
ACCORDING TO RECENT SURVEYS, approxi-

mately 90% of all processors are part of embed-

ded systems, computing systems that continually

and autonomously control and react to the envi-

ronment. The embedded system itself is an infor-

mation processing system that consists of

hardware and software components. Nowadays,

the number of embedded computing systems—

in areas such as telecommunications, automo-

tive electronics, office automation, and military

applications—is steadily growing.

This market expansion arises from greater

memory densities as well as improvements in

embeddable processor cores, intellectual-prop-

erty modules, and sensing technologies. At the

same time, these improvements have increased

the amount of software needed to manage the

hardware components, leading to a higher

level of system complexity. Designers can no

longer develop high-performance systems from

scratch but must use sophisticated system mod-

eling tools.1,2

A continuing increase in system complexi-

ty, diminishing design cycles, tightly integrated

mixed hardware and software components,

and the growing use of reconfigurable devices

characterize the current generation of embed-

ded systems. Software tends to be customized,

and programmers code it using low-level pro-

gramming languages to achieve predictable,

high performance. The processing environment

reflects restricted budgets and physical limita-

tions, and uses only a minimal set of hardware

components.

Conventionally, hardware and software devel-

opment groups design and test these systems sep-

arately, and then integrate them into a system

prototype. This late integration tends to require

many design iterations on the application proto-

type. For applications with high performance

requirements and safety constraints, this high

number of late design iterations is a major con-

cern because design teams must guarantee a

well-tested and fully debugged final product.

Thus, for these applications, we advocate the use
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of sound design methodologies and

development environments that

emphasize early design assessment.

We developed one such meth-

odology, model-based codesign,2

which uses system modeling3 to

prototype systems under design.

Our work focuses on the develop-

ment of design techniques in

which models can be synthesized

and tested for several objectives,

taking these objectives individual-

ly or in tradeoff combinations.

Model-based codesign lets devel-

opers create computer models of

embedded systems independently

of their eventual hardware and soft-

ware implementation, enforcing a

late partitioning of the system

design. Designers use simulation to

explore the feasibility of virtual pro-

totypes and then interactively map

the specifications onto a mixed

hardware-software architecture. In several pub-

lications, we have elaborated on the funda-

mental concepts supporting model-based

codesign.2,4 Figure 1 provides an abstract repre-

sentation of the methodology, which has six

basic components:

� Functional and behavioral requirements spec-

ification and modeling encompasses the

solicitation and documentation of require-

ments and the development of an exe-

cutable model.

� The behavioral simulation and model refine-

ment loop iteratively refines the design

model until it is functionally correct.

� Structural requirements specification and

modeling relates physical design constraints

to a proposed processing architecture.

� In the performance simulation and model

refinement loop, designers enhance the

model with performance measures for com-

putation and communication. They obtain

performance measures from a preliminary,

reconfigurable system prototype that imple-

ments the chosen architecture.

� Synthesis and implementation involves

extracting design specifications from the

models to produce a physical prototype.

� Test module development and product test-

ing creates a set of test scenarios from the

system requirements specification, which

designers use to assess the design at all lev-

els of the design process.

Here, we propose a multilevel approach to

testing, which complements the development

of embedded systems using model-based code-

sign. This approach has several benefits: It pro-

vides

� early evaluations of alternative system con-

figurations,

� a consistent set of test scenarios that follow

the iterative system refinement,

� real system performance measurements as

opposed to estimates,

� the ability to test system components indi-

vidually or in a compound structure,

� debugging as a part of each design level, and

� reliable model component reuse.

Embedded-systems testing
Testing methods and objectives differ in the

hardware and software domains. Embedded
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software development uses specialized compil-

ers and development software that offer means

for debugging. Programmers develop applica-

tion software on more powerful computers and

eventually test the application in the target pro-

cessing environment. Future on-chip debugging

support promises to improve software perfor-

mance, and estimation and analysis.5

In contrast, hardware component testing

concerns itself mainly with functional verifica-

tion and self-test after chip manufacturing.

Hardware developers use tools to simulate or

formally prove the correct behavior of circuit

models. Vendors design chips for self-test,3

which mainly ensures proper operation of cir-

cuit models after their implementation. Test

engineers—not the original hardware devel-

opers—test the integrated system.

This conventional, divided approach to soft-

ware and hardware development does not

address the embedded system as a whole dur-

ing the system design process. It instead focus-

es on these two critical facets of testing

separately. New problems arise when develop-

ers integrate the components from these differ-

ent domains.

In theory, unsatisfactory performance of the

system under test should lead to a redesign. In

practice, a redesign is rarely feasible because

of the cost and delay involved in another com-

plete design iteration. A common engineering

practice is to compensate for problems within

the integrated system prototype by using soft-

ware patches. These changes can unintention-

ally affect the behavior of other parts in the

computing system.5

At a higher abstraction level, executable

specification languages1 provide an excellent

means to assess embedded-systems designs.

Developers can then test system-level prototypes

with either formal verification techniques6 or

simulation. A current shortcoming of many

approaches is, however, that the transition from

testing at the system level to testing at the imple-

mentation level is largely ad hoc. To date, sys-

tem testing at the implementation level has

received attention in the research community

only as coverification,7 which simulates both

hardware and software components conjointly.

Coverification runs simulations of specifications

on powerful computer systems. Commercially

available coverification tools link hardware sim-

ulators and software debuggers in the imple-

mentation phase of the design process.

While working on a design methodology for

tightly integrated embedded systems, we noted

that research in system-level design and test for

such systems has not identified a need for a grad-

ual transition of test specifications to the imple-

mentation level. This gradual transition allows a

consistent assessment of application design

specifications with various levels of detail.

To provide this gradual transition, we

developed a multilevel testing approach for

mixed-system prototype implementations. Our

approach uses a software-based real-time test-

ing environment for system testing.

Multilevel testing approach
In the design of complex embedded sys-

tems, we encounter multifaceted requirements.

The assessment and verification of these

requirements is complex and even impossible

in some cases because of the design’s abstract

specification at the model level. We advocate

a structured multilevel approach to testing,

which follows the system development through

its various stages. Figure 2b depicts our

approach.

In this approach, we start by deriving a set of

test scenarios from a textual system require-

ments specification.2,8 As previously outlined,

we initially develop an abstract system model

for the application, which we then decompose

into model components in a top-down design

approach. In these models, we can isolate spe-

cific aspects of the system under design, thus

reducing initial design complexity. Gradual

refinement adds more detail to the models. We

continue to improve our system model until its

behavior cannot be distinguished from the

desired behavior of the specified system.

At the system level, we use test modules to

validate the system model. To assess an appli-

cation design, we connect these modules to and

simulate them in conjunction with the system

model. Test modules are directly derived from

one or more behavioral and structural applica-

tion requirements, and follow the incremental

refinement of the application design model. The
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modular construction also enables

us to monitor specific model com-

ponents during the simulation and

identify possible performance bot-

tlenecks early in the design process.

During the application design,

we map the system model onto a

selected hardware architecture and

integrate it into a reconfigurable

prototype. We follow this transition

by converting our testing modules

to a set of test processes for a real-

time system-testing platform. At the

integrated-system level, we can

reuse test scenarios from the set

developed during the modeling

phase. The test processes then cre-

ate the corresponding scenarios in

real time on the mapped model of

the embedded computing system.

During a test run, the system testing

environment (STE) records and

analyzes the design implementa-

tion’s performance.

Compared to the conventional

approach, multilevel design and

test permits the specification of test scenarios

at a high level of abstraction—the system level.

It encourages a gradual refinement of these

abstract test scenarios from the system model

level to the integrated-implementation level. As

the abstraction level drops, the test scenarios’

abilities increase to serve the different testing

objectives of system- and implementation-level

testing. That is, these scenarios become useful

for functional versus performance testing. Test

scenarios remain consistent throughout system

development, and changes can easily be prop-

agated between lower and higher abstraction

levels. In addition, it clearly distinguishes sys-

tem testing from system modeling early in the

design process.

Model testing
Model-based embedded systems design has

recently gained a lot of attention in the embed-

ded-systems community.1,2,7 One of its advan-

tages is implementation-independent system

design, which fosters late integration of hard-

ware and software components. Another advan-

tage is that developers can easily analyze time-

critical applications by varying model execution

parameters for the simulation platform.

Simulation time imposes an ordering on the

occurrence of events instead of acting as a hard

processing constraint. Developers can intro-

duce delay estimates to identify possible system

bottlenecks.

Gradual development. In the modeling phase,

the abstract system design gradually evolves

into a virtual system prototype that closely

resembles the final implementation. The model

can then be converted into detailed design

descriptions that allow the physical prototyp-

ing of a mixed hardware-software system

design. This late partitioning into a detailed,

implementation-level design specification lets

developers easily produce reconfigurable and

customized implementations.

Although several system modeling tools

exist, published research about corresponding

design methodologies does not directly address

testing at the system level. In our methodology,
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we address system model testing with a concept

called experimental frames—coupled test mod-

ules that, in their entirety, model the environ-

ment in which the application is embedded.4

Our methodology specifies models using a

formal, discrete, event-based specification that

enforces a separate and modular specification

of design and test models. This formalism,

called DEVS (Discrete Event System Specifica-

tion), also facilitates a conjoint execution and

evaluation of these model components over a

specified simulation interval.9

Test modules. Test modules, which compose

experimental frames, mainly serve the function

of a test event generator, test monitor, or per-

formance analyzer. These model components

are created separately from the system model.

Each component represents a part of the envi-

ronment and reflects certain behavioral

requirements of the system design. Simulation

of the test modules together with the system

model represents an experiment where the

application interacts with its environment. In

essence, we create a test bench at the model

level, which we use to validate various aspects

of either the entire application or its compo-

nents. Test modules encode test scenarios,

either fixed or interactive, from specified design

requirements. Interactive modules allow an

early integration of a human system user into

the application development. The modularity

of the test modules enables reuse in different

applications or in design alternatives for the

same application.

We base the development of test modules on

a stepwise refinement process. This process

requires the prior identification of behavioral

requirements in a textual requirement specifi-

cation. We then incrementally introduce

requirements into event-generating test module

specifications and into the actual design com-

ponent specifications. Each newly introduced

requirement also requires a refinement of con-

formance criteria in monitoring test module

specifications. Notice that a model-based design

approach even allows performance assess-

ments of abstract design models by using our

concept of computational complexity for model

component specifications.2

Product testing
At the implementation level, software com-

ponents should be fully debugged, and the tar-

get architecture should have been tested for

integrity. In product testing, developers verify

the final application prototype by either using

specialized test equipment that emulates parts

of the target architecture or, more commonly,

the real environment. Here, in contrast to the

modeling phase, the execution time is fixed,

and developers can obtain true performance

results. They can also observe the structural

properties introduced by the system design,

board design, hardware configurations, soft-

ware components, and their interactions with

one another.

Developers integrate embedded-systems

designs at the implementation level. Conven-

tionally, they develop application-specific soft-

ware and iterations on the board design

separately, integrate them, and for the first time,

test the entire system for compliance with the

originally specified requirements in this prod-

uct testing phase. 

In our model-based approach, assessment of

the integrated system prototype occurs much

earlier in the design, as it is directly derived from

the design model specification and assessed as

a system implementation. Developers can still

perform product testing for conformance pur-

poses, as in the conventional approach.

Real-Time STE
Our multilevel testing approach takes advan-

tage of the already accumulated repository of

test scenarios, which are in the form of test mod-

ules. Our STE provides a smooth transition from

simulation to real time, and inserts another level

of testing between model and product testing.

We consider this STE as a step toward real-time

simulation—that is, real-time execution of appli-

cation models in their environment.

The modeling level allows an early assess-

ment of design requirements using performance

estimates. This assessment might not suffice to

accurately verify applications with high-perfor-

mance constraints. To obtain true performance

measures, we apply test scenarios generated by

the test modules to a physical realization of the

system model implemented in a reconfigurable
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processing architecture. This prototype consists

of standard processing elements, reconfigurable

hardware components, a flexible operating sys-

tem to coordinate the software components’

communication, and an efficient interface with

the testing environment.

The real-time STE provides the foundation

for our performance tests of application proto-

types. The environment is written in C and runs

on a standard PC. The program minimizes pro-

cessing overhead in the generation of external

stimuli for physical prototypes and allows an

accurate evaluation of the prototype’s

response. As Figure 3 shows, the STE software

consists of

� test processes;

� a kernel based on minimal real-time operat-

ing system µC/OS;10

� a process management layer, which handles

scheduling, interprocess communication,

test analysis, real-time compliance of exper-

iments, and so on;

� an efficient communication channel to the

system prototype; and

� a user interface for test data analysis.

The STE supports test processes generated

from test modules with a real-time operating sys-

tem platform. The direct mapping results in a

consistent set of test scenarios for performance

evaluations of the prototype under system test-

ing conditions. In addition, the execution envi-

ronment remains application independent.

Test processes fall into categories similar to

those for test modules: generator, monitor, or

performance processes.

Generator processes
During an experiment, these processes

reproduce test scenarios in real time from test

scripts that match a specified behavior of cor-

responding test modules in previous simulation

runs.

Contrary to the conventional approach of

manually specifying implementation-level test

scenarios, we automate this process by lever-

aging our formal specification of test modules.

Our approach generates test scripts for each test

module by recording time-stamped events at

the output and input ports of each module dur-

ing simulation. Such an approach is feasible for

high-performance test scenarios that require an

efficient tester implementation. Implementing

generator processes as test script interpreters

minimizes processing overhead in the STE.

Notice that we can also use the same tech-

niques to transform our test module specifica-

tions into software implementations for the STE

as we use for design model components.2 Here,

we transform each test module specification

into a process description that uses operating

system communication primitives and pre-

serves the original test module’s behavior. This
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approach would be of interest for embedded

systems that interact with human users via

many possible test scenarios.

Monitor and performance processes
The monitor process focuses on verifying

that the system prototype’s response aligns with

previous simulation results or other specified

constraints. The performance process tracks

the system prototype performance in the test-

ing environment. We can also remotely instan-

tiate a second performance process on the

reconfigurable system prototype to gather data

about system components at runtime. This

additional process then reports basic perfor-

mance measures during the system prototype’s

idle time. All of these performance processes

can interrupt the experiment in cases of signif-

icant deviation from specified behavior or

invalid system response.

During the experiment, the central process

manager coordinates the STE process commu-

nication within the testing environment and with

the system prototype, recording incoming and

outgoing data. The monitor process tracks the

system response, and the performance process

collects runtime information about specified

components on the physical prototype.

Sample application
In a case study, we designed an autonomous,

intelligent cruise controller (AICC) using our

model-based codesign methodology.2 The AICC

system is an extension of the regular automotive

cruise control. It not only enforces a fixed speed,

but also adapts to a lead vehicle’s speed. Our

example focuses on the design of this device’s

control unit, which interacts with sensors and

actuators in the vehicle. Behavioral require-

ments for the control unit include keeping the

vehicle speed within a narrow margin of error.

The control unit must also meet a minimum

response time requirement when interacting

with other AICC system components.

We applied multilevel testing in the design

process for this unit, creating a model of the envi-

ronment to represent the vehicle under different

driving conditions. This model also provided a

user interface for the driver. We also directly

derived testing scenarios from the STE test mod-

ules. After converting these scenarios into test

processes, we used them to evaluate the perfor-

mance of three selected, mixed hardware-soft-

ware implementations of the control unit.

AICC test modules
The test modules for the AICC system create

the environment in which we embed the unit.

One approach is to decompose the computing

environment into the five model components in

Figure 4: a sensor, vehicle, monitor, graphical

user interface (GUI), and bus controller.The sen-

sor provides the model with information about

the lead vehicle’s speed and distance. The vehi-

cle component models the car engine’s behav-

ior. It derives the current speed from throttle and

brake positions computed by the AICC control

unit. The monitor checks the validity of the AICC

response—that is, whether the measured speed

is within the specified margin. The GUI and bus

controller are interfaces to the driver and the car;

they convert information into appropriate inter-

nal data formats for other model components.

In this example, the vehicle component is

more than a mere generator module that mod-

els the environment. It uses the AICC control

unit’s response as feedback in its calculation of

the next speed value. At the system level, the

vehicle component can assume the properties

of any car engine, such as acceleration or decel-

eration patterns. We could enhance the car test

module by introducing additional model com-
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ponents describing, for example, the road’s

incline or curvature, or weather conditions.

Simulation results from our first design

attempt4 indicated that our AICC design was

unstable: Instead of a smooth acceleration to

the desired coasting speed, the control unit

oscillated between acceleration and decelera-

tion when the vehicle approached the desired

speed. Tracking the system state to locate the

design flaw would have taken considerably

more effort in the implementation phase. In this

case, it was fairly easy to perform a system-level

simulation of the application design model.

System prototype testing results
We continue with the mapping of the test

modules into test processes. For most test mod-

ules, the conversion is trivial. In the case of the

vehicle component, we realized the module in

both generator and monitor processes. We con-

verted the stimulus produced by this compo-

nent into a test script and encoded its recorded

response into the monitor process. Specified

real-time constraints of the AICC were includ-

ed in the performance process.

We used the reconfigurable prototype to test

three different processing configurations for the

control unit: an all-software solution employing

a Motorola 68HC11 microcontroller; a mixed

Altera MAX9320 FPGA and 68HC11 solution;

and an all-software solution based on a

Siemens C161O microcontroller.

We used the proposed STE to record the

data for performance analysis of these AICC

design alternatives, obtaining results for two

selected test scenarios:

� simple test scenario A with 11 input events,

and

� more computationally intense scenario B

involving 108 test messages.

We averaged the observed data over consecu-

tive test runs for each test scenario.

Software-only solutions. In these configura-

tions, we based the system prototype on two

different microcontroller architectures and

implemented the system entirely in software.

Table 1 shows the performance of the two pro-

cessing environments for both test scenarios.

Average response time refers to the average

time the AICC control unit took to return throt-

tle and brake positions. Initially we constrained

this response time to be less than 100 ms.

The results show that the Siemens micro-

controller dominates both performance tests in

all categories. Its computational advantage

becomes apparent when you compare average

response times; the C161O is 10 times faster than

the 68HC11. This is not surprising, because the

C161O is a 16-bit pipelined microcontroller run-

ning at twice the speed of the 8-bit 68HC11. Our

data suggests that the Siemens microcontroller

is powerful enough to handle additional com-

putational tasks, a capability that would help

reduce the number of processors in a vehicle.

Mixed hardware-software solution. In this

test configuration, we implemented one system

prototype component on an Altera MAX9320

FPGA to speed up the computation in the

68HC11 implementation. This move required

converting a 25-line C function into a 19-cell

FPGA design. The function, converted into hard-

ware, handles driver control inputs. Table 2

(next page) summarizes the 68HC11 test data

for both test scenarios. The categories in Table 2

are the same as those in Table 1.

The data indicates a performance improve-

ment over the previous software-only solutions

in terms of a decrease in microcontroller uti-

lization for the mixed hardware-software con-

figuration. Hardware acceleration causes this

decrease in utilization. Although there is little

difference in the average response times for the

control unit, test scenario A shows a larger drop

in utilization because it has a higher percent-

age of control versus sensor data messages in

its message mix. The response time decreased

67March–April 2002

Table 1. Software-only implementation comparison.

Test scenario              A                            B            

Microcontroller 68HC11 C161O 68HC11 C161O

Average response time (µs) 28 3 33 2

Total idle time (s) 2.665 2.824 2.791 2.804

Total test time (s) 8.705 10.015 9.931 10.006

Microcontroller utilization (%) 5.62 0.49 13.08 0.76



only a little because the implemented hard-

ware function does not directly affect the most

computationally intensive task, calculating

throttle and brake position values.

Analysis of test results over time
We can also use the test data to show per-

formance differences over time, that is, how the

processor load varies over time for each alter-

native design. Figure 5 plots microcontroller uti-

lization against the test time for test scenario B

and covers all configurations.

Test scenario B activates the AICC control

unit at 2.7 seconds of test time. The car reach-

es its coasting speed 1.8 seconds later, resulting

in a decrease in computation. The control unit

is disabled at 6.1 seconds. When active, the

control unit frequently performs throttle and

brake position computations, leading to an

increase in microcontroller utilization. When

disabled, it only performs basic data manage-

ment tasks.

Again, the C161O outperforms any 68HC11

configuration because its utilization stays con-

sistently below 4.2% during the entire test sce-

nario. The 68HC11 data series for the software-

only implementation indicates a performance

increase after activation of the control unit,

which reaches a maximum of 56% processor

utilization. The hardware-software implemen-

tation improves application performance dur-

ing the AICC’s active period, in which the

maximum processor utilization is only 45%.

Though providing a noticeable increase in per-

formance, the mixed hardware-software con-

figuration cannot compete with the more

powerful C161O microcontroller, software-only

configuration.

IN OUR MULTILEVEL TESTING approach for

embedded systems, testing follows the gradual

refinement of the system design from the first

abstract model down to the final application

implementation. This approach’s unique fea-

ture is the ability to translate simulation-based

design experiments (test modules) into a set of

real-time test processes.

Future research will focus on the integration

of the STE in our model-based codesign envi-

ronment at the University of Arizona and the

automatic generation of STE processes. In addi-

tion, this environment is expected to evolve in

further performance analysis of other mixed

hardware-software implementations. �
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