
Refinement of Model Specifications in Embedded Systems Design

S. Schulz
Mobile Networks Laboratory

Nokia Research Center, P.O. Box 407
FIN-00045 NOKIA GROUP
Stephan.Schulz@nokia.com

J.W. Rozenblit
Dept. of Electrical and Computer Engineering

The University of Arizona
Tucson, Arizona 85721-0104, USA

jr@ece.arizona.edu

Abstract

Most current codesign approaches leverage from a
complete specification of an application design at the
implementation level. We pursue here an implementation
independent system level design specification for real-
time embedded systems using modular executable discrete
event models. This paper introduces a formal abstraction
for the specification of such design models. In addition, it
defines a set of refinement steps which may be used to
refine abstract design models into implementation level
design specifications. Our approach is illustrated using a
small embedded systems application.

1. Introduction

Many codesign approaches for embedded systems
[1,2,3,4] focus on an integration of hardware and software
components in the specification of design
implementations. Given further advances in
implementation technologies, increases in system
complexity, and the demand for high performance
embedded systems applications, the need for
implementation independent, system level design
approaches becomes apparent [5,6,7]. In [8,9,13], we
have proposed one such design approach for embedded
systems called model-based codesign which is heavily
based on systems modeling concepts [11].

Executable system level modeling specifications have
established themselves in industry over the past years as a
tool for the conceptualization and analysis of system
specifications for embedded systems applications.
Although some system modeling tools offer the
generation of software implementations [10], application
models are rarely used in the actual implementation of
embedded systems. One of the reasons for this reluctant
acceptance are the processing requirements for the
generated code, which often exceeds resources of
available processing platforms for embedded systems
applications. We believe that a well structured approach
to a construction and transformation of design models into
prototype implementations can result in an efficient

design implementation. In this article, we propose a
formal abstraction of computation which is used to
specify abstract, system level design models for complex
embedded systems applications. Furthermore we discuss
how structure and behavior of these models can then be
properly refined down to an implementation level design
specification.

2. Modeling Embedded Computing Systems
Behavior

Computation, which is performed by any kind of digital
computing system, can be fundamentally decomposed
into two phases: a computation on some specific data, and
prior to that, waiting for these data to arrive. Similarly, we
can view a more complex computation as a collection of
either sequentially or concurrently executing
computational segments (or a mixture of both), and their
waiting for input data.

In this model of computing systems behavior, any
computation can be eventually decomposed into such
basic computational segments which wait for input data,
perform some computation in some amount of time on it,
and then generate outputs for other segments.

2.1 Basic Model Component Specification

We can encode this elementary behavior into a modular,
deterministic event-based modeling specification with
explicit timing as shown in Figure 1. Here, the model
states S = {W, P} represent "waiting" and "processing"
phases of computation. P is associated with the actual
computational segment or some abstract specification of
it. The initial state of this model specification is W. The
maximum time spent in W can be infinite (the data never
arrives), and is in P equivalent to the execution time for
the computational segment once its required data has
arrived.

The set of external input events XW represents either
data observed from the environment or sent from other
model components, which is required by the
computational segment encoded in state P. These input

Proceedings of the Ninth Annual IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS�02)
0-7695-1549-5/02 $17.00 © 2002 IEEE

2

data are processed in state P within some required
execution time which can be derived from application
performance constraints. Data, which is to influence the
environment or other model components, is generated
after the completion of the computation in a set of
external output events YP. Internal model state transitions
lead from state W to P, and vice versa.

Figure 1. Basic Model Component Specification
From a general systems modeling perspective [11], the

behavior defined by this basic model component can be
described as follows: The basic model component stays in
the waiting state W until all external input data for the
computational segment, which are associated with P, have
arrived. At this point an internal event is generated which
changes the current model state to P where the data is
processed. After some specified execution time the
computation completes and an internal event as well as
external output events are generated instantaneously. The
model component then transitions back to the same
waiting state.

More complex computations can be modeled is a
variety of ways: by creating basic model components for
each computational segment, by extending the set of basic
model component states by other pairs of waiting and
processing states, or most likely by using a mixture of the
two approaches [13].

2.2 Derivation of Execution Times

Timing constraints are of primary importance in real-time
embedded systems design. We can validate these
constraints by executing our design model specification
over time and to monitor the events involved in timing
constraints by using simulation. In the previous definition
of our basic model component, we have been assuming
that the execution times of all computational segment are
known for the design model. In practice, however, timing
information is generally only available at best as required
application response times.

In order to derive execution times for computational
segments, we may use simulation results to distribute
global performance constraints onto the computational
segments of a model component specification. Given a
application specification with unknown execution times
but with a timing constraint, we can first run a controlled
simulation where we specify all processing state
execution times in our design model to be some common
value, e.g., �1�. The purpose of this latter value is merely

to establish an ordering in the processing of
computational segments. By monitoring the processing
states of design model component during a simulation run
a design model state execution trace can be recorded for
each simulation experiment. This trace allows us to
identify executed computational segments as well as their
execution frequency over the given period of time. This
information alone, however, does not suffice to derive
execution times of individual segments. So far the most
common approach [3,5] in codesign has been to assign
execution times based on "educated guesses".

We have approached this issue by investigating a
common property which affects the execution time of all
computational segments, i.e., computational complexity.
We selected and adapted the well known formula for the
unbiased computation of CPU performance by Patterson
and Hennessy [12] in order to estimate unknown
execution times as shown in equation (1).

Segment Execution Time =
Estimated Model IC • Model Component Cycle Time (1)

This formula uses the model instruction count (IC) as a
measure for the computational complexity of a segment,
assumes a cycle per instruction (CPI) count of one, and
introduces the new concept of a model component cycle
time. The model component cycle time will be considered
a model component property and is computed from the
evaluation of a model state execution trace, i.e., the
execution times of all computational segments, which are
part of a model component specification, are always
computed from its model component cycle time.

2.3 Revisiting the Basic Modeling Specification

In our abstraction of computation, we may interpret
internal events or internal model state transitions as means
to express data dependencies between computational
segments or represent changes in the internal model
component data structures. Therefore, we define an
internal event to be a pair of internal inputs Is and outputs
Os (for some model state s ∈ S) which are "propagated" in
internal model state transitions [13]. This new
interpretation expands our previous definition of general
basic model component specification as shown in Figure
2.

By definition, the waiting model state W is either the
initial model state or entered via some internal transition,
i.e., from another previous processing model state pP. The
purpose of W is to collect external inputs XW ⊆ X which
are required by the computational segment associated
with processing model state P (where X is the set of all
accepted inputs by the model component). Entering W
also implies access to the part of the component data

W

XW YP

P

Proceedings of the Ninth Annual IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS�02)
0-7695-1549-5/02 $17.00 © 2002 IEEE

Figure 2. Revised Diagram of a Basic Model Component Specification
structure which will store the values of arriving input
events. Current values of these variables are represented
by the set of internal inputs IW ⊆ V (where V represents
the values of all shared component data structures). This
set of values is then overwritten in W by the values
specified by XW. The time spent in W is likely to be a
positive rational number but may be infinite. After the
required set of external inputs XW arrives (for full
discussion of multiple event arrivals we refer the reader to
[13]), an internal transition to P triggers the generation of
internal outputs OW (which is basically an update of the
previously accessed data structure values IW), so that new
V = V' = (V - IW) ∪ OW.

The execution time of P is computed as previously
discussed from instruction count of the its associated
computational segment and the cycle time of the model
component specification. Its set of internal inputs Ip
consists of some internal outputs of W and possibly other
internal data, i.e., IP ⊆ V' and OW ⊆ IP. Finally, P also
generates in its internal transition to a next waiting model
state nW a set of external outputs YP as well as a set of
internal outputs OP, so that afterwards the new V = V'' =
(V' - (Ip ∩ Op)) ∪ OP since OP ⊆ IP. Modifications of the
component data structure may then enter the next basic
model behavior again as internal inputs, i.e., InW ⊆ V''.

3. Design Model Refinement

The objective of design model development is to generate
a detailed, valid design specification from abstract
application models. In iterative design model refinement
cycles, we gradually increase fidelity of the structural and
behavioral aspects of a design model specification based
on the introduction of application requirements and
information obtained in an extensive design model
analysis [13]. The end result of design model refinement
is a design model prototype which incorporates all
requirements stated in its system specification where each
component is specified at the appropriate level of
resolution.

3.1 Correct Refinement

Both, structural and behavioral refinement, require a
proper adaptation of the behavioral aspect in the
generated model component specifications in order to

constitute a correct refinement. A correct refinement is
achieved when the external interface (especially its timely
behavior) as well as former internal data dependencies of
the original model component specification are preserved.

A refinement of a basic model specification leads
either to the decomposition of the original processing
state P into two processing states P1 and P2 (e.g., in the
increase of model resolution) or the addition of a new
processing state where P1 = P and P2 = new P (e.g., when
extending behavior). Waiting states for each processing
state are generated in the course of this decomposition.
Each set of external inputs can be specified as XW1 ⊆ XW,
XW2 ⊆ XW and each set of external outputs as YP1 ⊆ Yp,
YP2 ⊆ YP, or XW1 = XW, XW2 = Xnew W, YP1 = YP, and YP2
= Ynew P, respectively.

3.2 Types of Model Component Specifications

Based on the temporal relationship of the external event
arrival for the two derived processing states in their
original model specification we can distinguish between
three different scenarios prior to a refinement:

a) Type I: Both external events arrive at the same
point in time

b) Type II: The last event of the set of external inputs
for W1 arrives prior to the one for W2

c) Type III: The last event of the set of external inputs
for W1 arrives after to the one for W2

Any refinement of a model specification is
accompanied by a revision of computational segments
and instruction counts. These modifications effect the
execution times for P1 and P2. In addition, the external
outputs originally produced by P may now be generated at
an earlier point in time i.e., either by P1 or P2. Since we
are interested in the preservation of the external interface
in a refinement step these issues need to be properly
addressed.

In order to simplify the following discussion we will
use "ta(s)" to denote the execution time of the processing
model state s, "ts" as the point in time that the model state
s is entered, and "et(s, x)" as the total elapsed time in a
model state s since the arrival of the last external input x
of the set Xs.

OPOW IPIWOpPIpP

pP

OnWInW

YPXWYpP XnW

nWPW

Proceedings of the Ninth Annual IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS�02)
0-7695-1549-5/02 $17.00 © 2002 IEEE

Figure 3. Original Behavior and Result from Behavioral Refinement in Type I Scenario

3.2.1 Type I Scenarios
A Type I scenario is depicted in Figure 3. Here, the
temporal relationship between the external inputs which
are to be received in waiting states W1 and W2 of the
refined model specification can been observed in the
original model specification as et(W, x1) = et(W, x2), i.e.,
both of these external events arrive at time tP.

In a pure behavioral refinement, the same waiting state
W is used to receive both sets of external input events
instead of specifying two separate waiting W1 and W2
states as shown in the second part of Figure 3. This is due
to our single state condition which requires a model
component to be only in one model state at a time. The
ordering of the processing states is either based on the
data dependency between their computational segments or
can be arbitrary if there is none (i.e., OP1 ∩ IP2 = {}). In
the latter case an ordering may be established based on
the generation of the former external outputs YP.

A correct behavioral refinement is achieved when the
execution times of the processing P1 and P2 are at most
equal the original execution time of P, i.e., ta(P1) + ta(P2)
≤ ta(P). If the computed execution time of both processing
states exceed the original, i.e., ta(P1) + ta(P2) > ta(P)
cycle time of the model component specification has to be
decreased so that ta(P1) + ta(P2) = ta(P). Notice that such
a change affects the execution times of all other
computational segments within that model component
specification.

If ta(P1) + ta(P2) < ta(P) or one of the processing
states produce external outputs part of the original set
(i.e.,; YP1 ⊆ YP or YP2 ⊆ YP given that YP ≠ {}) we

introduce special kind of model component for each such
set of external outputs, called communication component
[13], which delays the propagation of these events by a
fixed amount of time ta(Pd). These delay parameters are
computed or updated using the execution times of the
original processing state P and a new state P1 or P2, e.g.,
ta(P1d) = ta(Pd) + (ta(P)-ta(P1)). Notice that delays of
communication components are also affected by changes
in the cycle time of the model component that they are
attached to.

In a structural refinement, a new basic model
component specification B is created with an identical
model cycle time as in the original model component
specification. Waiting model states are specified for each
component, i.e., W1 and W2. The required adaptation of
each component behavior as depicted in Figure 4. Here,
the original model component A exhibits the behavior
specified by W1 and P1, and component B the behavior
specified by W2 and P2. Figure 4 illustrates that two
cases may arise from a possible data dependency of P2 on
P1, i.e., OP1 ∩ IP2 ≠ {} or OP1 ∩ IP2 = {}, respectively.

In a first case, a structural decomposition does not
seem advisable since the behavior does not exhibit any
concurrent concurrency. In the second case, however,
such a decision is advisable if there is no or a low degree
of data dependency of P2 on data structures which are
modified by previous processing states in the original
model component A, i.e., the set of internal inputs IP2* =
OpP ∩ IP2 should be empty or small. IP2* should be a small
set since its values have to be communicated properly
explicitly between the model components A and B.

Figure 4. Results from Structural Refinement based on data dependency in Type I Scenario

tW
time

Inputs

State B

Outputs

x2x1,

tP2

YP

tP1
time

x2x1,

tP1,

YP

W2 P2

tP2tW

W2 P2

State A W1 P1W1 P1 nW

W P

tW
time

Inputs

State

Outputs

x2x1,

YP

tP

W P1

tW
time

x2x1,

tP2

YP

P2

tP1

Proceedings of the Ninth Annual IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS�02)
0-7695-1549-5/02 $17.00 © 2002 IEEE

5

Figure 5. General and Special Case of Type II Scenario Results after a Behavioral Refinement
In the latter case the execution times for each

processing state should be at most equal to the original
processing time, i.e., ta(P1) ≤ ta(P) and ta(P2) ≤ ta(P).
The same techniques are applied as in a correct behavioral
refinement in Type I scenarios to adjust revised execution
times for each component to fit that constraint. For
example, if ta(P1) < ta(P) we have to adjust its
communication component if YP1 ⊆ YP. Notice that if the
execution time of the isolated behavior does not equal the
original execution time, i.e., ta(P2) ≠ ta(P) when OP1 ∩ IP2
= {}, we can increase the cycle time of component B
directly to MCTB = ta(P)/ICP2 since component B is by
definition a basic model specification.

If there are any data dependencies between A and B,
i.e., IP2* ≠ {}, both model component specifications have
to be modified to reflect these dependencies properly. In
component A, P1 has to include the required subset of
internal data for component B in its external outputs YP1,
i.e., new YP1 = Y'P1 = IP2* ∪ YP1. The waiting state W2 in
component B needs to be modified in the same manner to
also receive these former internal inputs as external inputs
(i.e., I'W2 = IW2 ∪ IP2* and X'W2 = XW2 ∪ IP2*), and to
include revise its set of internal outputs OW2
correspondingly. If component B changes data structures
pertinent to component A, i.e., OP2 ⊆ InP, then these
values have to be also communicated explicitly, requiring
similar changes to YP2, XnW, InP, and OnW.

3.2.2 Type II Scenarios
The results of a behavioral refinement (of the original
behavior shown previously in Figure 3) in a Type II
scenario is illustrated in Figure 5. Here, the temporal
relationship between the external inputs, which are to be
received in the waiting state W1 and W2 of the refined
model specification, are observed in the original model
specification as et(W, x1) < et(W, x2), i.e., in the original
model specification the last external input for W2 arrives
after the one for W1 at time tP (see Figure 3). Generally
we can perform the same adjustments as during a
behavioral refinement in a Type I scenario which is
depicted as the general case in Figure 5.

A different refinement is possible (but not required) if
the first input event of the set XW2 arrives after the last
external event of the set XW1 and there is no data
dependency between P1 on P2, i.e., OP1 ∩ IP2 ≠ {}. This

special case is shown in the second part of Figure 5 is
subject to an additional constraint based on x2f which
represents the first event of set XW2. Here, the revised
execution times of the processing P1 has to be within the
arrival of the x1 and x2f, i.e., ta(P1) ≤ et(W, x2) - et(W,
x2f) and ta(P2) ≤ ta(P).

If any of recomputed execution times should exceed
these values, i.e., ta(P1) + ta(P2) > ta(P) or ta(P1) > et(W,
x2) - et(W, x2f) and ta(P2) > ta(P), the model component
cycle time is adjusted accordingly. If the revised
execution times should be less than these values or
produce external outputs part of the original set (i.e.,
ta(P1) < et(W, x2) - et(W, x2f) or ta(P2) < ta(P); YP1 ⊆ YP

or YP2 ⊆ YP given that YP ≠ {}) requires again a
modification of communication components. Otherwise
no further modifications are necessary. Model
specifications which exhibit the behavior of the special
case are better resolved by performing a structural
refinement.

In a structural refinement, a new basic model
component specification B is created similarly as in a
Type I scenario with an identical cycle time as the
original model component. The results of such a
refinement are depicted in Figure 6. In the case of a data
dependency a correct structural refinement is achieved
when revised execution time for processing state A is
within the arrival times of x1 and x2 while the execution
time for P2 should be at most equal to the original
processing time, i.e., ta(P1) ≤ et(W, x2) - et(W, x1) and
ta(P2) ≤ ta(P). Again the same techniques are applied to
adjust either the cycle time or respective communication
components in the event that revised execution times
exceed this constraint.

In the case of no data dependency a correct structural
refinement is achieved when the execution time of P1 is
within the arrival times of x1 and x2, and the original
execution time while the execution time for P2 should be
at most equal to the original processing time, i.e., ta(P1) ≤
et(W, x2) - et(W, x1) + ta(P) and ta(P2) ≤ ta(P). From a
theoretical perspective, this second case is the most
attractive for a structural refinement since there is
concurrency inherent to this computation. The
communication of required data structures between
components A and B is achieved in the same manner as
described in the Type I scenario.

W P1

tW
time

Inputs

State

Outputs

x1 x2

tP2

YP

P2

tP1

W1 P1

time

x1 x2

tP2

YP

W2 P2

tW2tP1tW

x2f

Proceedings of the Ninth Annual IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS�02)
0-7695-1549-5/02 $17.00 © 2002 IEEE

Figure 6. Results from Structural Refinement based on data dependencies in Type II Scenario

3.2.3 Type III Scenarios
In a Type III scenario the temporal relationship between
the external inputs, which are to be received in the
waiting state W1 and W2 of the refined model
specification, are observed in the original model
specification as et(W, x1) > et(W, x2), i.e., in the original
model specification the last external input for W1 arrives
after the one for W2 at time tP. A pure behavioral
refinement in a Type III scenario follows a Type I
scenario for the general case and a Type II scenario for
the special case with indexes interchanged. Any
adjustments of model parameters are done in the same
manner.

Structural refinement also follows the cases of Type I
and Type II scenarios, respectively. Again, a structural
refinement is again most advisable if there is no data
dependency between P1 and P2 (i.e., OP1 ∩ IP2 = {}).

4. Application Example

A system specification for an alarm clock outlines the
application of our modeling and refinement concepts in
practice. This example has also been implemented and
tested using pDEVS - a Java-based implementation of the
parallel Discrete EVent System Specification formalism
[11, 13].

The functional requirements of this device are based
on three modes of operation which encompass the display

of the current time, the setting of the current and alarm
time, and the triggering of the alarm. The user has a time,
alarm, hrs, min, and alarm-off buttons to control the
alarm clock.

In its initial operating mode, the device should display
the current time. In the display mode a digital digit
display is to be updated within the second that the current
time (hours or minutes) changes. If the time button is
asserted the alarm clock enters the set-time mode. Here,
the current time can be modified by asserting the min and
hrs buttons. A second assertion of the time button returns
the alarm clock the display mode. The same behavior is
exhibited when the alarm button is asserted with the
difference that the alarm time can be displayed and
modified. When the alarm time is reached the device
enters asserts an alarm which has to be disabled by the
user using the alarm-off button. Any other input scenarios
may be ignored. The current time should be kept during
any mode of operation.

We assume that alarm clock display and response in
set-alarm and set-time operation modes should occur
within 0.01 seconds - "instantaneous" - to the user.
Furthermore clock pulses arrive every minute from a
timer peripheral device, e.g., on the microcontroller chip.

In the following discussion, model state diagrams
illustrate the refinement of our design model. Arrows
indicate transitions between model states where double-
headed arrows are used to simplify the illustration of state
transitions which return to their original state.

Figure 7. Abstract Initial Design Model and Type I Input Arrival Scenario

tW
time

Inputs

State B

Outputs

x1 x2

tP2

YP

tP1
time

x1 x2

tP2

YP

W2 P2

tP1tW

W2 P2

State A W1 P1W1 P1 nW

C

C

WAC PAC

MAC

time

tick, button

tPAC

LED

WAC PAC

t*

WAC

tWAC

Proceedings of the Ninth Annual IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS�02)
0-7695-1549-5/02 $17.00 © 2002 IEEE

7

Figure 8. Design Model Specification and Trace after First Refinement Step

4.1 Abstract Design Model

We start the development with a single abstract design
model component MAC as shown in the first part of Figure
7. This abstract model specification waits first for either
the arrival of a button from the user or a clock pulse from
the timer in WAC. After the arrival of each clock tick MAC
transitions to the processing state PAC and then generates
either some external outputs for the display. An initial
processing state which initializes model component data
structures has been omitted from this illustration.

Since the button inputs may arrive aperiodically, i.e.,
randomly at any point in time, we derive a worst case
testing scenario, i.e., a stress test, which is depicted as a
model execution trace in the second part of Figure 7. In
this scenario a button and tick event arrive at the same
time, i.e., a Type I input arrival scenario. Notice that the
external inputs from the environment to MAC, i.e., the user
and the timer, are buffered with communication
components to allow a sequential processing in such a
scenario for PAC. From the requirements the execution
time PAC is directly derived from the stated response time,
i.e., ta(PAC) = 0.01 seconds. Based on an average
estimated instruction count (IC) for PAC of ICAC = 10 we
compute a first model component cycle time (MCT) of
MCTAC = 0.001.

4.2 Refinement of the Alarm Clock Design
Model

The results of initial design model refinement are shown
in the first part of Figure 8. Here, we have first introduced
the functional requirement of three operation modes for
the alarm clock. Here, PSA resembles the setting of the
alarm time, PST that of the current time, and PKT keeps
track of time from each arrival of clock pulses. Now we
may specify the behavior of the state PKT in more detail;
i.e., specify in its computational segment the manipulation
of time based on the external tick input. Lets assume this

specification results in a revision of its instruction count
from our original value to ICKT = 9, whereas instruction
counts for PST and PSA remain abstractly specified at ICST
= ICSA = 10. Since there is a data dependency between
PKT and PST (they both modify or access information
about the current time) we need to decrease model
component cycle time of MAC to preserve our external
interface (i.e., our required response time of 0.01 seconds)
so that MCTAC = 0.01/(ICKT+ICST) = 1/1900.

The second part of Figure 8 shows the model execution
trace of the refined model specification using the previous
Type I test scenario. Notice that the generic button event
has now also been refined to the actual buttons. Our worst
case scenario can now be more accurately described as
the tick event arriving just before a time or alarm event.
The system response in the reverse case (a button prior to
a pulse) remains well within the specified bounds, e.g.,
ta(PSA) + ta(PKT) = 0.01 < 1.

In our second refinement step, we perform a structural
refinement triggered by introducing the requirement that
time is always to be kept in parallel at any point of the
alarm clock operation. The resulting composed design
model specification is shown in the first part of in . In the
structural refinement, we isolate state PKT in a new design
model component specification MKT.

Due to the decomposition into two modular model
component specifications, each modification of the
current time has to be now communicated explicitly in
PKT and PST from MKT to MAC. Since the time event may
arrive at any point in time we introduce some extra model
states to address this data dependency explicitly: The
states PSCT and PUCT handle send or update the current
time in MTK, whereas PGCT and WCT request and wait for
this information in MAC. Notice that state PST triggers in
MAC the update of the current time in MTK. We simplified
our illustration of this refinement by omitting PSA from
the diagram. Communication components are introduced
to buffer and delay the events between model component
ports.

C

C

WAC

PKT

MAC

time

tick, time

tPKT

Time!

WAC PKT

t*

WAC

tWAC

PST

PSA

PST

Time

tPST

Proceedings of the Ninth Annual IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS�02)
0-7695-1549-5/02 $17.00 © 2002 IEEE

Figure 9. Design Model Specification after Second Refinement Step

5. Conclusions

We presented in this paper a formal abstraction of
computation for the model-based codesign of real-time
embedded systems. We introduced the specification of
basic model components based on this abstraction as well
as their correct structural and behavioral refinement, i.e.,
with a preservation of internal data dependencies and the
external interface of the original modeling specification.
Finally, we illustrated the abstract model specification for
a simple example application and its stepwise refinement
by introducing system requirements.

An emerging trend in embedded computing systems is
the design for adaptable application implementations.
Model-based design offers a great potential for the design
of such systems since it allows an implementation
independent design specification. Future work could
introduce more flexibility to the concept of a model
component cycle time in order to simulate changes in the
implementation of system components on the fly.
Similarly, the delay time parameter in communication
components could be made more flexible to reflect a
change of the relative location of a design component in
respect to others.

References

[1] G. DeMicheli and R.K. Gupta, �Hardware/Software Co-
Design�, Proceedings of the IEEE, 85(3), 349-65, 1997.

[2] J. Fleischmann, K. Buchenrieder, and R. Kress, "A
Hardware/Software Prototyping Environment for
Dynamically Reconfigurable Embedded Systems",
Proceedings of International Workshop on
Hardware/Software Codesign, Seattle, WA, 105-10,
March 1998.

[3] D. Gajski, S. Narayan, F. Vahid, and J. Gong,
Specification and Design of Embedded Systems,
Englewood Cliffs, Prentice-Hall, New Jersey, 1994.

[4] F. Fischer, A. Muth, A. Kirschbaum, and G. Färber,
"Towards Interprocess Communication and Interface
Synthesis for a Heterogeneous Real-Time Rapid
Prototyping Environment", Proceedings of International
Workshop on Hardware/Software Codesign, Seattle,
WA, 35-9, March 1998.

[5] J. Axelsson, Analysis and Synthesis of Heterogeneous
Real-Time Systems, Dissertation No. 502, Linköping
University, Sweden, November 1997.

[6] S. Kumar, A Unified Representation for
Hardware/Software Codesign, Ph.D. Dissertation,
University of Virginia, UMI Number 9600485, Ann
Arbor, 1995.

[7] A. Kalavade and E.A. Lee, "A Hardware-Software
Codesign Methodology for DSP Applications", IEEE
Design and Test Computers, 10(3), 16-28, 1993.

[8] J.W. Rozenblit and K. Buchenrieder, Codesign:
Computer-Aided Software/ Hardware Engineering,
IEEE Press, Piscataway, 1994.

[9] S. Schulz, J.W. Rozenblit, M. Mrva, and K.
Buchenrieder, "Model-Based Codesign", IEEE
Computer, 31(8), 60-7, August 1998.

[10] D. Harel and M. Politi, Modeling Reactive Systems with
Statecharts: The STATEMATE Approach, McGraw-Hill,
1998.

[11] B.P. Zeigler, H. Praehofer, and T.G. Kim, Theory of
Modeling and Simulation, 2nd Edition, Academic Press,
Burlington, MA, 2000.

[12] J.L. Hennessey and D.A. Patterson, Computer
Architecture - A Quantitive Approach, Kaufmann
Publishers, 1993.

[13] S. Schulz, Model-Based Codesign for Real-Time
Embedded Systems, Ph.D. Dissertation (UMI#:
3002539), The University of Arizona, Ann Arbor, 2001.

C

C

WAC

MAC

PST

PSCT

PKT

MKT

PUCT

C CC

PGCT

WCT

WAC

Proceedings of the Ninth Annual IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS�02)
0-7695-1549-5/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

