
Concepts for Model Compilation in Hardware/Software Codesign

S. Schulz, and J.W. Rozenblit

Dept. of Electrical and Computer Engineering

The University of Arizona

Tucson, AZ 85721

 USA

sschulz@ece.arizona.edu

jr@ece.arizona.edu

K. Buchenrieder, and M.Mrva

Infineon Technologies AG

Otto-Hahn Ring 6

81739 Munich

 Germany

 klaus.buchenrieder@infineon.com

michael.mrva@infineon.com

Abstract
The model-based design process has established itself

in the domain of hardware/software codesign. It has

been applied to many complex embedded systems.

Nevertheless we still observe a discontinuity in the

design process when the system model evolves into its

eventual implementation. We present here the concepts

for a model compiler which addresses this model

continuity problem. In addition, a candidate tool is

evaluated for our proposed design approach.

1 Introduction

Recent advances in embedded systems hardware have

resulted in rapid emergence of high performance

products such as global positioning systems, efficient

electronic fuel injection control units, portable

multimedia players, or palm top computers. Stringent

processing and reliability requirements as well as the

need for a low cost and short time-to-market solution

make a revision of the traditional design methods

necessary.

 Model-based approaches have been proposed to

design these systems at a higher level of abstraction in

order to reduce the ever increasing design complexity.

We have presented one such approach, called

model-based codesign (MBC) [1,11], which relies

heavily on simulation modeling techniques to explore

the feasibility of virtual prototyping. It provides a

methodology for the design of embedded systems

which fosters rapid development, late partitioning, and

assessment prior to implementation as well as

component reuse. A critical point in any model-based

design methodology is the transition from an abstract

system model to an efficient implementation. Research

literature refers to this transition as the model

continuity problem [9].

 Current practice is to build simulation models

from embedded system specifications for system

development and early design assessment. From there

the design information gets handed to a set of hardware

and software developers which start their

implementations virtually from scratch. This hand-off

represents a discontinuity in the design process of the

application. Next to initial conceptual errors,

miscommunications between the design teams can lead

to additional problems in the implementation of the

embedded system.

 In this paper, we introduce concepts for model

compilation. It provides a structured approach for the

transformation of abstract system models into design

implementations, and addresses the model continuity

problem in our design methodology.

2 Model-Based Codesign

Conventional heterogeneous systems design is based

on multiple, subsequent development steps in which

designers refine hardware and software specifications

to construct a system prototype. Based on experiments

and system profiling, functionality is moved from

software to hardware and vice versa in each iteration

[5,6,7]. Early approaches practiced immediate

partitioning into hardware (HW) and software (SW)

components, pursue HW and SW development threads

in isolation from each other, and often place a stronger

emphasis on hardware rather than software [1,5,9].

 MBC uses extensively implementation

independent computer models to prototype embedded

systems under design. Our work focuses on the

development of design techniques in which models can

be synthesized and tested for a number of objectives,

taken individually or in trade-off combinations. MBC

lets developers create and refine models of embedded

systems independently of their eventual hardware and

software implementation enforcing a late partitioning

of the system design. Designers use simulation to

explore the feasibility of virtual prototypes and then

interactively map the specifications onto a mixed

hardware/software architecture. Figure 1 provides an

abstract overview of the design flow advocated by our

methodology [3].

Test
Module

Development
and

Product
Test

Functional and Behavioral Requirements
Specification and Modeling

Behavioral Simulation
and Refinement Loop

Structural Requirements
Specification and Modeling

Performance Simulation
and Refinement Loop

Synthesis and Implementation

Figure 1. Abstract Design Flow in Model Based

Codesign

 Functional and Behavioral Requirements

Specification and Modeling encompasses the

solicitation and documentation of requirements as well

as the development of an executable model. The

Behavioral Simulation and Model Refinement Loop

iteratively refines the design model until it is

functionally correct. Structural Requirements

Specification and Modeling relates physical design

constraints to a proposed processing architecture. In the

Performance Simulation and Model Refinement Loop,

the model is enhanced with performance measures for

computation and communication. Performance

measures are obtained from a preliminary,

reconfigurable system prototype which implements the

chosen architecture. Synthesis and Implementation

involves extracting design descriptions from the

models in order to produce a physical prototype. Test

Module Development and Product Testing creates a set

of test scenarios from System Requirements which can

be used to assess the design at all levels of the design

process.

3 Model Compilation

We address the model continuity problem in our

model-based codesign methodology during model

compilation. Model compilation follows the Structural

Modeling of the embedded system prototype. It

encompasses the process of translating an abstract,

formal, executable model into a detailed design

description of an embedded computing system. The

implementation of this description should result in a

digital, mixed hardware/software prototype.

 A formal, executable system model specification

consists of a set of mathematical model components. A

model component is specified by its inputs, outputs,

and state. A transition and output function describe

state changes of a component [4,12]. A network of

modular components can be represented in a coupled

model specification.

 A design description here refers to a list of

integrated components which consist of: hardware

components, their configurations, a board layout for

the hardware components, software processes, and an

operating system configuration. The design description

specifies a physical prototype rather than a fine-tuned

or optimized final implementation. A mixed

processor/FPGA prototyping environment [10] is

shown in Figure 2. Here a PC monitors the software

executing on a processor while a logic analyzer

provides insight into the execution of the

reconfigurable hardware components.

Figure 2. Mixed Hardware/Software Prototyping

Environment

3.1 Simulation Information Analysis

During the structural modeling phase in the MBC

design process the system model is refined to a

sufficient amount of detail for model compilation while

still meeting all of the imposed behavioral system

requirements. An appropriate level of granularity is

reached when the interface to external peripherals

follows the specified protocol faithfully at the level of

bits and bytes. In the same manner interfaces between

model components should be using bit or byte message

based communication.

From our executable system model static and

dynamic simulation information can be collected.

While static information is extracted from the model

description dynamic information can be obtained from

the simulation engine.

Static model information like model structure, size,

instruction mix, and behavior of each model

component provides the foundation for the following

architecture generation stage in the model compilation.

Figure 3 depicts some static information contained in a

composed system model.

Figure 3. Static Information in a Composed

System Model

When we use a modular, executable discrete event

model specification [2,11] to describe our system

model we can also access dynamic information

generated by the model components as well as their

simulators as shown in Figure 4. The dynamic

information of the composed model provides important

insights into component scheduling, concurrency,

execution behavior, and data flow of the application as

well as the bandwidth of their communication

channels.

Figure 4. Dynamic Information in a Composed

System Model

3.2 Architecture Generation

In the next stage of the model compilation hardware

architectures are obtained by introducing structural

requirements to the system model, e.g., available

hardware components, and evaluating the previously

collected simulation information of the composed

model. Pure modular modeling specifications support

concurrent design naturally. Therefore, each model

component generates either a real or virtual processor

with its own memory space. Model component

couplings are converted into communication channels

which follow a specified protocol. The implementation

of these protocols is defined in the system model and

adapted to the target architecture.

Model components are transformed into custom

processors for pure hardware implementations. Each

dedicated custom processor realizes a single model

component and its simulator. It consists of a hardwired

control unit, and memory for communication and data

manipulation purposes.

Software implementations of model components

are realized as virtual processors, i.e. by processes, on a

general purpose processor in the generated architecture.

Here, multiple model components can be grouped on a

processor. Best groupings are determined from the

dynamic simulation information of the system model.

On each of the general purpose processors a

multi-processor operating system creates a virtual

environment of concurrently executing processors.

This virtual concurrency does not only help in our

mapping of model components to processors but it also

increases the utilization of the processors which can be

a problem in a pure custom processor design.

Additional hardware blocks can also be generated from

the model components to accelerate the execution on

general purpose processors. In this case, however,

these blocks will execute sequentially with the

processes running on the processor.

Figure 5. A Multi-Processor Target Architecture

The operating system abstraction also enforces a

well-defined software communication interface.

Communication and synchronization complexity will

be hidden from the system designers and ensure a safe

computing environment. In order to guarantee high

performance the operating system should only require

a minimum overhead. Figure 5 depicts the discussed

target architecture.

3.3 Model Mapping

In the final stage of the model compilation the system

model components are mapped to a selected hardware

architecture. The basic model mapping occurs at the

component level. In a structured approach each formal

system model component description and its data are

converted into either hardware descriptions of

concurrently executing custom processors or software

process descriptions.

The conversion of a model component into a

custom processor involves the creation of custom

processor control unit and memory. The needed

memory size is determined by the data structures which

are associated to corresponding model component.A

software implementation is achieved by converting a

model component into process. Here the model

transition functions are implemented with send and

receive primitives. The model component mapping is

illustrated in Figure 6.

Figure 6. Model Component Mapping

 We are left with fine-tuning software processes

with hardware support for the interfacing or

acceleration of computation to increase their

performance. Custom hardware functions can be used,

e.g., to convert data between different formats. It can

also implement frequently used instruction sequences

or component specific instructions which are not

supported by the general purpose processor. This

requires the model compiler in the simulation result

analysis stage to recognize these functions and to

synthesize code accordingly.

4 A Tool for Model-Based Design

The first step in our ongoing research efforts was to

find a tool where we could apply the concepts

described in the previous sections. The tool which we

found to fit best for our design flow (see Figure 1) is the

Cierto Virtual Component Codesign (VCC)

environment available from Cadence Design Systems

[2]. In 1998, Cadence, Philips, and Infineon

Technologies (then Siemens) started the COSY 1

1 ESPRIT Project No. 25443 COSY: COdesign

project.

The goal of the COSY project was to develop and

deploy a design flow and methodology with the

necessary supporting tools and models for system

design based on re-usable hardware and software

Intellectual Property components. COSY and

Cadence´s Felix initiative led to the commercially

available Cierto VCC environment.

The VCC tool enables designers to create

functional and architectural models for an application

at the system level. They can trade-off design

alternatives early on in the design process by

evaluating and comparing the impact of architectural

choices. Functional model components can be

described in a variety of formats. White Box C, a

specialized subset of procedural C, is among these

formats. Composed models can be created by

connecting these components graphically. For

simulation of the application the entire functional

model is compiled into C++ code, executed, and can be

evaluated in a functional analysis.

Similarly an architectural model can be specified.

The functional components can then be mapped onto

the architectural model. In the performance analysis the

description of the architectural model is used to

compute execution delays for each functional

component depending on the architectural component

it is mapped to. This information is annotated in the

code of the functional model and then again compiled

into C++ code. Delays are computed from abstract

hardware component descriptions and represent only

execution estimates.

The tool also supports easy graphical evaluation

of various model execution parameters. Figure 7 shows

part of a task schedule in form of a Gantt chart for our

application example of an Embedded Java Virtual

Machine (EJVM), which we produced during a

performance analysis of its functional model on a

single processor target architecture [8].

Simulation and sYnthesis

Finally VCC can assist the designer in the

mapping from the model to an implementation in an

implementation analysis. Here the tool checks the

integrity of hardware descriptions, which underlie the

components of the target architecture, and generates

software components.

5 Results

VCC was found to be very useful in the design process

in gathering simulation information for various design

applications. In the functional analysis can be used to

validate the correct behavior of each model component

as well as the composed model. Nevertheless the tool

does not provide a direct link for feeding the analysis

results into the specification of the target architecture

as proposed in our approach. The implementation

analysis comes closest to our idea of a model mapping.

Here though the tool mainly supports only mappings to

software processes.

These drawbacks can be compensated by

introducing a more formal model specification

front-end to the tool and adding some programs based

on our previously introduced concepts of architecture

generation and model mapping. Although VCC does

not yet address the model continuity problem directly it

can be used to complement our suggested approach.

6 Conclusions

In previous work we presented a high-level system

design approach called model-based codesign that

relies heavily on simulation modeling techniques to

explore the feasibility of virtual prototyping. This

paper described concepts for a model compiler. It

enables a smooth transition from an application model

to an implementation prototype in model-based design.

We propose a three stage model compilation process:

simulation information analysis, architecture

generation, and model mapping.

 The first stage is concerned with the evaluation of

the information which is encoded and generated by an

executable formal model description. Based on this

collected information, an appropriate,

application-specific target architecture is selected from

a set of possible multi-processor architectures. Finally

the system model is mapped to this architecture which

results in a set of hardware descriptions for models

which are mapped to hardware, and a set of processes

for models which are mapped to software.

 The Cierto Virtual Component Codesign (VCC)

environment was tested as a candidate tool for the

application of these concepts in a model-based design

process. It was found to be useful for assisting the

designer in the suggested approach. Nevertheless there

is yet no direct support for an architecture generation or

Figure 7. Performance Analysis Results of EJVM model

an approach for transforming abstract functional model

components into hardware descriptions.

So far we have not encountered any other tool

candidates. Therefore, our future research will address

analysis methods which will enable us to use

simulation information for target architecture

generation, and the mapping of abstract model

components to both - hardware or software -

implementations.

References

1. K. Buchenrieder and J.W. Rozenblit, “Codesign:

An Overview”, in J.W. Rozenblit and K.

Buchenrieder (Eds.) Codesign: Computer-Aided

Software/Hardware Engineering, pp. 1-16, IEEE

Press, 1994.

2. Cadence Cierto Virtual Component Codesign

(VCC) Environment, URL: http://www.cadence.

com/technology/hwsw/ciertovcc/

3. S.J. Cunning et al., "Towards an Integrated,

Model-Based Codesign Environment",

Proceedings of the IEEE Conference and Workshop

on Engineering of Computer Based Systems,

Nashville, TN, 136-43, March 1999.

4. S.J. Cunning, S. Schulz, and J.W. Rozenblit, "An

Embedded System's Design Verification Using

Object-Oriented Simulation Techniques",

Simulation, 72(4), 238-49, April 1999.

5. G. De Micheli, and R.K. Gupta,

“Hardware/Software Co-Design”, Proceedings of

the IEEE, 85(3), 349-65, 1997.

6. R. Ernst, J. Henkel, and T. Benner,

“Hardware-Software Cosynthesis for

Microcontrollers”, IEEE Design and Test of

Computers, 10(4), pp. 64-73,1993.

7. D. Gajski, S. Narayan, F. Vahid, and J. Gong,

Specification and Design of Embedded Systems,

Englewood Cliffs, NJ: Prentice-Hall, 1994.

8. R. Kress, “Demonstration of COSY Results on a

Robust Mobile Controller”, COSY report, ESPRIT

Project No. 25443: COdesign Simulation and

sYnthesis, May 2000.

9. S. Kumar, A Unified Representation for

Hardware/Software Codesign, Ph.D. Dissertation,

University of Virginia, 1995.

10. A. Pyttel, and A. Sedlmeier, “Hardware/Software

System Prototyping with Statically and

Dynamically Reconfigurable FPGAs”, Proceedings

of Design, Automation and Test Conference in

Europe, Paris, 234-47, February 1998.

11. S. Schulz, J.W. Rozenblit, M. Mrva, and K.

Buchenrieder, "Model-Based Codesign", IEEE

Computer, 31(8), 1998.

12. B.P. Zeigler, H. Praehofer, and T. G. Kim, Theory

of Modeling and Simulation, 2nd Ed., Academic

Press, 2000.

Stephan Schulz is a Ph.D. candidate in electrical and

computer engineering at the University of Arizona. He

received a B.Sc. from the State University of New York,

Binghamton, and an M.Sc. in electrical and computer

engineering at the University of Arizona. His research

interests include embedded systems applications,

model-based design, real-time operating systems,

continuous and discrete-event simulation, and

hardware/software codesign.

Jerzy W. Rozenblit is Professor of electrical and

computer engineering at the University of Arizona. His

research and teaching are in complex systems design

and simulation modeling. He received a Ph.D. and

M.Sc. in computer science from Wayne State and a

M.Sc. in computer engineering from The Technical

University of Wroclaw. He is an associate editor of

ACM Transactions on Modeling and Computer

Simulation and IEEE Transactions on Systems, Man

and Cybernetics. He is a senior member of the IEEE

and the Society for Computer Simulation and a

member of the ACM. He's also a department editor for

the IEEE Computer column - Integrated Engineering.

Klaus Buchenrieder heads research in

Hardware-Software Codesign at the Central

Development Laboratories of Infineon Technologies

AG. He received a Dipl.Ing. in electrical engineering

from the Fachhochschule in München, and a M.Sc. and

Ph.D. in computer science from Ohio State University.

He is the founding chair of the Codes/Cashe workshop

series. He is professor of computer science at the

University of Tübingen and adjunct professor of

computer and electrical engineering at the University

of Arizona.

Michael Mrva is Head of the Advanced Design

Methods Department at Infineon Technologies AG and

an adjunct professor in Electrical and Computer

Engineering at the University of Arizona. His research

interests include Hardware-Software Codesign,

high-level specification and verification of hardware

systems, object-oriented codesign, VHDL-based

modeling, and hardware design reuse. He received a

Ph.D. in mathematics from the University of Vienna.

