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ABSTRACT 

Instrument navigation is a fundamental task in laparoscopic surgical training. To assist a trainee in this 
task, suggested path needs to be collision free and should maintain sufficient distance, or clearance from 
the obstacle so that the possibility of collision is minimized. Clearance highly depends on the ability of a 
trainee to perform the task. In this paper, we propose a new algorithm for suggesting a path for a 
navigation task, that considers Proficiency Level of the trainee and provides a path according to how well 
a trainee can perform. The suggested approach is based on Probabilistic Roadmap Planners (PRM) and 
focuses on certain configuration spaces where most planners may fail to find a path while guaranteeing 
path’s clearance. The new method provides a way to compensate for clearance constraints in regions 
wherever such compensation is necessary. Finally, the simulation in a surgical trainer demonstrates the 
effectiveness of the method.  
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1 INTRODUCTION 

Path planning is one of the most researched areas in the field of robotics. Autonomous systems, either 
mobile robots or manipulators, essentially need a mechanism to generate a path for various activities like 
exploration, human-robot interaction, surgical operations, etc. Although, “safe path” is a subjective term 
that depends on the problem definition, as a baseline for safety, a path generated for any task should 
essentially be collision free in the configuration space. 

According to the problem definition, researchers consider safety in various forms. Lacevic and Rocco 
(2010b) use the concept of Danger Fields described in Lacevic and Rocco (2010a) as the evaluation of 
safety. They focus on environments where humans and robots work together to ensure safety from a 
collision. Phillips and Likhachev (2011) introduce the concept of wait state for the mobile wheeled robots 
in the environment with dynamic obstacles where the robot waits by interpreting obstacle movement and 
move after the path is clear. Do et al. (2013) proposed a path planner for creating a safe margin, which 
essentially uses the concept of Support Vector Machines (SVMs) to generate a path for autonomous 
vehicles maintaining equidistant clearance from the obstacle or the boundary while traveling, that is, 
creating a path that tries to remain in the central region of the available free space. Though innovative, 
they only considered the environments where boundaries are symmetric, the approach is likely to create 
some unnecessary deviations in a path for asymmetric passages. Other approaches (Silver 2005; 
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Narayanan, Phillips, and Likhachev 2012; Van Den Berg, Ferguson, and Kuffner 2006) assumed the 
precomputation of the regions with high probability of collision with moving obstacles. They considered 
time as an additional dimensionality so path planning can be done according to the dynamics of obstacles 
in time and hence, avoiding passing through a region when there is a high probability of the presence of 
the obstacle. In general, safeness differs with problem definition, but fundamentally, safeness is 
introduced when there is incomplete knowledge of the environment, or imperfect robot dynamics. Hence 
the main aim for path planning is to avoid the collision in the presence of uncertainty and for this, it is 
important to keep a safe distance between a robot and the obstacles in the environment. 

This problem of collision is more pronounced in the scenarios where there is incomplete information of 
the environment, or where humans are involved in motion and control of the robot. A perfect example 
where humans are responsible for instrument movement manipulation is Minimal Invasive Surgery 
(MIS), where a human surgeon has to operate using a few inches long and thin instruments, which are 
inserted using small incisions in the body. Various challenges in the procedure, described in Gallagher 
and O’Sullivan (2012) include minimal haptic feedback, single camera view with limited depth 
perception making hand-eye coordination difficult, limited flexibility of the instruments and most 
important, the instrument’s counter-intuitive movements. There are numerous tasks a surgeon has to 
perform in the operating room using a laparoscopic instrument, namely, suturing, object transfer, 
grasping, instrument navigation, etc. Moreover, with human factors involved, some imperfections are 
unavoidable. For example, a new MIS trainee might not be comfortable navigating instrument smoothly 
for the challenges described in MIS, until he or she practices on simulation trainers multiple times. 

Imperfection in our context means that the task under consideration is not performed perfectly. We 
assume that by providing sufficient visual guidance for better depth perception and a precomputed 
recommended path for instrument navigation task, a trainee can learn and perform the task in optimal 
time. Moreover, we consider that the suggested instrument movements would be safe enough to avoid 
collisions with the environment if navigation is done perfectly. However, in the initial phases of training, 
due to inexperience with the instrument, a novice trainee can deviate from the suggested path, which 
introduces imperfection in task performance. In this paper, we focus on the instrument navigation task 
considering the safety in path planning based on Proficiency Level of the trainee and describe how 
different training scenarios can be generated in a given environment to help a trainee overcome the 
challenges inherent in the use of a laparoscopic instrument. It is important to note that collisions with the 
obstacles should always be avoided since they might have adverse effects, like internal bleeding. 

Along with providing the importance of a safe path, we investigate a special case where general path 
planners, as described in LaValle (2006), may fail to provide a safe path and propose a new method that 
modifies a popular sampling-based path planner called Probabilistic Roadmap Planner (Kavraki et al. 
1996) to solve this problem. The proposed method provides a path which is termed as safe in all possible 
regions. This paper is arranged as follows: the following section introduces the problem definition, then 
the path planning problem is formulated and a new approach is defined, after that, we present the 
simulation results performed using the simplified instrument configuration of the Computer-Assisted 
Surgical Trainer (CAST) (Rozenblit et al. 2014). Finally, we end with a conclusion and discussion of the 
future research scope. 

2 PROBLEM DEFINITION 

The major challenges of MIS are the difficulty of accurate instrument movement, which might, in the 
actual operating room lead to injuries such as internal bleeding if an instrument collides with the organs. 
Surgeons get better in the task of instrument navigation with the experience of performing surgery in the 
operating room. However, novice trainees have to practice a lot in simulated environments before they 
move to actual surgery in the operating room. No simulation is perfect for training, but when compared to 
most of the laparoscopic trainers (Ordóñez et al. 2007; Pham et al. 2005; Stylopoulos et al. 2004; Jaber 
2010), CAST provides visual guidance (Wagner and Rozenblit 2017) for navigation that might be helpful 
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for the trainees to learn to operate and have better hand-eye coordination. CAST visualizes the 
recommended path for an instrument navigation task, but it does not consider trainee’s Proficiency Level 
for path generation.  

Consider a training scenario, where the recommended path for an instrument navigation task passes close 
to the obstacle but due to inexperience, there is a high possibility that a novice trainee would hit the 
obstacle while performing the task. Intuitively, it is better to have a path planner that considers trainee’s 
Proficiency Level and generates tasks where paths are sufficiently distant from the obstacle, so that the 
possibility that trainee hits the obstacle decreases. Therefore, we model our safety criteria as the 
reasonable distance of the path from the obstacle; thus, collision possibility is minimized. The concept of 
Cumulative Danger Fields (Lacevic and Rocco 2010a) describes danger field at a point as a function of 
the position of a point and a velocity vector. For the purpose of this paper, we are only interested in the 
position of the point. By analysis in Lacevic and Rocco (2010a) it can be said that the farther a point is 
from the obstacle, the lower is the danger field. Moreover, Proficiency Level depends on how perfectly a 
trainee performs the instrument navigation task (Riojas et al. 2011), for instance, an experienced surgeon 
tends to deviate less from the suggested path as compared to a novice trainee and hence it can be said that 
the former has higher proficiency level than the latter.  

However, there may be certain regions in the environment, where if the path is not allowed to pass close 
to the obstacle, most path planners may fail to return a path. Although, there is a risk while navigating 
through these regions, compensating safety just for these regions guarantees a recommended path, which 
is safe except when navigating close to obstacles that cannot be avoided. We provide a method to get a 
path in such scenarios. In the next section, we provide the stated method. We also show how it can be 
incorporated in CAST to enhance its capability of taking proficiency level of the trainee into account 
while creating training scenarios. 

3 KEY ALGORITHM 

3.1 Problem Formulation 
In this sub-section, we briefly formulate the path planning problem and introduce some important terms 
and definitions that will be used throughout the paper. Let  be the configuration space, where, , 

 The obstacle space is defined by  and the obstacle-free region is defined by , 
where ,  and . For sampling-based path planning algorithms, 
a path is found between the initial and goal states by sampling points in , connecting them and 
finding a feasible set of connected samples that form a connection between the initial and goal points. The 
discrete set of samples is represented by , where each sample ,  is sampled in the free 
region, . A typical path planner is based on generating  iteratively and connecting them by Edges 
to find a path, with two or more nodes connected by edges. The sampling and connection procedures 
differ by application. Let  represent a path, where  

, where  and , , are connected by edges. Let  and  be the initial and 
goal, where , , respectively. Moreover, for a path,   and .  

Let us say that a path generated by the planner needs to maintain a minimum distance, , 
, from the obstacle. For our purpose  depends on the Proficiency Level of the trainee; higher 

proficiency means less . The value of �� ���  is application dependent parameter that is 
selected based on domain and geometric scale of the environment and  can be modeled simply by 
considering a Virtual Boundary of thickness  around an obstacle as shown in Figure 1(a). The 
Euclidian Distance,  of  from the nearest point of the nearest obstacle is termed clearance. Ideally, 
when connections are made between samples, edges should not pass through this virtual boundary and an 
alternate path should be found (Figure 1(a)). However, it is common to have environments where these 
virtual boundaries may block the path construction by separating the regions containing start and goal as 
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shown in Figure 1(b), we call these as Critical Regions. In these environments, most planners will fail to 
return the path if it is to be guaranteed outside the virtual boundaries. Since a path planner should provide 
a path, whenever one exists, it is better to allow planning through a virtual boundary (Figure 1(c)) just for 
Critical Regions and using original virtual boundaries for the rest of the environment.  

 

Figure 1: Path planning examples considering virtual boundaries and critical regions. 

 Additionally, note that depending on the locations of the initial and goal, Critical Regions might or might 
not be important, for example, if both are in the same region (Figure 1(d)), either Region 1 or Region 2, 
then there is no need to care for the Critical Regions. Moreover, scanning the whole environment to 
identify critical regions is an expensive process and would not be beneficial in some cases as shown in 
Figure 1(d). We now discuss the path planning to solve this problem. 

3.2 Basic Path Planning 

To the best of our knowledge, there exist no planner which solves the problem described above in Figure 
1(b). To solve this problem, we define a sampling space according to clearance. Therefore, based on the 
virtual boundary,  can be divided into  (space outside the virtual boundary) and  (space 
inside the virtual boundary),  and . Therefore,  that lies in 

 is added to , where  and those in  are added to , where
 and . For the sake of explanation, let us call these sets samples 

from the Safe Region and the Risk Region, respectively. The main contribution of this paper is to provide 
a path planning method to generate a path in  except for the regions where  cannot be avoided. 

There are various sampling-based algorithms for path planning but a popular choice for environments 
where it is required to maintain a fixed graph, the Probabilistic Roadmap (PRM) Planner (Kavraki et al. 
1996) is a good choice. The reason for using a graph-based approach will be clear by the end of this 
section. PRM constructs a graph of samples with information of the edges and connected components, 
like a typical graph. The importance of connected components lies in the fact that a path between initial 
and goal is possible only if they lie in the same connected components space. For example, Figure 1(b) 
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has the initial and goal in different connected components (region 1 and region 2, respectively), while in 
Figure 1(d) they are in same one, that is Region 1. We would use PRM terminology of defining samples 
as milestones and graphs as roadmaps. Next, we present basic PRM in the original form and then propose 
a modification that can help find the proposed path. 

Basic PRM is a simplified version of the planner described in Kavraki et al. (1996). This paper describes 
path planning in two phases, Learning Phase and Query Phase. The first phase is the Learning Phase 
(Algorithm 1) where a Roadmap, , is constructed using milestones, , connected with edges 
sampled from . A set of nodes, , which contains all milestones is maintained. Selection Strategy is 
a milestone selection procedure which provides a sorted list of Nearest Neighbors, , from  based on 
distance d from newly added milestone. A new milestone  attempts to connect to every  milestones, 

, and successful valid direct connection adds an edge to the existing set of edges,  and update the 
’s connected component. Update of ’s connected component is an important step since the new 

milestone can combine two or more connected components into one, which increases the probability of 
having the initial and goal points in the same connected component, an essential condition for finding a 
path. Learning Phase procedure provides , which helps execute the second phase, that is, the Query 
Phase (Algorithm 2). This procedure adds  and  to the roadmap and tries to find a connecting 
path, . Since a path is essentially a set of milestones with a connection between them using edges,  
and  should lie in the same connected component to guarantee a path.  

Algorithm 1: Learning phase pseudocode. 

Procedure Roadmap: 
 
 

 
 

  
  

  

Procedure addmilestone  
 

 
 

 
    
   update ’s Connected Component 

 
 

Algorithm 2: Query phase pseudocode. 

Procedure Query ( ) 
 

 
 

 
 

 

Additionally, analysis done by Karaman and Frazzoli (2011) and Yang et al. (2016), divides PRM’s 
selection strategy into three major forms, namely K, S, and K-S. It should be noted that in every strategy, 
a set , which is sorted based on increasing d from the newly added milestone provides a set of 
milestones to which the new milestone attempts to connect. K-strategy selects the nearest , , 
milestones for the set . Although this strategy has an advantage of adopting enough milestones to 
ensure smoothness by adjusting the parameter , it has a bias towards the denser region of sampling 
space. Moreover, since there is no bound on the length of the edge, distant connections are possible, 
which provides limited information about the intermediate space configuration of the path. This 
information might be useful, like in our case. The S-strategy uses a parameter ,  which defines a 
distance bound inside which milestones are selected for . This overcomes some shortcomings of K-
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strategy, by choosing all milestones within a specified radius and limiting the maximum distance between 
two different milestones which ensures more information about the path, but this comes with reduced 
smoothness and increased computation time if the sampled space is dense (since there can be many 
milestones when space becomes dense). Finally, K-S-strategy is an adaptable S-strategy, which has the 
flexibility of selecting  and s as described above, helping to tune smoothness, guaranteeing all direction 
connections, reducing the computational burden and providing more information about the path. 
Selections of the value of parameters  and  are application dependent.  

We are interested in having more information about the path, thus K-S-strategy is a good choice. The 
reasons would become clear towards the end of the Section 3. Now, we describe a method to enhance the 
path so that the planner can provide a path in the situations described in Section 3.1. 

3.3 Modified Planner 

Given an environment, a planner should provide a recommended path, but if it does not meet the specified 
criteria for clearance, then few portions of the generated path might be “repaired” to get a safer path. 
Hence, in this sub-section, we propose a modified PRM (Algorithm 3) to meet such requirements. For 
this, in addition to developing one roadmap, , as in basic PRM where milestones are sampled from 

, we maintain an additional roadmap , where milestones are sampled only from  First, 
 are checked if they lie in the valid space, . If so, then the two mentioned Roadmaps 

are constructed. Let us assume that , are in the Safe Region. After adding  
to , and a Query is made in , which returns a path, if one exists (Figure 2(a)). The path may pass 
through Safe Region and/or Risk Region, so we need to inspect the path if its portion is inside the risk 
region. For this, we should have sufficient information about the path, ideally, the milestones constructing 
the path and the  should be infinite, . This is computationally impractical, to simplify, we use 
the K-S-strategy, which can tune  and  parameters for adjusting the computation time for Roadmap 
construction and maintain sufficient information about the path. Moreover, because of finite samples at a 
given time, sampling algorithms, like PRM, are conditionally Probabilistic Complete and Asymptotically 
Optimal (Karaman and Frazzoli 2011). The path generated at given query and configuration is considered 
the best path, although it might not be intuitively shortest. The path P is cached and if all milestones in 
the path are in , then the path is already safe and the algorithm returns this path, otherwise procedure 
PathRepair repairs P according to desired clearance. 

Algorithm 3: Modified planner pseudocode. 

Procedure ModifiedPlanner:   
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Procedure PathRepair (Algorithm 4) operates as follows: first, the milestones constituting the path are 
marked invalid if they are not in , as shown in red in Figure 2(b). The second step involves initiating 
the first valid milestone as start and next as goal (Figure 2(b)), then traversing through all the valid 
milestones to get the last vertex on the path in the same connected component, and update this as the goal 
(Figure 2(c)). After that Query between the new initial ( ) and new goal ( ) states provides a path in 
Safe Region, since both the initial and goal points are in the same component, a path is guaranteed. After 
getting a sub-path, the section of the original path from the new initial to new goal is replaced with the 
newly generated path (Figure 2(d)). In the next iteration, the milestone next to the goal is taken as the next 
initial milestone and the procedure is repeated until it reaches the end milestone in the path (Figure 2(e)). 
In the end, a repaired path is returned (Figure 2(f)). It is important to note that during path repair, a query 
is generated by only using the milestones in the safe region, the reconstructed sub-section of the path is 
guaranteed to be in the safe region. 
 

 
 

 

Figure 2: Illustration for the algorithm steps. 
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Algorithm 4: Path repair pseudocode. 

Procedure PathRepair(P, ): 

     // where  is a set of invalid milestones 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

Moreover, since the path cannot be repaired when checked against Critical Regions, it intuitively ignores 
the clearance constraint in these regions. Thus, as we are interested to repair portion of path that lies in 
one region, where regions are separated by either the actual obstacle or virtual boundaries, PRM uses 
concept of connected components to mark different regions (Figure 1(c)), whereas approaches not based 
on connected components, like Rapidly-Exploring Random Trees (Vinet and Zhedanov 2011) cannot 
distinguish between separated regions, hence, our choice of using PRM is a reasonable to make. 

4 SIMULATION RESULTS 

4.1 Experimental Setup 

Our experimental setup uses CAST configuration, that has two laparoscopic instruments, left and right, 
mounted on two fixtures, each having a gimbal. To mimic a trocar in laparoscopic surgery, the gimbal 
center provides four degrees of freedom, namely, insertion, pitch, yaw, and roll, all centered around a 
single-entry point which corresponds to the incision. For the sake of simplicity of demonstrating the 
algorithm in action, we consider three degrees of freedom: insertion, pitch, and yaw. The instrument 
navigation task in CAST requires a trainee to follow a recommended path for task efficiency and collision 
minimization. The recommended path is generated based on the proficiency level of the trainee. The 
simulations are performed using Open Motion Planning Library (Şucan, Moll, and Kavraki 2012) and 
MATLAB is used for the visualization of path and environment. The simulated environment, shown in 
Figure 3(b) is carefully selected to show the intuitive distinctions in the paths for different proficiency 
levels. The environment is a 3D model with the actual constraints on pitch, yaw, and insertion as in 
CAST. For demonstrating results, only the right instrument is used and, we consider three proficiency 
levels of the trainee, let us call them Beginner, Intermediate, and Expert, where beginner tends to have 
maximum deviation from the path navigation task, therefore maximum , while an expert is 
expected to perform the task almost perfectly, hence minimum . In other words, a beginner is 
provided most virtual boundary and for expert, there is no virtual boundary, that is, the path in entire 

 is acceptable for an expert. 
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Figure 3: (a) CAST, and (b) model used for simulation. 

4.2 Results 

Figure 4 shows the results performed in the environment (150×100×40mm) shown in Figure 3(b). As 
described, the value of  depends on application and geometric scale of the environment, hence for 
demonstrating the proof-of-concept, value of  is selected according to environment dimensions, 
though other values can be selected. Path length is selected as optimization criteria. Figure 4 shows the 
simulation results performed for three levels of proficiency.  

 
Figure 4: Simulation results: solid oval - region where detour is possible, dashed oval - critical region. 
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Figure 4(a) illustrates a recommended path for an expert; it considers no virtual boundary (  
mm), because of no expected deviation. The path shown in Figure 4(b) is suggested for an intermediate 
trainee, hence it considers a virtual boundary (  mm) around the obstacle. Though not depicted 
in the figure,  creates a virtual boundary that blocks the passage between the right-most (solid oval 
marking) and the left-most pair (dashed oval markings) of obstacles. The traditional planners in this case 
would fail because of no possible detour due to blockage of the left-most region, which is a critical 
region. However, due to possibility of detour around the right-most pair of obstacles, the proposed 
planner finds an alternative path and allow planning through the left-most region as there was no alternate 
path. Thus, the path repairs for the regions where detour is possible but allow passing through the critical 
regions. Figure 4(c) demonstrates the same concept but with increased thickness of the virtual boundaries 
(  mm) blocking the passage between all three pair of obstacles. Therefore, like the previous 
case, it detours where an alternate path is possible. These simulations are performed by considering  
in a bounding box (150×100×40 mm) fixed to the environment’s dimensions, but for the beginner, if we 
consider extending the dimensions (i.e., bounding box change to (150×100×80 mm)), a path that 
guarantees  is obtained due to planning entirely in safe region as shown in figure 4(d). This path is 
like any planner with guaranteed  would have provided. Hence, this demonstrates that the 
proposed method adapts well to the traditional planner if the space allows entire planning in safe region, 
otherwise, it provides repaired path as shown in simulations. 

5 CONCLUSION AND DISCUSSION 

In this paper, we introduced a new algorithm based on PRM. The new method takes the proficiency level 
of a trainee in laparoscopic surgery to provide an instrument navigation task given a training environment. 
Since an expert is expected to perform the navigation task better than a beginner, the algorithm provides 
an alternative path for the beginner, so that the probability of collision with the obstacles is reduced. The 
proposed algorithm provides a path which avoids entering risk regions in the free space except the critical 
regions, as these are necessary to navigate to compute a path for the navigation task. In other words, the 
proposed method allows planning through critical regions by ignoring the distance bounds in these 
regions and not in rest of the space.  

However, there are a few important things to notice. First, it should be noted that since the modification is 
based on repairing a path when it lies inside the Risk Regions, therefore, there should be at least two 
milestones in the safe region for the repair to take place. In other words, if the path completely lies in the 
risk region, a repaired path cannot be computed, and the algorithm provides a path which is completely 
inside the risk region. The algorithm in this case, that is the worst-case, works like a traditional planner 
without taking virtual boundaries into consideration. Alternatively, if the path completely lies in the safe 
region, for example, the configuration shown in Figure 1(d), then no repair is required, and the path is 
suited for all proficiency levels. Hence, it is difficult to annotate the path as an expert or beginner path, as 
path may or may not always lie completely in the safe region for a particular query. Moreover, in Section 
3.3, we assumed that the initial and goal milestones should be inside the safe region, but this assumption 
can be removed by projecting the initial and/or goal state if they are inside the risk region to the safe 
region using an incremental sphere around them and selecting the nearest sample which lies inside the 
safe region. The projected and original samples can be connected for the final path. 

We used this method specifically for medical applications in Minimally Invasive Surgery, but it is equally 
applicable to other systems involving path planning problem for navigation. For instance, the method can 
be used to plan a path for autonomous quadrotor when it is required to maintain a certain distance from 
the obstacle, but due to the presence of some unavoidable passages, like Critical Regions, it might fail. 
However, it must compute a path which maintains a required distance except while passing through 
critical regions. Moreover, Proficiency Level can be modeled according to the application. Finally, the 
present research suggests further improvement. Due to the use of the K-S strategy, the quality of the path 
is not sufficiently smooth, therefore for future work, we will focus on the quality of the path. Moreover, 
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we consider virtual boundaries to construct the safe regions, but some paths, due to Visibility property of 
PRM, may cross virtual boundaries around the corners, making a small section of the path occasionally 
closer than expected. Additionally, for perfectly avoiding the virtual boundaries, infinite milestones 
would be required which is not practically possible. Therefore, exploring how to avoid such scenarios is 
another research scope. Moreover, a human study would be important to verify if the proposed method 
would actually be helpful to assist laparoscopic trainees in overcoming difficulties of MIS surgery. 
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