was often chosen and then software
was written for correcting the inadequacies of the hardware. Currently, however,
research has progressed from the idea of partitioning hardware elements, to that
of partitioning a high level functional model of a system. Figure 7.10 shows an
example partitioning into hardware and software, with the system model
containing four functional components (A, B, C, D) that are partitioned into
hardware (A, C, D) and software (B).

7. Systems Design: A Simulation Modeling Framework 125

Hardware

000

Software

'-------, ------------.\ 0
System Model Partitioning

Assignments

Figure 7.10: An illustration of the partitioning problem.

We have been exploring the application of Bayesian Belief Networks (BBN)
[14] to the partitioning problem. The application of BBN to hardware/software
partitioning was first introduced by Olson and Rozenblit [13]. Before
classification into hardware or software can begin, a functional description of the
model is created (in a manner similar to the Specification Level Intermediate
Format (SLIF) [25]). Next, the BBN is generated with nodes representing
functional components, and causal links corresponding to component couplings,
function accesses, and functional independence of components. The choice of
which values to place inside the conditional matrices associated with each link
depends on the communication needs between the given pair of elements, and
how tightly their performance is coupled. Once the BBN is created, it can be
used to evaluate the current design by incorporating the simulation results as
evidences.

Results are obtained from simulation and converted into evidence that is
propagated throughout the BBN. The beliefs for each available type of
classification are calculated at each component node and the system model (now
possibly with some classified components) is altered to reflect the new
classifications. Simulation is performed again, and the process is repeated until
the components of the system model reach a level that requires the introduction
of structural requirements for any further classification. The result of the
refinement of the behavioral simulation is a functionally correct virtual prototype
of the design. Each component is assigned to a general classification of a type of
hardware or software.

126 J.W. Rozenblit

7.4 Towards an Integrated Design Support
Environment

Clearly, the efficacy of a design methodology can only be conftrmed through its
application in a design environment. Although much research has been done on
codesign, only few successfully implemented environments have emerged that
support heterogeneous embedded systems design. At the University of Arizona,
we are developing a computer-aided design environment called SONORA [4].
This environment implements the theory-based tenets of the model-based
codesign. We are striving to provide an integrated tool set that will support the
design automation of complex, real-time embedded systems.

We are currently implementing SONORA on a network of UNIX workstations
by integrating commercial and academic tools. We are planning to work with
the graphical interfaces provided by commercial tools for design entry as well as
informal text descriptions. Requirements can be entered prior to the modeling
phase and updated during model reftnement using the ST A TEMATE
MAGNUM Requirements Tracer'fM. The requirements will be formatted in a
semi-formal manner and extracted to allow custom tools to generate top level
functional model structures and test cases for experimental frame construction.
Various modeling formalisms will be used in combination to be able to
accurately reflect the different modeling aspects: DEVS, SES, and StateCharts to
build a complete model speciftcation. The resulting model will then be
simulated with the appropriate simulation engines. We currently use DEVS
Java, the most recent implementation of the DEVS formalism, to simulate
models of a system. However, we are investigating the automatic generation of
DEVS models from StateChart descriptions as well as the use of DEV and DESS
(Difference Equation System Specification) to represent system components that
are more appropriately modeled in the continuous time domain.

Research is being conducted on introducing simulation results into a BBN
during the simulation cycle. When the model is refined to a synthesizable level,
the information from the BBN is used by model-to-realization mapping
algorithms to prepare the verified model for prototype synthesis. The use of the
hardware and software language synthesis tools within STATEMA TE [7] is
ftnally considered for use in SONORA to provide the realization descriptions for
functions (e.g., C and VHDL). Synthesis of control and communication
descriptions requires further research in order to realize a fully automated
prototype synthesis. The advantage of SONORA over other environments is that it
will be able to heavily leverage from the beneftts offered by model-based
codesign.

7. Systems Design: A Simulation Modeling Framework 127

7.5 Summary

To gather the strands up, we now summarize the steps and phases in the MBD
process. The phases required to execute the methodology are:

• Decompositions, specializations, and attributes of components of the
system being designed are conceptualized using the object modeling
approach. We utilize the object model base as a repository of previous
design modeling experience. Thus, we may retrieve an object model
from this base that is applicable to the modeling domain at hand. Such a
model is modified and enhanced with entities required in the new
project.

• A rule base to be used in the pruning process is developed.
Requirements and constraints are translated into production rules.

• Pruning is invoked which generates recommendations for candidate
solutions to the design problem in the form of object model instances.

• Behaviors are associated with the object model instances.
• Relevant experimental frames that reflect design objectives are defined.
• Simulation is run and results are evaluated and design models are

ranked. They are assessed and refined until a final design model is
obtained. The above phases may be iterated in a feedback process.

• The final model (ie. virtual design prototype) is handed over to
partitioning and technology assignment.

Acknowledgements

The material presented here is based in part on a report to Systems World, Inc. I
appreciate the assistance of Dr. Stephanie White for facilitating this publication. I am also
grateful to my research team members: Tony Ewing, John Olson, Steve Cunning and
Stephan Schulz for all their contributions to the development of the hardware/software
codesign framework.

References

[I] C. J. Alpert and A. B. Kahng, "Recent Directions In Netlist Partitioning: a Survey,"
Integration, the VLSI Journal, Vol. 19, No. 1-2, August 1995, pp. 1-81.

[2] 1. Bhat and F. Talm. A seven-layer model of framework functionality. Electronic
Engineering, September 1990, pp.67-73.

[3] F. Bretschneider. A Process Model for Design Flow Management and Planning. PhD
Dissertation. Department of Computer Science, University of Kaiserslautem,
Germany, July 1992.

128 J.W. Rozenblit

[4] S. Cunning, T.C. Ewing, J.T. Olson, J.W. Rozenblit, and S. Schulz, Towards an
Integrated, Model-Based Codesign Environment. Proceedings of the 1998 IEEE
Conference on Engineering of Computer-Based Systems, 136-143, Nashville, March
1999.

[5] M. Cutkosky et al. PACT: An Experiment in Integrating Concurrent Engineering
Systems. IEEE Computer, January 1993, pp. 28-37.

[6] D. Gajski, S. Narayan, F. Vahid, and J. Gong, Specification and Design of Embedded
Systems, Englewood Cliffs, NJ: Prentice-Hall, 1994.

[7] D. Harel et ai. Statemate: A Working Environment for the Development of Complex
Reactive Systems. IEEE Trans. on Software Engineering, 16(4), 403-414, April
1990.

[8] D. S. Harrison et al. Electronic CAD Frameworks. Proceedingsofthe
IEEE, v 78 n 2, FEB 1990, pp. 393-417.

[9] IEEE Computer. January 1993.
[10] IEEE Spectrum. July 1991.
[11] S. Kumar, A Unified Representation for Hardware! Software Codesign, Ph.D.

Dissertation, University of Virginia, 1995.
[12] G. De Micheli and R.K. Gupta, "Hardware/Software Co-Design," Proceedings of the

IEEE, 85(3),pp. 349-65,1997.
[13] J.T. Olson and J.W. Rozenblit, A Framework for Hardware/Software Partitioning

Utilizing Bayesian Belief Networks, Proceedings of the 1998 IEEE Conference on
Systems, Man and Cybernetics, 3983-3988. San Diego, October, 1998.

[14] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, Morgan Kaufmann Publishers, San Mateo, CA, 1988.

[15] J.W. Rozenblit and K. Buchenrieder (Eds.), Codesign: Computer-Aided
Software!Hardware Engineering, IEEE Press, 1994.

[16] J.W. Rozenblit and B.P. Zeigler, Design and Modeling Concepts, In International
Encyclopedia of Robotics. (Ed. R. Dort), 308-322, John Wiley and Sons, New York,
1988.

[17] J.W. Rozenblit and J.F. Hu, Integrated Knowledge Representation and Management
in Simulation Based Design Generation, IMACS Journal of Mathematics and
Computers in Simulation, 34(3-4),262-282, 1992.

[18] J.W. Rozenblit, Experimental Frame Specification Methodology for Hierarchical
Simulation Modeling, International Journal of General Systems, 19(3), 317-336,
1991.

[19] J.W. Rozenblit and Y.M. Huang, Rule-Based Generation of Model Structures in
Multifaceted Modeling and System Design, ORSA Journal on Computing, 3(4),330-
344.

[20] J. Rumbaugh et ai., Object Oriented Modeling and Analysis. Prentice Hall, 1991.
[21] S. Schulz, J.W. Rozenblit, M. Mrva, and K. Buchenrieder, "Model-Based Codesign:

the Framework and its Application, IEEE Computer, August 1998.
[22] T. Simunic, J.W. Rozenblit, and J. Brews, VLSI Interconnect Design Automation

Using Quantitative and Symbolic Techniques, IEEE Transactions on Components,
Packaging, and Manufacturing Technology, 19(4), 803-812, Nov. 1996.

[23] Special Technology Area Review (STAR) on Computer Aided Design.Report of the
Department of Defense Advisory Group on ElectronDevices, Washington, D.C.,
(open publication), Feb. 1993.

7. Systems Design: A Simulation Modeling Framework 129

[24] R. A. Sprague, K. J. Singh, and R. T. Wood. Concurrent Engineering in Product
Development. {\em Ieee design and test of computers}, MAR 01 1991 v 8 n 1, pp.
6-13.

[25] F. Vahid and D. Gajski, "SLIF: A Specification-Level Intermediate Format for
System Design," Proceedings. The European Design and Test Conference. ED&TC
1995, pp. 185-189.

[26] F. Vahid, "Modifying Min-Cut for Hardware and Software Functional Partitioning,"
Proceedings of the Fifth International Workshop on Hardware/Software Codesign.
CODES/CASHE '97, pp. 43-48.

[27] R. Winner et al. The Role of Concurrent Engineering in Weapons Acquisition, IDA
Report R388, Institute of Defense Analysis, Washington, D.C., 1988.

[28] W. Wolf, "Object-Oriented Cosynthesis of Distributed Embedded Systems, ACM
Transactions on Design Automation of Electronic Systems, Vol. 1, No.3, July 1996,
pp.301-31.

[29] B.P. Zeigler, Multifaceted Modeling and Discrete Event Simulation. Academic
Press, 1984.

