
0018-9162/98/$10.00 © 1998 IEEE60 Computer

Model-Based
Codesign

H
ardware-software codesign has been a
research topic since the beginning of this
decade, but only now are structured meth-
ods emerging that focus on automating
design. Unfortunately, to date most codesign

approaches simply leverage performance from indi-
vidual hardware and software tools, rather than enforc-
ing a structured integration of hardware and software
systems simultaneously.1,2 A few frameworks have suc-
cessfully done this integration and have the potential
for significant benefits, including reduced time to mar-
ket, smaller scale design, better likelihood of compo-
nent reuse, and maximum use of processing power.

In this article, we describe a codesign approach that
lets developers create models of a formal system repre-
sentation independently of the hardware and software
implementation. In our framework, which targets embed-
ded systems, developers use simulation-based modeling
to explore the feasibility of virtual prototypes and then
interactively map the specification onto a software-hard-
ware architecture. Our approach has several benefits:

• It addresses model continuity. Our approach
makes it easier to convert system specifications
into a hardware-software architecture because
designers simply map simulatable models onto
hardware, software, and interface implementa-
tions. Our position is that formal specification
techniques can only do so much without a sys-
tematic modeling methodology to guide their use.

• It has the potential to speed model development.
Although we have not done formal benchmark-
ing and therefore cannot offer quantitative com-
parisons, we believe our framework’s extensive
reliance on modularity and hierarchy, model
reuse, and the separation of model descriptions
from simulation experiments has great potential
to streamline design.

• It promotes reuse. Designers can reuse elementary
components regardless of their technology, aggre-
gating them into more complex design structures.

• It supports design decision-making. Designers can
trade off design alternatives and select a design

solution that best meets the specifications and
requirements.

We have used this approach to design and build a
prototype of an embedded system, the control unit of an
autonomous, intelligent cruise controller (AICC). In this
article, we step through this design, presenting the vir-
tual design, the simulation results that validate our spec-
ifications, the model mapping, and a physical realization
of the model-based design. Our laboratory experience
at both the University of Arizona and Siemens AG indi-
cates that moderately experienced designers can mas-
ter this design framework in a short time.

FRAMEWORK OVERVIEW
Figure 1 shows the fundamental phases of our

approach.

Specification
In the first phase, the designer converts the system’s

requirements and constraints into a formal specifica-
tion. The initial specification defines the interface
between the system and its environment as well as the
system’s functionality. Nonfunctional requirements
(size, weight, architecture restrictions) are also recorded.
Because our modeling approach is implementation-
independent, designers can refine the specification with-
out modifying any physically designed components.

Modeling
A model is a set of instructions for generating struc-

tural and behavioral data. Valid model-generated data
is a subset of the system’s behavioral data—a subset
because no one can build models that account for all
behavior. A specification of the system and its envi-
ronment forms the basis for building models that cor-
respond to a set of questions about the design,
including its objectives and reason for being.2

The structural model explains the design’s decom-
position into its components. The functional model
describes the overall functionality of the system and
how it will integrate into its environment. The dynamic
model assigns timing constraints to the internal func-

The authors describe a type of hardware-software codesign in which
developers model a system specification independently of implementation
and use simulation-based design to assess virtual prototypes before the
system is built. In an experimental design, the authors produced a control
unit directly from the model-based specification.

Stephan
Schulz
Jerzy W.
Rozenblit
University of
Arizona

Michael Mrva
Klaus
Buchenrieder
Siemens AG

Co
ve

r F
ea

tu
re

.

tions and shows the details of state changes within the
system model. These three descriptions are generally
sufficient to generate a simulatable system description.

The type of specification language used in modeling
is extremely important. The specification must accom-
modate different levels of granularity so that the devel-
oper can map components at different levels of
abstraction to corresponding hardware or software
modules. There could be descriptions at the register-
transfer, gate, or chip levels for hardware components
and at the instruction, function, or program level for
software components. These modules must be speci-
fied in an abstract description language, to achieve
implementation independence.

In our framework, designers encode system behav-
ior using the Discrete Event System Specification for-
malism.3 DEVS is a general, formal specification
language that lets developers specify a system as a
mathematical object. A system has a time base, inputs,
states, and outputs, as well as functions for deter-
mining next states and outputs. Because models
encode behavior, they become the design blueprints.
Developers make no decisions about how to build the
components at this stage; they simply connect ele-
mentary blocks hierarchically until they arrive at an
acceptable preliminary model that conforms to the
initial specifications.

Designers combine the structural and behavioral
models specified in DEVS and encode them in the
DEVS-Java environment. Building models in this hier-
archical, modular manner permits a systems-oriented
approach not possible with popular simulation lan-
guages.

As Figure 1 shows, the model base—a collection of
model components—is another input into the model-
ing phase. The stored models serve as a repository of
knowledge about existing designs. As developers mod-
ify a design, either by augmenting it or refining it, they
can store new model units for potential reuse.

Simulation and verification
In our approach, simulation is a computational

process that generates data in response to suitably
encoded model instructions. Simulation is thus a way
to verify the design specifications given by the model.
Developers support this process by retrieving model
test scenarios encoded in experimental frames, which
are stored in the experimental frame base. They can
then quickly set up simulation by retrieving the rele-
vant experiments.

The idea behind experimental frames is that you
can design a system from multiple perspectives. The
experiments reflect these perspectives and help orient
model building by drawing system boundaries and
determining the model components of relevance. The
experimental frame has several elements:

• It specifies when (under what circumstances) a
model or the real system is to be observed and
experimented with.3

• It defines the input data used in the experiment.

August 1998 61

Specification

Requirements
and constraints

Implementation
and prototyping

Modifications
and refinement

Simulation
and verification

Experimental
frame base

Modeling

Model
mapping

Model

Evaluated
design

Interface

System
specification

Hardware Software

Verified model

Model
base

Figure 1. Phases of model-based codesign. The goal of each phase (ovals) is to provide
developers with a way to independently evaluate system design through simulation-
based modeling. The models are then mapped to a software-hardware architecture. The
approach emphasizes a structured integration, as opposed to simply leveraging individ-
ual hardware and software tools.

.

62 Computer

• It observes and collects data generated by
the model.

• It controls experimentation by placing
constraints on the values of the model’s
state variables and monitoring the con-
straints.

Developers use the data collected from such
experiments to evaluate the proposed design
solutions. By associating various experimental
frames with design alternatives in the form of
models, developers can trade off design alter-
natives to arrive at the most suitable solution.

Note that we clearly distinguish among what
drives the model, what is observed as its output,
and the model itself. We avoid incorporating
data-gathering facilities into the actual model,
which would make the model not only more
complex but also unsuitable for reuse. With these

distinctions, developers are free to associate a model
with different experimental frames, each corresponding
to a particular performance specification.

Modifications and refinement
During this phase, developers refine a validated sys-

tem model into elementary submodels, couple the
model’s components, and define component interac-
tions. Our framework replaces the traditional design
partitioning and integration phases with stepwise
refinement based on an abstract simulation model and
its coupling. Developers also generate interfaces
according to component interrelations they derive
from the refined model.

Thus, developers refine the system model into the
final, validated specification iteratively—a strategy
that is especially advantageous in large-scale designs
because any reallocation (or shift between hardware
and software) requires numerous interface changes.

Moreover, a stepwise refinement process, in which
technology is assigned late in design, fosters component
reuse regardless of the technology eventually selected.

Model mapping
In model mapping, developers create an environ-

ment for subsequent prototyping by mapping simu-
lation models onto specific components (hardware,
software, interface), guided by performance estimates
derived in the previous phase. In traditional design,
the partitioning scheme is tied to the target architec-
ture. In our approach, mapping model components to
hardware and software is not as limited because the
design is independent of the implementation until this
phase, which is relatively late in design. The DEVS-
Java model specification is translated into C and
VHDL code. Once C and VHDL code segments have
been generated, the designers realize the respective

software and hardware components through virtual
prototyping (which we later illustrate in the AICC
application example).

The final model satisfies all imposed requirements.
Our ultimate goal is to develop a model compiler—a
system that automatically translates the simulatable
model specifications into software and hardware
description languages from which physical elements
can be built.

Implementation and prototyping
In the last phase, the developer builds a prototype.

Because prototyping is application-specific, we defer
describing this phase in detail until the application sec-
tion. Basically, the developer begins by searching the
design space for the best implementation fit. The hard-
ware platform is typically selected first, which serves
as a reference architecture for defining the parameters
of the software modules. To aid his search, the devel-
oper uses a library of hardware and software compo-
nents, which helps foster the reuse of implemented,
tested, and verified designs.

Three types of interfaces must also be chosen: hard-
ware with hardware, software with software, and
hardware with software. Choosing the appropriate
interface ensures correct program execution, handles
synchronization, and protects shared variables when
components are to execute in parallel. Techniques used
to implement interfaces include interrupt handling,
handshake protocols, semaphores, and busy waiting.

To further preserve model continuity in the design
flow, we developed the Simple Modeling Operating
System, a general prototyping tool that provides soft-
ware support on the target architecture and schedules
the synthesized model components. SMOS is based
on centralized dynamic scheduling. It is preemptive in
the sense that it removes components that run past a
certain timeout limit. A timer interrupt stops the com-
ponent and issues an alarm. The unit then kills the
process and identifies the malfunctioning component.

In SMOS, either a currently running process or
incoming data can cause a model component to exe-
cute. The data is sent by either the running process or
by a data interrupt triggered by an external source,
such as the human-machine interface. An interrupt
handler puts the data into the correct format.

When a component finally gets its turn as the run-
ning process, it sends out its process number to the
hardware port, which activates the supporting hard-
ware functions. The software body of the component
then obtains from its mailbox the values necessary to
execute its process body, then it executes, and then it
sends out results to other components. Finally, it
schedules the components to be placed on the SMOS
waiting list. The process body can be implemented
either as a software routine, a hardware function, or

We clearly
distinguish among

what drives the
model, what is
observed as its
output, and the

model itself.
Developers can
trade off design

alternatives to arrive
at the most

suitable solution.

.

a hybrid, in which some hardware functions support
and accelerate a software routine.

The final design implementation then consists of a
complete description of a system to be designed,
preferably using hardware and software description
languages. To implement the design, developers can
use commercial synthesis tools, such as those offered
by Synopsis or Cadence, or C or Java compilers.

APPLICATION
The model-based codesign approach lends itself

well to electronic automotive applications. The auto-
motive industry needs reduced design cycles and is
keen on saving costs. At the same time, the electronic
components used in automobiles have become highly
complex embedded systems. Designing hardware and
software components separately is difficult to justify.

For these reasons, we elected to apply our codesign
approach to the design of the autonomous, intelligent
cruise controller. The AICC is part of a complex vehi-
cle communication and control system. Our task was
to design the AICC control unit.

Specification
We used recent AICC literature4 to guide the sys-

tem specification. The AICC is an extension of regu-
lar cruise control that not only maintains a fixed speed,
but also adapts to the speed of the vehicle ahead. It
has no lateral control. It is autonomous, in that it does
not rely on communication between its vehicle and
another. It can be activated for speeds above 56
km/hour only.

The safe speed is the maximum speed that keeps the
car within a safe distance of the vehicle ahead. The set
speed is the speed the driver requests. Thus, the cir-
cuitry of a safety unit must satisfy real-time con-
straints, including returning control to the driver if the
system fails. The unit must keep the speed of the vehi-
cle within +−2 km/hour of the safe speed or set speed,
whichever is lower.

Modeling
As described earlier, modeling involves creating one

structural and two behavioral models (functional and
dynamic).

Structural model. To develop the structural model,
we analyzed the domain of automotive safety and
selected an instance of the AICC. In previous work,
we used an OMT (Object Modeling Technique)-like
notation5 to develop the complete structural model
in an AICC instance.6 In this article, we skip the
evolution of the structural model and describe only
the functional and dynamic models to demonstrate
continuity from system specification to physical
design.

As Figure 2 shows, the AICC has three basic ele-
ments. The state manager keeps track of the cruise
control’s state. The data manager collects data from
the driver, computational routines, and sensors and
distributes them to the state manager or to compo-
nents within the calculation module that request it.
These components process specific computations. The
req port of each component in Figure 2 indicates a
bidirectional communication line that handles data
requests. Thus, from the informal description of the
AICC control unit, we derived a structural model that
has a bridge for internal and external communication
and a calculation module for data processing.

Because we expected to implement the AICC con-
trol unit in a single-processor environment, we added
a scheduler to our modeling environment. The sched-
uler executes the components’ functions as a process.
We needed the scheduler because, although concur-
rency is reflected in the simulation time, it cannot be
realized in a single-processor environment. The sched-
uler let us develop a model that can be tested for func-
tionality and timing constraints.

Functional and dynamic models. We defined the func-
tional and dynamic models by converting assumptions
and functional requirements into informal specifica-
tions, including

August 1998 63

State
manager

CNTRL in SM in
SM out

action
msg

Data
manager

DATA in

Bridge

req
msg

DM in
DM out

In

in
req outSet

in
req

in
req

outIncr

in
req outDecr

DM
req

in
outThrottle

Safety

Calculation
module

out

inreq
Adjust

out

Out

setting

status

AICC control unit

Figure 2. Final AICC model. The model shows the structure as two main components: bridge and calculation module. In the figure, DM is data manager,
SM is state manager, req is request, and msg is message.

.

64 Computer

• The driver transmits data using switches on the
human-machine interface. These switches are
typically found on a regular cruise controller.

• The control unit obtains data from internal sen-
sors, which can include radar units and devices
that measure such aspects as steering angle,

momentum, speed, and throttle angle.
• Data arrives with a specific protocol at a rate that

depends on the sensor type. From this data, the
control unit gains information about the distance
and relative speeds of surrounding vehicles.

We captured these informal specifications using
Statecharts.6,7

Specification representation. To obtain a simulat-
able specification, we encoded the behavior of the
AICC control unit in DEVS, as described earlier.

Refinement and modifications
From the informal description of the AICC control

unit, we decomposed the overall structural model into
a bridge for internal and external communication and
a calculation module for data processing. As Figure 2
shows, the bridge itself decomposes into a data man-
ager, which manages data collected from sensors, and
the state manager, which handles the control inputs
of the AICC sent by the user interface.

From the requirements, we first described the
AICC’s functionality and dynamics—the driver must
activate the cruise control by pressing the On/Off but-
ton and after that activate it by pressing the Coast
button. In the DEVS model, the state manager is cre-
ated and coupled to the experimental frame as well as
to the corresponding calculation function ports.
Because the internals of the component exhibit the
required functionality, we also had to activate the cor-
rect computation functions for the respective control

AICC

Experimental frame (Car)

Data
Functions for

speed, distance,
speed of

lead vehicle

Bus
Provides
inputs

in
 controller

format

Acceptor

Starts
and ends

simulation
cycle

Transducer

Analyzes
throttle

response and
evaluates
messages

Control
Scenarios of

buttons pressed,
clutch, brake,

gas

Generator

genr
out

contrl

Throttle setting

Messages

f (engine load)

out

out

in

trans
in

status in

Figure 3. An experimental frame to test the AICC control unit. Experimental frames let developers easily set up simulation sessions.
This experimental frame tests the unit’s ability to maintain speed under varying engine loads and tests its response to interrupt sig-
nals such as braking and throttle setting. The generator produces the input segments sent to a model, the acceptor continually tests
the run-control segments to satisfy a set of constraints, and a transducer collects input/output data and computes mappings.

Figure 4. AICC control unit’s GUI during a safety test run. The interface is based on the
model of a real vehicle.

.

data inputs. We then integrated the DEVS-Java rep-
resentation of the state manager into the overall AICC
model. In this way, we were able to test and assess the
AICC control unit in its entirety as well as its sub-
components in simulation experiments using differ-
ent road scenarios.

Simulation and verification
DEVS modules are instrumented with experimen-

tal frames, which are given concrete form. Employing
the concepts of automata theory and the DEVS for-
malism, DEVS originator Bernard P. Zeigler3 defines
a generator, which produces the input segments sent
to a model; an acceptor, a device that continually tests
the run-control segments to satisfy given constraints;
and a transducer, which collects the input/output data
and computes the summary mappings. Figure 3 shows
an instance of an experimental frame design to test
the AICC unit’s ability to maintain speed given vary-
ing engine loads and the unit’s response time to sig-
nals that interrupt its operation, such as brake, clutch,
throttle, and control buttons.

The experimental frame represents the vehicle, the
environment in which the AICC control unit is embed-
ded. The unit may experience different responses
depending on the type of vehicle it is installed in, so
not only is the car represented by an experimental
frame, but there must also be a model of that car that
depicts its reaction to the AICC control unit’s
response. The generator’s output function corresponds
to an engine load, which is obtained from the under-
lying model of the car dynamics. The AICC responds
with a throttle setting. This is evaluated by the trans-
ducer, which is also directed to the model of the car.
Finally, the acceptor is used to observe behavior dur-
ing different cruise control states and to test for cor-
rect state transitions.

Simulation interface. Figure 4 is a snapshot of the
AICC control unit’s graphical user interface during a
safety test run. While the simulation is running, the
user can operate the various cruise controller buttons
and run a profile for the driving pattern of the car
ahead. The GUI is based on the model of an actual
vehicle. It was created for this application to assist
the designers in testing the simulation model.

The GUI brings together information about the
dynamic characteristics of a car,8 the radar control
unit, and the user interface component. The car com-
ponent generates speed data influenced by the throt-
tle setting while the control signals from the GUI are
passed directly to the AICC control unit. In addition,
the designer can generate data values from a radar
control unit to simulate different scenarios when
approaching lead vehicles. Before the data arrives at
the AICC unit, it passes through the bus controller
component. This emulates a real-world application in

which the board must be connected to the vehicle’s
communication bus.

Verification. During this phase, we used experi-
mental frames like the one in Figure 3 to generate
data from the bus controller to a microcontroller and
analyze output from the control unit. Figure 5 shows
a subset of the simulation results from verifying a
safety test run of the AICC control unit. In this sce-

August 1998 65

On/Off Coast

4.1 seconds

Speed
Safe speed
Wanted speed
Lead vehicle speed

Calculated safe
Measured to lead vehicle

90

80

70

60

50

40

30

20

10

0
0.1

V
el

o
ci

ty
 (

km
/h

r)

0.5 0.9 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.1 4.5 4.9 5.3 5.7 6.1

Time (sec)

45

40

35

30

25

20

15

10

5

0
0.1

D
is

ta
n

ce
 (

m
et

er
s)

0.5 0.9 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.1 4.5 4.9 5.3 5.7 6.1

Time (sec)

(a)

(b)

Figure 5. Simulation results of a safety test run. In (a), the test is measuring the ability of
the vehicle with the AICC to adjust to the speed of the lead vehicle. In (b) the test is mea-
suring the elapsed time to adjust relative to the safe distance parameter. The AICC is con-
strained to always be within 2 km/hour of the lead vehicle speed or set speed, whichever is
lower. Here the lead vehicle slows to 65 km/hour after the driver of the AICC vehicle has set
the cruise speed to 86 km/hour. The AICC vehicle takes 4.1 seconds to adjust its speed to
stay a safe distance from the lead vehicle.

.

66 Computer

nario, the two cars start out with the same set speed.
The car under test then engages the AICC at 0.7 sec-
ond and sets the wanted speed to 86 km/hour. Initially,
the vehicle speed remains in the specified range of
+−2 km/hour (safe environment). The lead vehicle
slows to 65 km/hour. The vehicle with the AICC slows
down accordingly, violating the safe distance con-
straint slightly for 4.1 seconds. Once a safe distance
is established, the car tries to approach the same speed
as the lead vehicle. The test case also shows the cor-
rect response of the control unit to the corresponding
AICC control buttons.

This is just one of many possible simulation exer-
cises. Experimental frames let developers flexibly and
rapidly assess the design specification.9 Because our
approach separates the model description from the
specification of its simulation experiment, a new sim-
ulation test simply requires attaching a new experi-
mental frame to the model.

Model mapping
We called the final model VB* (virtual board). As

described earlier, we interactively partitioned VB* by
searching the design space for the best implementa-
tion fit. Our search was limited by hard implementa-
tion constraints. For example, only a certain chip was
available for part of the design, so our choice of bus
controller was limited to this chip. The rest of the
assignment was guided mostly by the timing parame-
ters we got from model simulation.

Implementation and prototyping
We built the VB* component by component, from

bottom to top, by verifying real-time timing con-
straints. Figure 6 shows the reference architecture we
eventually implemented: a Motorola MC68HC11
microcontroller, which we chose because it is com-
monly used by the automotive industry for engine con-
trol applications. We realized the hardware functions
on an Altera Max9320 FPGA (field programmable
gate array). The synthesis tool for this chip can process
either VHDL descriptions or graphical designs to cre-
ate the desired circuits. The two chips interface via a
16-bit communication bus. Because I/O pins were not
always available, we multiplexed data transfers to
increase communication bandwidth.10

O ur model-based approach has proved success-
ful in several ways. First, we were able to pro-
duce the AICC control unit directly from the

model-based specification, validating our claim that
the framework supports model continuity. The result-
ing code is very compact (800 lines of C), and the
hardware platform is small (an 8-bit microcontroller
and a 320-cell FPGA).

We plan to continue developing model-refinement
techniques and define the model granularity levels nec-
essary for optimized model mapping and implemen-
tation. We also plan to implement heuristic techniques
to obtain the optimized model mapping by assigning
the model components to hardware, software, and

VB*
(prototype model)

Model
compilation and

integration
Experimental

frame

MAX9320

Altera ISP demo board
MC68HC11 EVB
microcontroller

evaluation board

Bus communication

Hardware description
in VHDL

Software description
in C

Motorola S-record
assembler code

FPGA
configuration

Netlist

Stimulus file
for testing

Testing
analysis file

Stimulus
to pin as well

as pin to
output conversion

Synthesis using
Altera tools

Fabius
cross-compiler

Conversion using
Altera compiler Download to

board using
Buffalo

Board input
and output pins

Figure 6. Prototyping
of the AICC applica-
tion, from the final
model (VB*) to the
reference
architecture
(MC68HC11
microcontroller and
Altera ISP board).

.

interface components. As a basic research issue, we
will investigate the real-time scheduling issues that
arise when mapping the model-based specifications
onto a mixed hardware-software implementation.
Finally, we plan to develop libraries of basic hardware,
software, and interface components for the AICC. In
this way, we hope to demonstrate general techniques
for reusing models. ❖

Acknowledgments
This work is supported by Siemens AG, Central

Research and Development Laboratories, München,
Germany. We thank Joe Hanson at the Altera
University Program for providing the Altera ISP demo
board and corresponding development software.

References
1. G. De Micheli and R. Gupta, “Hardware/Software Co-

Design,” Proc. IEEE, Mar. 1997, pp. 349-365.
2. Codesign: Computer-Aided Software/Hardware Engi-

neering, J. Rozenblit and K. Buchenrieder, eds., IEEE
Press, New York, 1994.

3. B. Zeigler, Multifacetted Modelling and Discrete Event
Simulation, Academic Press, London, 1984.

4. U. Palmquist, “Intelligent Cruise Control and Roadside
Information,” IEEE Micro, Feb. 1993, pp. 20-28.

5. J. Rumbaugh et al., Object-Oriented Modeling and
Design, Prentice Hall, Englewood Cliffs, N.J., 1991.

6. S. Schulz, J. Rozenblit, and K. Buchenrieder, “Towards
Model-Based Codesign: An Intelligent, Autonomous
Cruise Controller Application,” Proc. Conf. and Work-
shop Eng. Computer-Based Systems, IEEE CS Press, Los
Alamitos, Calif., 1997, pp. 73-80.

7. D. Harel, “STATEMATE: A Working Environment for
the Development of Complex Reactive Systems,” IEEE
Trans. Software Eng., Apr. 1980, pp. 403-414.

8. P. Ioannou and C. Chien, “Autonomous Intelligent
Cruise Control,” IEEE Trans. Vehicular Technology,
Nov. 1993, pp. 657-672.

9. M. Mrva, M. Heuchling, and W. Ecker, “The Shall-Pro-
totype-Test Development Model,” Proc. Conf. and
Workshop Eng. Computer Based Systems, IEEE CS
Press, Los Alamitos, Calif., 1997, pp. 385-391.

10. S. Schulz et al., “A Prototyping Environment for Model-
Based Codesign,” Proc. Conf. and Workshop Eng. Com-
puter-Based Systems, IEEE CS Press, Los Alamitos,
Calif., 1998, pp. 145-150.

Stephan Schulz is a PhD candidate in electrical and
computer engineering at the University of Arizona. His
research interests include embedded systems applica-
tions, model-based design, real-time operating systems,

continuous and discrete-event simulation, and hard-
ware-software codesign. He received a BS from the State
University of New York, Binghamton, and an MSc in
electrical and computer engineering from the Univer-
sity of Arizona. He is a student member of the IEEE.

Jerzy W. Rozenblit is a professor of electrical and com-
puter engineering at the University of Arizona. His
research and teaching are in complex systems design
and simulation modeling. He received a PhD and an
MSc in computer science from Wayne State Univer-
sity and an MSc in computer engineering from the
Technical University of Wroclaw. He is editor of Com-
puter’s Integrated Engineering department and an
associate editor of ACM Transactions on Modeling
and Computer Simulation and IEEE Transactions on
Systems, Man and Cybernetics. He is a senior mem-
ber of the IEEE and the Society for Computer Simu-
lation and a member of the ACM.

Michael Mrva is head of the High-Level Design Tech-
niques Department at Siemens AG and an adjunct
professor in electrical and computer engineering at
the University of Arizona. His research interests
include hardware-software codesign, high-level spec-
ification and verification of hardware systems, object-
oriented codesign, VHDL-based modeling, and
hardware design reuse. He received a PhD in mathe-
matics from the University of Vienna. He is a member
of Gesellschaft für Informatik.

Klaus Buchenrieder heads research in hardware-soft-
ware codesign at the Central Technology Laboratories
of Siemens AG. He received a Dipl.Ing. in electrical
engineering from the Fachhochschule in München, and
an MS and a PhD in computer science from Ohio State
University. He is the founding chair of the Codes/Cashe
workshop series on codesign and of the Consyse work-
shop on conjoint systems engineering. He is also a pro-
fessor of computer science at the University of Tübingen
and an adjunct professor of computer and electrical
engineering at the University of Arizona.

Contact Rozenblit at the University of Arizona, ECE
Dept., Tucson, AZ 85721-0104; jr@ece.arizona.edu.
Contact Mrva at Siemens AG, ZT ME 5, Otto-Hahn-
Ring 6, 81730 Munich, Germany; michael.mrva@
mchp.siemens.de.

August 1998 67

.

