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Fig. 1. Synchronization of two noisy FitzHugh–Nagumo oscillators. Left plot:
membrane potentials of two coupled noisy FN oscillators. Right plot: absolute
difference between the two membrane potentials.

where � � �,2. Let � � ���� ��� ��� ���
� and

� � ��
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� � � �� . The Jacobian matrix of the

projected noise-free system is then given by

�� ��� �� �
�

� � �

���� ����

Thus, if the coupling strength verifies � 	 � then the projected
system will be stochastically contracting in the diagonal metric 


 �
��	
��� �� with rate �������� ���� and bound ��. Hence, the average
absolute difference between the two membrane potentials �������will
be upper-bounded by �� ������ ������� � �� ���� after exponen-
tial transients (see Fig. 1 for a numerical simulation).
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Wavelet Amendment of Polynomial Models
in Hammerstein Systems Identification

Przemysław Śliwiński, Jerzy Rozenblit, Michael W. Marcellin, and
Ryszard Klempous

Abstract—A new wavelet algorithm for on-line improvement of an
existing polynomial model of nonlinearity in a Hammerstein system is
proposed and its properties are examined. The algorithm employs wavelet
bases on interval. Convergence of the resulting assembly, comprising the
parametric polynomial model and a nonparametric wavelet add-on, to
the system nonlinearity is shown. Rates of convergence for uniformly
smooth and piecewise smooth nonlinearities with discontinuities are both
established.

Index Terms—Hammerstein system, nonlinear system identification,
order statistics, polynomial models, semiparametric approach, wavelet
bypass, wavelet regression estimate.

I. INTRODUCTION

M ANY existing models of nonlinear dynamic systems derived
from a block-oriented methodology (where models are com-

posed of interconnected static nonlinear and linear dynamic blocks; cf.
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Fig. 1. (a) Scheme of the bypass amendment of the polynomial model of non-
linearity. (b) Identified Hammerstein system.

[1], [2]) employ parametric representations of the system nonlineari-
ties; cf. e.g. [3]–[7]. Such models, yet simple, can offer only a crude
approximation if, for instance, they are based on polynomials and the
genuine nonlinearity turns out to be e.g. a piecewise smooth function
with discontinuities, cf. [8]. To eliminate this inaccuracy, we propose
an algorithm which amends the already existing polynomial model
by means of a nonparametric wavelet bypass module [as depicted in
Fig. 1(a)]

• without affecting this model (being, for instance, hard-wired or
implemented as a software library; see e.g. System Identification
Toolbox for Matlab, [9]);

• in a convenient on-line fashion.
The algorithm, inspired by a general concept of additive semipara-

metric regression, see e.g. [10]–[13], employs nonparametric regres-
sion estimates based on order statistics (see e.g. [14], [15]) and orthog-
onal wavelet expansions on intervals (see e.g. [16]–[18]). A similar ap-
proach, which can be found in [19], can only be applied to recover a
nonlinearity (off-line) in static systems with a deterministic input.

II. ASSUMPTIONS AND PRELIMINARIES

We consider a Hammerstein system [viz. a cascade of static nonlin-
earity followed by a linear dynamics; see Fig. 1(b)], being one of the
most prevalent example of block-oriented nonlinear dynamic models
found in the literature (cf. Remark 2).

The goal of the algorithm is to recover a nonlinearity in the Ham-
merstein system described by the input-output equation

�� �

�

���

��������� � �� � ������� �

�

���

���������� �� (1)

with the following assumptions:
1) An input signal, ����, and an external additive noise, ����, are

zero-mean second-order random stationary processes. They are
mutually independent. The input ���� is white and has a density,
����, which is strictly positive in the identification interval, say
[0,1].

2) A nonlinear characteristic of the static system,����, has a Hölder
continuity exponent � � �; cf. e.g. [18, Ch. VI].

3) A linear dynamic subsystem is asymptotically stable. Its impulse
response, ����, 	 � �
 �
 � � �, is unknown.

4) A set, ����
 ����, � � �
 �
 � � � 
 �, of the system input and output
measurements is available; cf. Remark 1. Moreover:

5) There exists a (pre-)model of the nonlinearity, 	����, based on a
polynomial of order up to �� �, for some known �.

The above assumptions are of mixed nature. The first four are typical
for nonparametric identification tasks (see [14], [15] and the references
cited therein), and impose only weak constraints on system’s charac-
teristics and signals. In particular, Assumption 2 admits, for � � �,
nonlinearities with ��� � � continuous derivatives; for � � � � �,
continuous nonlinearities, but also discontinuous nonlinearities with
separate jumps as well; cf. [18, Ch. VI]. Therefore, virtually all nonlin-
earities bounded on an interval are taken into account (the unit interval
in Assumption 1 is used only for convenience). Moreover, the impulse
response ���� can be finite or not, and the external noise ���� can
be white or correlated and of any probability distribution with a finite
variance. In turn, Assumption 5 supposing the polynomial model of the
nonlinearity occurs in several parametric identification algorithms, cf.
e.g.: [5], [20], [21]. Here, the model 	���� can be a standard polyno-
mial, 	�� � 	��� � � � � � 	�����

��� or can, for example, be composed
of the first � terms of Legendre polynomial series.

Remark 1: It is well known that due to a composite structure of
Hammerstein systems and the lack of measurements of the intercon-
necting signal (Assumption 4), a nonlinearity, ��� � ����� � �,
where � � ��, � � ������

�

���
��, that is, a scaled and shifted ver-

sion of the characteristic���� of the static block, can at most be recov-
ered from input-output measurements. We emphasize that this inability
is a property of the system and hence occurs for any identification algo-
rithm—either parametric (e.g. that leading to the model 	����) or non-
parametric (e.g. ours); cf. [22, S. VI] or [7, S. III]. We also assume—for
simplicity of the presentation—that �� �� �; any other �� �� � can be
used as well, cf. Assumption 3.

Remark 2: Other structures to which the proposed algorithm can
directly be applied, like a parallel system, Uryson and MISO systems,
etc., are demonstrated in [23]–[25]).

A. Wavelets on Intervals

The most common wavelets (and hence the most often ones present
in the literature and applications) are the compactly supported wavelets
invented by Daubechies, [26]. However, they constitute orthogonal
bases on the real line only and cannot directly be used on intervals.
Thus we employ more specific wavelet bases on interval, being pro-
posed in [16], [17], i.e. CDJV wavelets. They preserve orthogonality,
multiresolution property, fast computational algorithms and, in partic-
ular, the number, � � �
 

 � � �, of vanishing moments of the original
Daubechies wavelets.

Wavelet bases on intervals consist of three types of functions:
the left and the right end, and the internal ones (which factu-
ally are the Daubechies functions). Namely, for a given �, the
basis consists of a single set of scaling functions, �������� �

�����	�� ���
 �
��	
�����
 �


���	

�� ����, for � � � � �, � � � � �� � �,
and �� � � � � � �� , respectively, and sets of wavelets,
������� � �����	� ���
 ���	����
 �


���	
� ����, for the same ranges

of � and increasing scales � � �
� � �
 � � �. The initial scale �
needs (by design) to be sufficiently large in order to avoid the boundary
functions on the one end to intersect with the other. Specifically, the
supports of the functions at the left end are ‘staggered’, i.e. equal to
��
 ����� � ���, � � � � �, (similarly at the right end), and this
implies � 	 ��

�
�� for a unit interval, [17, Th. 4.4].

Remark 3: The vanishing moments property is pivotal for our algo-
rithm. Defined as

�

�

�
� � ������� � � ��� 	 � �
 � � � 
 �� � (2)
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it means that wavelets with � vanishing moments are orthogonal to
monomials of order up to � � �, and hence to any polynomial model
������, cf. Assumption 5

����� ���� � �� (3)

Any residual nonlinearity of the form ����� � �����������, which
is square integrable in the interval [0,1], has therefore a wavelet expan-
sion

����� �

� ��

���

��������� �

�

���

� ��

���

	�������� (4)

with the coefficients ����� � ����� �����

��� � ��� ���� ���� � ��� ���� � ����

	�� � ��� ���� ���� � ��� ����� (5)

III. IDENTIFICATION ALGORITHM

We begin with the observation made in [22] that for Hammerstein
systems it holds that [cf. (1)]:


 ������ � �� � ���� (6)

i.e., the identified nonlinearity ���� is a regression function of the
output �� on the input �� . Having, by Assumption 5, its polynomial
model ������, we are interested in the remaining part

����� � ����� ������ (7)

referred further to as a residual nonlinearity, cf. [11, Ch. 9]. This func-
tion is square integrable in [0,1] (cf. Assumptions 2 and 5) and for its
recovery we propose the following wavelet estimate (see (4) and cf.
[27]):

������ �

� ��

���

���������� �

���

���

� ��

���

�	�������� (8)

where � is the estimate scale increasing with a growing number of
measurements . The expansion coefficients estimates, ���� and �	��,
are computed from ordered observations, i.e. from the measurements
set, ����� ����, � � �� 	 	 	 � , sorted pairwise according to increasing
values of �� and supplemented with an extra pair ��� � �� �� � ��
(see (5) and cf. [27]), according to the rules:

���� �

�

���

�� �

	

	

��������� ����

�	�� �

�

���

�� �

	

	

��������� (9)

Note that , being the number of measurements (cf. Assumption 4) is
also interchangeably used as an index of the last measurement pair in
the ordered set.

A. Computational Issues

Since explicit integrations in (9) are not possible (as the wavelet
functions are not given in the explicit form, cf. [26], [28]), we introduce
the equivalent recursive versions of the coefficients estimates ���� and
�	��, which enable (numerical) implementation of the algorithm in a
convenient on-line way.

Given the ordered sequence, ����� ���� 	 	 	 � ���� ���� ������ ������
	 	 	 � ���� ����, assume that for the new, � � ��th measurement pair,

������ �����, it holds that �� � ���� � ����. Then, (i) the new pair
is inserted between ���� ��� and ������ ����� to maintain the ascending
order of the updated measurement set, and (ii) the following recurrence
formulas are applied to compute the coefficients estimates (a vector-
like notation is used for shortness):

��
�����
��

�	
�����
��

�
��
���
��

�	
���
��

������������

���������
������

�����������������
(10)

for  � �� �� 	 	 	, where 
����� and ������ are formally defined as
the definite integrals


����� �

	

�

�������� �� ������ �

	

�

�������� (11)

and can easily be evaluated numerically (see e.g. [29, Ch. 4] for numeric
integration algorithms; the fast routines computing wavelet function
values in binary grid points are presented in, e.g., [28]).

The procedure starts with the following initial values and initial mea-
surement set, cf. (2), (3) and (5):

��
���
��

�	
���
��

�
�����

�
��

��� � �� �� � ���

��� � �� �� � ��
� (12)

Remark 4: Both versions of the algorithm, the off-line in (9) and
the on-line one in (10)–(12), require the measurement set to be kept
(preferably—in the ordered form).

IV. ALGORITHM PROPERTIES

Before we pass to the formal part of the algorithm analysis, we will
briefly discuss the meaning of the wavelet expansion coefficients esti-
mates in (9). First, notice that regardless of its actual type, any polyno-
mial model ������ has the following equivalent representations (cf. (5)
and Assumption 5):

������ �

���


��

��
�

 �

� ��

���

���������� (13)

for any parameters set ���
�, � � �� 	 	 	 � � � �. The estimates ����,
being initiated with ����� [cf. (9) and (12)], are therefore able to ac-
commodate, in a course of identification process, the contingent dif-
ferences between the model ������ and the nonlinearity ����, in case
when ���� is also a polynomial of order ���. In turn, if ���� is either
a polynomial of higher order or not a polynomial but, e.g., a piece-
wise-smooth function, then all estimates ���� and �	�� are needed to
recover the part of ���� not represented by polynomial model ������;
cf. (2) and (3).

Remark 5: The estimates ���� and �	�� can prospectively be used
in a two-stage polynomial model validation procedure: the statistical
insignificance of the wavelet coefficients estimates �	�� would testify,
for instance, to the sufficiency of the model order. If additionally all
����’s remained insignificant, then the complete stand-alone model
������ could be assumed to be sufficient.

A. Convergence

We will now show that the estimate ������ converges in the mean in-
tegrated square error (MISE) sense, to the residual nonlinearity �����
(and, a fortiori, the assembly ������ � ������ to the genuine nonlin-
earity ����) with a growing number of the measurement data. The first
theorem provides with conditions of the convergence.

Theorem 1: Let the assumptions (1)–(5) hold. If the estimate scale
� increases with the measurements number  so that

����	 �� ������ � � �  �	 (14)
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then

������� � �

�

�

�����	� �����	

� ��� � � � ���

Proof: See Appendix A.
The following conclusions can immediately be drawn from the the-

orem:
• In order to assure the convergence of �����	 to ����	, the scale
� needs only to increase, however, the rate of this growth should
mutually allow the term ���� to vanish as � � �.

• The convergence of the assembly �����	 � �����	 to ���	 holds
for any estimate scales selected as ���	 � �	 ���� ��, where
� 
 	 
 �.

We emphasize that neither the structure of the dynamic part ����
nor the presence of a correlated noise ���� affects the convergence.
Similar conditions have earlier been established for wavelet-based ratio
estimates of nonlinearities; see [23]–[25]—here, moreover, the conver-
gence holds for arbitrary model �����	 compliant with Assumption 5,
i.e. for any polynomial of order not greater than � �, see (13).

B. Convergence Rate

In Theorem 1 the convergence conditions are characterized. It is
however also interesting to establish the rate the estimate converges
with—as it seems to be intuitively clear that convergence to smoother
nonlinearities should be faster than to the irregular ones. Our second
theorem provides a formal support of this intuition and shows how to
select the constant 	 (according to the Hölder exponent � of the nonlin-
earity � and to the order of the polynomial pre-model , to make the
convergence rate the fastest.

Theorem 2: If the estimate scale � is increased according to the
following rule

���	 � �	 ���� �� ����� 	 �
�

�� � �
(15)

with � � ������ � or � � ������ ���� for continuous or piece-
wise-continuous nonlinearities ���	, respectively, then the estimate
�����	 converges to the residuum ����	 in the MISE error sense with
the asymptotic rate

������� � � �
�

and the assembly �����	 � �����	 converges to the nonlinearity ���	
with the same rate.

Proof: See Appendix B.
Note that the best possible convergence rate (amongst all nonpara-

metric estimates for a given �; see e.g. [11], [30]) is achieved by our
estimate. Moreover:

• the rate �������������	 approaches, for large �, i.e., for smooth
nonlinearities and for wavelets with  	 � vanishing moments,
the rate �����	, which is the best attainable for parametric esti-
mates, [31].

• the rate �������	 is obtained for discontinuous, piecewise
smooth nonlinearities, i.e. having an arbitrary finite number
of jumps. This rate is also the best possible for that nonlin-
earities and, furthermore, it can only be achieved by those
estimates (amongst all orthogonal expansion-based) which em-
ploy wavelets with compact support (cf. [32]).

Remark 6: If we apply wavelets with a number of vanishing mo-
ments lower than the order of �����	 or we relax Assumption 5 and
admit arbitrary models (like e.g. those considered in [33]), then the
representation in (13) (and hence the algorithm convergence) does not

hold. Nevertheless, the convergence will be maintained if we subtract
���	 � 
���� ��	� from every new coefficient ���	, cf. (5) and (9).
The rate of the algorithm convergence will then become dependent also
on the model smoothness (in the analogous way it depends now on the
smoothness of the nonlinearity) and e.g. for a model with Hölder ex-
ponent �� we will get �� � ������� ��; cf. Appendix B.

V. NUMERICAL ILLUSTRATION

The properties presented in Sections IV-A, IV-B characterize
asymptotic behavior of our algorithm. To get an insight into its per-
formance for small and moderate number of measurements, several
numerical experiments were made. Specifically, to illustrate Theorem
2 for continuous and discontinuous nonlinearities, the following
characteristics:

����	 � ���� � ��	 �������	 �
�� if � 
 ���

� if ��� � �

were coupled with wavelet estimates, �����	, employing CDJV
wavelets with  � � vanishing moments, and with the scale governed
by the practical selection rule, ���	 � ����  ���� ��; cf. (15) and
see [25].

The input ��
� was uniformly distributed in [0,1], and the (infinite)
impulse response of the dynamic part was �� � ���, � � �� �� � � � (thus
we have either ���	 � ����	 or ���	 � ����	, cf. Remark 1); the
external uniform noise was set to make�� ��
���� ����	� � ��!.

A preliminary model based on Legendre polynomials was used:
�����	 �

	
�
� ������	, where ���	 �

�
��� �  ����	, and where

����	 � ��� � �	�������	 � �� � �	������	 [with ����	 � �
and ����	 �

�
���� � �	] are Legendre polynomials orthogonal on

[0,1]; cf. [34]. For each characteristic, the best (in the mean square
sense) polynomial model parameters were evaluated numerically, i.e.
��� �

�


����	



��

�
�����
���	��, � � ���; cf. (9).

The results are shown in Fig. 2. The solid lines represent the sys-
tematic (approximation) error of the initial polynomial models, �����	,
while the dotted ones exhibit vanishing of the MISE error of the assem-
blies �����	������	, validating the proposed approach for both smooth
and discontinuous nonlinearities.

VI. CONCLUSION

In the technical note we introduced the wavelet algorithm improving
accuracy of polynomial models of nonlinearities in Hammerstein
system. The proposed bypass-like solution offers a (non-intrusive)
adjustment/calibration of existing pre-models based on various types
of polynomials. Application of wavelets offers several advantages:

• Wavelets approximate irregular nonlinearities better than polyno-
mials due to compactness of their supports and subsequent good
localization properties.

• There exist fast implementations of wavelet algorithms (Matlab,
C/C++/C#/Java, etc. see, e.g., [17], [18], [29] for wavelet
transform algorithms and [28] for routines computing wavelet
values).

The proposed idea of improvement of the existing parametric poly-
nomial models seems to be of interest not only from a theoretical van-
tage point, cf. [10]–[13], but also important in practice as the afore-
mentioned polynomial models have been already utilized in modelling
financial processes and data transmission channels, organs like eyes,
skin and muscles, or distillation columns (see [35]–[40]).

Our algorithm can therefore furnish a better understanding of an in-
vestigated phenomena (e.g. to verify or enhance established laws, cf.
[11, p. 313]) or a refined nonlinearity compensation (e.g. to enable ap-
plication of linear optimization algorithms). We also point out that the
recursive implementation of the algorithm makes it suitable for identi-
fication and tracking time-varying nonlinear systems, [41], [42].



824 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 4, APRIL 2009

Fig. 2. Errors for (a) polynomial and (b) step-function nonlinearities.

APPENDIX A
PROOF OF THEOREM 1

A mean integrated squared error of the estimate ������ is defined in
a standard way as

������� � �
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Using (4) and (8), the error can conveniently be expressed in terms of
bias and variance errors of wavelet coefficients estimates, viz.
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The first term, ���������� , is an integrated (over the interval [0,1])
squared error of approximation of the residual nonlinearity, �����, by
its wavelet series (4) truncated at the scale ���. For this error it holds
naturally (due to a completeness of a wavelet basis) that
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The remaining terms, 
������ , and ������ are integrated squared
bias and variance errors of ��� , composed of squared bias and variance
errors of the wavelet expansion coefficients estimates ���� and ����

in (8), respectively. From the following simple decomposition of ���,
cf. (5) and (11):
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we easily get that (cf. eqs. (14)–(18) in [14, p. 1477])
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which in turn (by virtue of (B.4) in [14, p. 1488]) results in
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��� and, after application of the same arguments to
����, in 
������ � ��
���. Thus [cf. (16)]
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Using now Lemma 1 from [14, p. 1475] we get that
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and hence [cf. (16)]
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Taking together (14), and (16)–(19) concludes the proof.
APPENDIX B

PROOF OF THEOREM 2

Recalling that if the nonlinearity ���� has a Hölder exponent � (and
so does �����), then

��� � � �� � � �����  � ������ �� (20)

(see e.g. [18]), and combining it with the fact that the number of wavelet
coefficients ��� at each scale � � ���	�� � � �, equals �� [see e.g.
[16]–[18] and cf. (4)], yields

���������� � �����
��� (21)

For piecewise-smooth nonlinearities, i.e., those having separate
jump-type discontinuities and a Hölder exponent � between them, the
smooth parts remain characterized by wavelet coefficients with the
bound as in (20), however, at each scale � there is also a finite number
of coefficients of order �������� corresponding to wavelets with
supports located in the “cones of influence” of nonlinearity jumps,
[18, Fig. 6.1]. Their presence deteriorates the convergence rate of
the approximation error, giving in result a bound as in (21), yet with
 � ������ ����; cf. [24, S. V].

Putting (18), (19) and (21) into (16) yields
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Application of the rule (15), completes the proof.
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