
 A Prototyping Environment for Model-Based Codesign

 S. Schulz and J.W. Rozenblit K. Buchenrieder and M. Mrva
 Dept. of Electrical and Computer Engineering Siemens AG

The University of Arizona ZT ME 5
 Tucson, Arizona 85721-0104 Otto-Hahn-Ring 6
 USA 81739 München

 Germany
 {sschulz|jr}@ece.arizona.edu {buchen|michael.mrva}@mchp.siemens.de

Abstract

In this paper, a prototyping environment for embedded
systems design is presented. This environment supports a
design methodology called model-based codesign and
fosters implementation independent specification of
embedded systems. In this article, the focus is on the
technology allocation and implementation phases of the
methodology.

1. Introduction

Recent advances in embedded systems have resulted in
rapid emergence of products such as global positioning
systems, efficient electronic fuel injection, portable CD
players or palm top computers. Stringent processing and
reliability requirements imposed on these complex systems
as well as the need for low cost and little time-to-market
make a revision of the traditional design methods necessary.

A number of authors [2,3,7,8,13] have been suggesting
various approaches to address these issues using
hardware/software codesign. We have been proposing a
high level system design approach called model-based
codesign that relies heavily on simulation modeling
techniques to explore the feasibility of virtual prototypes
[1,12]. It provides a methodology for the design of
embedded systems which fosters rapid development, late
partitioning and assessment prior to implementation, as
well as model and hardware/software module reuse.

In [12], we have presented the foundations of our design
approach and demonstrated it using an automotive safety
control device. This paper introduces a protoyping
environment used to realize the theory-based concepts.

2. Model-Based Codesign

Formal specification techniques are of limited effectiveness
without a systematic modeling methodology guiding their

use throughout the codesign process. Therefore an approach
to hardware/software codesign is proposed [12] that uses
stepwise refinement of models and facilitates component
specifications at multiple levels of abstraction. The system
under development can then be tested according to
requirements and specifications using simulation. No
commitments regarding an implementation in hardware or
software are made early in the design process.

The design procedure is described in detail in [1] and
[12]. Initially, requirements and specifications are obtained
for the system to be modeled. The system is then described
as an abstract model which is a combination of its structural
[10], functional, and associated behavioral [4] facets. It is
emphasized that the model components are described at a
high level of abstraction to remain technology independent.
The modeling process is accompanied by a stepwise
refinement of the model down to a desired level of
granularity.

In model-based codesign, experimental frames can be
employed [9] to verify the model’s correctness during
simulation. These frames specify conditions under which
the system is to be observed. At the end of the iterative
simulation process, a virtual system design is obtained.

A critical phase of in our design methodology is the so-
called model mapping. In model mapping, the simulatable
model descriptions are translated into hardware, software,
and interface specifications. The basis for the model
mapping is the selection of an underlying architecture
platform which determines the execution time of software
components. A search through the design space results in a
final implementation for the verified model.

3. Model Mapping

Model mapping is preceded by an extensive modeling,
refinement and simulation phases [12]. To obtain a
simulatable specification, we use the Discrete Event System
Specification formalism (DEVS). The DEVS formalism
introduced by Zeigler [13] provides a means of specifying a

mathematical object called a system and supports building
models in a hierarchical, modular manner. We arrive at a final
verified model after an iterative modeling and simulation loop
performed in DEVS-Java, an object-oriented implementation
of DEVS. The product of all the necessary refinement and
modification is referred to as the virtual board VB* which
satisfies all the functional requirements. Now, the
components of the verified model, i.e., a virtual prototype of
the system, have to be assigned to either hardware or
software processes, and properly interfaced with each other
as shown in Figure 1. The mapping of the application to a
demonstrator is done by partitioning the system at the
component level.

The partitioning of VB* can be done either interactively
by the designer or can be supported by an algorithm that
searches the design space for the best fitting
implementation. Due to the different levels of granularity of
the model components the mapping is also allowed at
different levels of abstraction with respect to their
corresponding hardware or software modules (i.e.,
descriptions at register transfer, gate or chip level for
hardware components and instructions, functions or
programs for software components).

The assignment process begins with the selection of a
hardware platform for VB* to run software processes on.
This information needs to be known for the search of the
best fitting design since the architecture specifics, e.g.,
instruction set or processing speed, define important run
time parameters for the software modules. The use of
libraries containing hardware and software modules fosters
reuse of already implemented, tested, and verified designs.
For future development, it will also be easier to keep up
with advances in technology that might change the way a
particular hardware or software element is implemented.

Other requirements that help limit the search space are
hard implementation constraints or non-functional
requirements given for the system. For example, only a
certain chip could be available for a part of the design
which would limit the choice of bus controller to this
specific chip. The rest of the assignment will the be mostly
guided by timing constraints known from the model
simulation. Component by component, from the bottom
level to top level VB* is then built by verifying real-time
timing constraints of the composed. If there is a request for
an impossible model mapping for a specified design the
trouble spot can be identified during the mapping to
indicate where the constraints for the implementation need
to be modified. After that we have to repeat our simulation
experiments to verify our modified design.

The mapping of VB* onto the demonstrator is done
manually at this stage of the project. Factors influencing the
assignment process are realizability, speedup, and cost of
the implementation. Hardware is used to accelerate the
execution time of the process body for some components.
The final design implementation then consists of a complete
description of a system to be designed preferably using
hardware and software description languages. For the
implementation of the VB*, this description is synthesized
and compiled by tools that are commercially available on
the market.

Interfacing is needed to have the different components or
processes communicate with each other. The three major
categories of interfacing are: hardware with hardware,
software with software, and mixed hardware with software.
Choosing the appropriate interface ensures correct program
execution, handles synchronization and protects shared
variables in the case of parallel execution of components.
Techniques used in the implementation of interfaces include
interrupt handling, handshake protocols, semaphores, and
busy waiting, etc.

4. The Protoyping Environment

An overview of the prototyping environment is shown in
Figure 2. The reference architecture for implementation of
the software components is a Motorola MC68HC11
microcontroller. This microcontroller was chosen since it is
commonly used by the automotive industry for engine
control applications. The hardware functions generated
during the model mapping are realized on an ALTERA
MAX9320 Field Programmable Gate Array (FPGA). The
synthesis tool for this chip can either process VHDL
descriptions or graphic design entry to create desired
circuits. The two chips are interfaced via a 16-bit
communication bus. Due to the limited availability of I/O
pins, data transfers are multiplexed to increase the
communication bandwidth.

Interfaces

void main(void) {

}

Software
 Description

Search for
best fitting

design
realization

Virtual Board
VB*

Hardware
Library

Software
Library

DEVS
JAVA

Hardware
 Description

Figure 1. Search for Best Fitting Design

The implemented model components are interfaced by
the Simple Modeling Operating System (SMOS). This
operating system is based on a centralized dynamic
scheduling approach. For our purpose, we define modeling

components to be processes. A process consists of a process
body, mailbox, and carries certain properties, for example:
priority level, number of instructions, etc. Processes are
placed on a waiting list by an interrupt service routine or

Experimental
Frame

ALTERA ISP DEMO BOARD

Board Input and
 Output Pins

Hardware Description
in VHDL

Netlist

Synthesis using
ALTERA Tools

FPGA
Configuration

Conversion using
ALTERA Compiler

Software Description
in C

Motorola S-Record
Assembler Code

FABIUS
Cross-Compiler

Stimulus
to Pin as well

as Pin to Output
Conversion

Stimulus File
for Simulation

MC68HC11 EVB
Micro-Controller EValuation Board

Bus Communication

Simulation
Analysis File

Downloaded to
 Board using

BUFFALO

MAX9320

Verified Virtual
Unified Prototype

(Model)

Model Compilation
and Integration

Figure 2. Prototyping Environment for Model Testing and Physical Realization

Currently Running Process

Component A

Component C

Component D

Component A

Component B 1

-

3

3

2

Component B 1

PriorityName

2

old new

 example rankings

-

1

2

2

3

34

1

final

1

2

3

4

Step1: Component is taken off the
waiting list and runs until it calls
the scheduler after it finishes

Step2: The waiting list is
rearranged

Step3: An interrupt routine calls the
Scheduler to insert Component
B on the waiting list

Scheduler
•offers message passing routines

•maintains the waiting list
•runs the first process

put_on_list()

alarm()

read_from_mailbox()

write_to_mailbox()

-

interrupt_handler()

waiting list

Figure 3. Operation of SMOS

other components using a priority scheduling scheme. Inter-
process communication is achieved by message passing.
SMOS is preemptive in the sense that it will remove
components running past a certain time-out limit. That
component will be stopped by means of a timer interrupt
and an alarm is issued. The process is then killed and the
user is notified of a malfunctioning component. Figure 3
illustrates the features described above.

The execution of a model component is initiated either
by the currently running process or by incoming data. These
data can be send again by the running process or from
external sources, e.g., vehicle sensors or the driver via
interrupt. An interrupt handler puts the data into the SMOS
format. When the component finally gets its turn as the
running process, it first sends out its process number to the
hardware port which will select corresponding supporting
hardware function(s). The software body of the component
then obtains values necessary for execution of the process
body from its mailbox, executes, sends out results to
(an)other component(s), and finally schedules (an)other
component(s) to be placed on the SMOS waiting list. The
process body can be either implemented as a software
routine, a hardware function or a hybrid where some
hardware functionality supports and accelerates a software
routine.

5. The Application: Autonomous Intelligent
Cruise Control

As a sample study we considered a design from the
automotive domain. Codesign in general lends itself well to
the design of the new intelligent generation of electronic
automotive applications [5]. There, the car industry faces
reduced design cycles and is keen on saving costs. At the
same time, the electronic components used in automobiles
become highly complex embedded systems. The traditional,
separate design of hardware and software and software
components is difficult to justify, especially in view of the
sophistication of the functional characteristics of the
components being built.

One such application which has recently received a lot of
attention is a device called autonomous, intelligent cruise
control unit (AICC). The AICC system can be understood as
an extension of the regular cruise control, not only keeping
a fixed speed, but also adapting to the speed of the vehicle
ahead. It controls the relative speed between two vehicles
traveling in the same lane. Furthermore, it asserts
longitudinal elements of control but no lateral control.
Although the system is autonomous, meaning it does not
rely on communication between vehicles, the driver remains
in full control since the driver can override the device, e.g.,
by braking. For our purposes we require the unit to keep the

speed of the vehicle within a margin of +/- 2 km/h of the
safe speed or set speed - depending which one of the two
speeds is lower. The safe speed is defined as the maximum
speed that would be allowed to keep the car within a safe
distance to the vehicle ahead. The set speed is the speed
requested by the driver.

The circuitry of a safety unit must satisfy real-time
constraints. It should not fail in emergency situations. This
includes returning the control to the driver in case of a
failure of the system to not make matters worse. A standard
cruise control nowadays does not represent a true real-time
design problem. However, the design of an AICC system
must take into account large amounts of data, especially
from the vision sensors, and process such data in a timely
manner. All the safety requirements have to be met within a
small margin of error under normal traffic conditions.

Our design example focuses on the AICC control unit
which is the main processing element in such a device. For
a more detailed description of the modeling of the AICC
control unit it and its environment unit we refer the reader
to [11].

6. Testing Setup

In order to verify the functionality and correctness of the
final demonstrator module a testing environment was built
as shown in Figure 4. For that purpose the concept of
experimental frames is transferred from the simulation
domain to the real-time domain. A C-program reuses the
experimental frames used during simulation and generates
inputs in real-time. It also obtains outputs from the
demonstrator and analyzes the data.

The inputs to the application can be divided into control
and data inputs. Some of the control inputs can be realized

ON/OFF

COAST

RESUME/
ACCEL.

Input from Driver

Input from Sensors
and Output Analysis

FPGA Board

Microcontroller Board

run
expframe
...

PC Par.
Port

Figure 4. Testing Setup

using the available push button switches located on the
ALTERA ISP Demo Board. Data as well as control inputs are
generated by a C program running on the 486 IBM PC.
There, data can either be manipulated by user or
automatically by the program from the PC and is then sent
to the EVB via the parallel I/O port.

The inputs arrive at the microcontroller making use of
its external interrupt line. A handshake protocol is used the
transfer of the data from the PC. Some interrupt logic had
to be designed to eliminate switch debouncing on the
ALTERA board and to handle multiple interrupt requests.
Some debugging information from the implemented
application can also be displayed for evaluation using the
serial interface with the PC.

7. Summary

This paper describes our initial efforts to build a prototyping
and testing environment to support the model-based
codesign framework. The environment provides a unique
ability to verify embedded systems’ model in the form of
formal, simulatable specifications, and to re-evaluate the
hardware, software, and interface physical realization in an
emulation loop of experimental frames prior to the system’s
deployment.

Acknowledgments

This work has been supported by Siemens AG, Central
Research and Development Laboratories, München,
Germany. We would like to thank Mr. Joe Hanson at the
ALTERA University Program for providing the ALTERA ISP
Demo Board and the corresponding development software.

References

[1] K. Buchenrieder and J.W. Rozenblit, “Codesign: An
Overview”, in J.W. Rozenblit and K. Buchenrieder (Eds)
Codesign: Computer-Aided Software/Hardware
Engineering, pp. 1-16, IEEE Press, 1994.

[2] R. Ernst, J. Henkel, and T. Benner, “Hardware-Software
Cosynthesis for Microcontrollers”, IEEE Design and Test
of Computers, 10(4), pp. 64-73,1993.

[3] R.K. Gupta and G. De Micheli, “Hardware-Software
Cosynthesis for Digital Systems”, IEEE Design and Test
of Computers, 10(3), pp. 29-41, 1993.

[4] D. Harel, “STATEMATE: A Working Environment for the
Development of Complex Reactive Systems”, IEEE
Transactions on Software Engineering, 16(4), pp. 403-14,
1990.

[5] X. Hu and J. D’Ambrosio, “Codesign of Architectures for
Automotive Powertrain Modules”, IEEE Micro, 14(4), pp.
17-24, 1994.

[6] P.A. Ioannou and C.C. Chen, “Autonomous Intelligent
Cruise Control”, IEEE Transactions on Vehicular
Technology, 42(4), pp. 657-72, 1993.

[7] A. Kalavade and E.A. Lee, “A Hardware-Software
Codesign Methodology for DSP Applications”, IEEE
Design and Test Computers, 10(3), pp. 16-28, 1993.

[8] S. Kumar, A Unified Representation for Hardware/
Software Codesign, Ph.D. Dissertation, University of
Virginia, 1995.

[9] J.W. Rozenblit, “Experimental Frame Specification
Methodology for Hierarchical Simulation Modeling”,
International Journal of General Systems, 19(3), pp. 317-
336, 1991.

[10] J. Rumbaugh, Object-Oriented Modeling and Design.
Prentice Hall, 1991.

[11] S. Schulz, J.W. Rozenblit, and K. Buchenrieder, “Towards
Model-Based Codesign: An Intelligent, Autonomous
Cruise Controller Application”, Proceedings of the 1997
IEEE Conference and Workshop on Engineering of
Computer Based Systems, pp. 73-80, Monterey, CA, 1997.

[12] S. Schulz, J.W. Rozenblit, M. Mrva, and K. Buchenrieder,
“Model-Based Codesign: the Framework and its
Application”, to appear in IEEE Computer.

[13] D.E. Thomas, J.K. Adams, and H. Schmit, “A Model and
Methodology for Hardware-Software Codesign”, IEEE
Design and Test of Computers, 10(3), pp. 6-15, 1993.

[14] B.P. Zeigler, Object Oriented Simulation with
Hierarchical Models, Copyright by Author, 1995.

