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Abstract 
The model-based design process has established itself 

in the domain of hardware/software codesign. It has 

been applied to many complex embedded systems. 

Nevertheless we still observe a discontinuity in the 

design process when the system model evolves into its 

eventual implementation. We present here the concepts 

for a model compiler which addresses this model 

continuity problem. In addition, a candidate tool is 

evaluated for our proposed design approach. 

 

 

 

1 Introduction 

Recent advances in embedded systems hardware have 

resulted in rapid emergence of high performance 

products such as global positioning systems, efficient 

electronic fuel injection control units, portable 

multimedia players, or palm top computers. Stringent 

processing and reliability requirements as well as the 

need for a low cost and short time-to-market solution 

make a revision of the traditional design methods 

necessary.  

 Model-based approaches have been proposed to 

design these systems at a higher level of abstraction in 

order to reduce the ever increasing design complexity. 

We have presented one such approach, called 

model-based codesign (MBC) [1,11], which relies 

heavily on simulation modeling techniques to explore 

the feasibility of virtual prototyping. It provides a 

methodology for the design of embedded systems 

which fosters rapid development, late partitioning, and 

assessment prior to implementation as well as 

component  reuse. A critical point in any model-based 

design methodology is the transition from an abstract 

system model to an efficient implementation. Research 

literature refers to this transition as the model 

continuity problem [9].  

 Current practice is to build simulation models 

from embedded system specifications for system 

development and early design assessment. From there 

the design information gets handed to a set of hardware 

and software developers which start their 

implementations virtually from scratch. This hand-off 

represents a discontinuity in the design process of the 

application. Next to initial conceptual errors, 

miscommunications between the design teams can lead 

to additional problems in the implementation of the 

embedded system.  

 In this paper, we introduce concepts for model 

compilation. It provides a structured approach for the 

transformation of abstract system models into design 



implementations, and addresses the model continuity 

problem in our design methodology. 

2 Model-Based Codesign 

Conventional heterogeneous systems design is based 

on multiple, subsequent development steps in which 

designers refine hardware and software specifications 

to construct a system prototype. Based on experiments 

and system profiling, functionality is moved from 

software to hardware and vice versa in each iteration 

[5,6,7]. Early approaches practiced immediate 

partitioning into hardware (HW) and software (SW) 

components, pursue HW and SW development threads 

in isolation from each other, and often place a stronger 

emphasis on hardware rather than software [1,5,9]. 

 MBC uses extensively implementation 

independent computer models to prototype embedded 

systems under design. Our work focuses on the 

development of design techniques in which models can 

be synthesized and tested for a number of objectives, 

taken individually or in trade-off combinations. MBC 

lets developers create and refine models of embedded 

systems independently of their eventual hardware and 

software implementation enforcing a late partitioning 

of the system design. Designers use simulation to 

explore the feasibility of virtual prototypes and then 

interactively map the specifications onto a mixed 

hardware/software architecture. Figure 1 provides an 

abstract overview of the design flow advocated by our 

methodology [3]. 
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Figure 1. Abstract Design Flow in Model Based 

Codesign 

 Functional and Behavioral Requirements 

Specification and Modeling encompasses the 

solicitation and documentation of requirements as well 

as the development of an executable model. The 

Behavioral Simulation and Model Refinement Loop 

iteratively refines the design model until it is 

functionally correct. Structural Requirements 

Specification and Modeling relates physical design 

constraints to a proposed processing architecture. In the 

Performance Simulation and Model Refinement Loop, 

the model is enhanced with performance measures for 

computation and communication. Performance 

measures are obtained from a preliminary, 

reconfigurable system prototype which implements the 

chosen architecture. Synthesis and Implementation 

involves extracting design descriptions from the 

models in order to produce a physical prototype. Test 



Module Development and Product Testing creates a set 

of test scenarios from System Requirements which can 

be used to assess the design at all levels of the design 

process. 

3 Model Compilation 

We address the model continuity problem in our 

model-based codesign methodology during model 

compilation. Model compilation follows the Structural 

Modeling of the embedded system prototype. It 

encompasses the process of translating an abstract, 

formal, executable model into a detailed design 

description of an embedded computing system. The 

implementation of this description should result in a 

digital, mixed hardware/software prototype. 

 A formal, executable system model specification 

consists of a set of mathematical model components. A 

model component is specified by its inputs, outputs, 

and state. A transition and output function describe 

state changes of a component [4,12]. A network of 

modular components can be represented in a coupled 

model specification. 

 A design description here refers to a list of 

integrated components which consist of: hardware 

components, their configurations, a board layout for 

the hardware components, software processes, and an 

operating system configuration. The design description 

specifies a physical prototype rather than a fine-tuned 

or optimized final implementation. A mixed 

processor/FPGA prototyping environment [10] is 

shown in Figure 2. Here a PC monitors the software 

executing on a processor while a logic analyzer 

provides insight into the execution of the 

reconfigurable hardware components. 

Figure 2. Mixed Hardware/Software Prototyping 

Environment 

3.1 Simulation Information Analysis 

During the structural modeling phase in the MBC 

design process the system model is refined to a 

sufficient amount of detail for model compilation while 

still meeting all of the imposed behavioral system 

requirements. An appropriate level of granularity is 

reached when the interface to external peripherals 

follows the specified protocol faithfully at the level of 

bits and bytes. In the same manner interfaces between 

model components should be using bit or byte message 

based communication. 

From our executable system model static and 

dynamic simulation information can be collected. 

While static information is extracted from the model 

description dynamic information can be obtained from 

the simulation engine.  

Static model information like model structure, size, 

instruction mix, and behavior of each model 

component provides the foundation for the following 

architecture generation stage in the model compilation. 

Figure 3 depicts some static information contained in a 

composed system model.  

 

Figure 3. Static Information in a Composed 

System Model 

When we use a modular, executable discrete event 

model specification [2,11] to describe our system 

model we can also access dynamic information 

generated by the model components as well as their 

simulators as shown in Figure 4. The dynamic 

information of the composed model provides important 

insights into component scheduling, concurrency, 

execution behavior, and data flow of the application as 

well as the bandwidth of their communication 



channels. 

 

Figure 4. Dynamic Information in a Composed 

System Model 

3.2 Architecture Generation 

In the next stage of the model compilation hardware 

architectures are obtained by introducing structural 

requirements to the system model, e.g., available 

hardware components, and evaluating the previously 

collected simulation information of the composed 

model. Pure modular modeling specifications support 

concurrent design naturally. Therefore, each model 

component generates either a real or virtual processor 

with its own memory space. Model component 

couplings are converted into communication channels 

which follow a specified protocol. The implementation 

of these protocols is defined in the system model and 

adapted to the target architecture.  

Model components are transformed into custom 

processors for pure hardware implementations. Each 

dedicated custom processor realizes a single model 

component and its simulator. It consists of a hardwired 

control unit, and memory for communication and data 

manipulation purposes.  

Software implementations of model components 

are realized as virtual processors, i.e. by processes, on a 

general purpose processor in the generated architecture. 

Here, multiple model components can be grouped on a 

processor. Best groupings are determined from the 

dynamic simulation information of the system model. 

On each of the general purpose processors a 

multi-processor operating system creates a virtual 

environment of concurrently executing processors. 

This virtual concurrency does not only help in our 

mapping of model components to processors but it also 

increases the utilization of the processors which can be 

a problem in a pure custom processor design. 

Additional hardware blocks can also be generated from 

the model components to accelerate the execution on 

general purpose processors. In this case, however, 

these blocks will execute sequentially with the 

processes running on the processor. 

 

Figure 5. A Multi-Processor Target Architecture 

The operating system abstraction also enforces a 

well-defined software communication interface. 

Communication and synchronization complexity will 

be hidden from the system designers and ensure a safe 

computing environment. In order to guarantee high 

performance the operating system should only require 

a minimum overhead. Figure 5 depicts the discussed 

target architecture. 

3.3 Model Mapping 

In the final stage of the model compilation the system 

model components are mapped to a selected hardware 

architecture. The basic model mapping occurs at the 

component level. In a structured approach each formal 

system model component description and its data are 

converted into either hardware descriptions of 

concurrently executing custom processors or software 

process descriptions. 

The conversion of a model component into a 

custom processor involves the creation of custom 

processor control unit and memory. The needed 



memory size is determined by the data structures which 

are associated to corresponding model component.A 

software implementation is achieved by converting a 

model component into process. Here the model 

transition functions are implemented with  send and 

receive primitives. The model component mapping is 

illustrated in Figure 6. 

 

Figure 6. Model Component Mapping 

 We are left with fine-tuning software processes 

with hardware support for the interfacing or 

acceleration of computation to increase their 

performance. Custom hardware functions can be used, 

e.g., to convert data between different formats. It can 

also implement frequently used instruction sequences 

or component specific instructions which are not 

supported by the general purpose processor. This 

requires the model compiler in the simulation result 

analysis stage to recognize these functions and to 

synthesize code accordingly. 

4 A Tool for Model-Based Design 

The first step in our ongoing research efforts was to 

find a tool where we could apply the concepts 

described in the previous sections. The tool which we 

found to fit best for our design flow (see Figure 1) is the 

Cierto Virtual Component Codesign (VCC) 

environment available from Cadence Design Systems 

[2]. In 1998, Cadence, Philips, and Infineon 

Technologies (then Siemens) started the COSY 1 

                                                 
1  ESPRIT Project No. 25443 COSY: COdesign 

project.  

The goal of the COSY project was to develop and 

deploy a design flow and methodology with the 

necessary supporting tools and models for system 

design based on re-usable hardware and software 

Intellectual Property components. COSY and 

Cadence´s Felix initiative led to the commercially 

available Cierto VCC environment. 

The VCC tool enables designers to create 

functional and architectural models for an application 

at the system level. They can trade-off design 

alternatives early on in the design process by 

evaluating and comparing the impact of architectural 

choices. Functional model components can be 

described in a variety of formats. White Box C, a 

specialized subset of procedural C, is among these 

formats. Composed models can be created by  

connecting these components graphically. For 

simulation of the application the entire functional 

model is compiled into C++ code, executed, and can be 

evaluated in a functional analysis.  

Similarly an architectural model can be specified. 

The functional components can then be mapped onto 

the architectural model. In the performance analysis the 

description of the architectural model is used to 

compute execution delays for each functional 

component depending on the architectural component 

it is mapped to. This information is annotated in the 

code of the functional model and then again compiled 

into C++ code. Delays are computed from abstract 

hardware component descriptions and represent only 

execution estimates.  

The tool also supports easy graphical evaluation 

of various model execution parameters. Figure 7 shows 

part of a task schedule in form of a Gantt chart for our 

application example of an Embedded Java Virtual 

Machine (EJVM), which we produced during a 

performance analysis of its functional model on a 

single processor target architecture [8].  

                                                                              

Simulation and sYnthesis 



Finally VCC can assist the designer in the 

mapping from the model to an implementation in an 

implementation analysis. Here the tool checks the 

integrity of hardware descriptions, which underlie the 

components of the target architecture, and generates 

software components. 

5 Results 

VCC was found to be very useful in the design process 

in gathering simulation information for various design 

applications. In the functional analysis can be used to 

validate the correct behavior of each model component 

as well as the composed model. Nevertheless the tool 

does not provide a direct link for  feeding the analysis 

results into the specification of the target architecture 

as proposed in our approach. The  implementation 

analysis comes closest to our idea of a model mapping. 

Here though the tool mainly supports only mappings to 

software processes. 

These drawbacks can be compensated by 

introducing a more formal model specification 

front-end to the tool and adding some programs based 

on our previously introduced concepts of architecture 

generation and model mapping. Although VCC does 

not yet address the model continuity problem directly it 

can be used to complement our suggested  approach. 

6 Conclusions 

In previous work we presented a high-level system 

design approach called model-based codesign that 

relies heavily on simulation modeling techniques to 

explore the feasibility of virtual prototyping. This 

paper described concepts for a model compiler. It 

enables a smooth transition from an application model 

to an implementation prototype in model-based design. 

We propose a three stage model compilation process: 

simulation information analysis, architecture 

generation, and model mapping.  

 The first stage is concerned with the evaluation of 

the information which is encoded and generated by an 

executable formal model description. Based on this 

collected information, an appropriate, 

application-specific target architecture is selected from 

a set of possible multi-processor architectures. Finally 

the system model is mapped to this architecture which 

results in a set of hardware descriptions for models 

which are mapped to hardware, and a set of processes 

for models which are mapped to software. 

 The Cierto Virtual Component Codesign (VCC) 

environment was tested as a candidate tool for the 

application of these concepts in a model-based design 

process. It was found to be useful for assisting the 

designer in the suggested approach. Nevertheless there 

is yet no direct support for an architecture generation or 

Figure 7. Performance Analysis Results of EJVM model 



an approach for transforming abstract functional model 

components into hardware descriptions.  

So far we have not encountered any other tool 

candidates. Therefore, our future research will address 

analysis methods which will enable us to use 

simulation information for target architecture 

generation, and the mapping of abstract model 

components to both - hardware or software - 

implementations. 
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