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Abstract

In this paper, the domain of automotive safety is
addressed. A specific application, i.e., autonomous,
intelligent cruise controller, is selected. Model-based
techniques which facilitate implementation independent
specification and design of such a system are discussed.
A set of systems requirements, the underlying object and
behavioral models are given. In conclusion, postulates
are discussed for the physical realization of the
presented application.

1. Introduction

In the last decade, we have witnessed a sizable growth
in the application of electronics in automotive industry.
Initial applications ranged from electronic fuel injection
devices to motor control units. With the advent of more
powerful microprocessors, a new generation of devices
is emerging. They are intended to improve safety of the
automobile and its environment. A comparison of the
automotive traffic with its counterparts, i.e., air and rail
transportation shows that the automobile-based mode of
transportation is  the least controlled and structured.
Therefore, it is imperative that passive and active
devices be developed that provide driver assistance and
serve as collision deterrents.
In this paper, we categorize the majors aspects of

automotive safety, select a specific application, i.e., an
autonomous, intelligent cruise controller, and propose
model-based techniques for a realization of such a
device.

2. Model-based codesign

A multitude of codesign techniques and methodologies
are employed in academic and commercial
environments [7,8,9,12,18,19]. A common trend
appears to be emerging in which a clear shift in design
and development paradigms is occurring. Initial
approaches would foster immediate partitioning into
hardware (HW) and software (SW) components, pursue
HW and SW development threads in isolation from each
other, and often place a stronger emphasis on hardware
than software [1,11,12]. Those trends stem from certain
misconceptions regarding the design of heterogeneous
systems, namely, the beliefs that HW and SW can be
developed separately, that inadequacies in the hardware
components can be compensated by software revisions,
and that the integration of subsystems should be
postponed until the end of the design cycle. Numerous
authors point to the deficiencies of the traditional
codesign frameworks [1,2,5,9,12]. They strongly
advocate a process that fosters the integration  of the
HW and SW perspectives. Thus, a unified representation
is needed for modeling a system independently  of its
implementation in hardware or software. A number of
modeling representations and formalisms have been
proposed in the literature and applied to heterogeneous
systems design [14]. They include, but are not limited
to, data flow diagrams, finite state machines, Petri nets,
specialized algebras and object oriented techniques.
Our position is that the formal specification techniques

are of limited effectiveness without a systematic
modeling methodology guiding their use throughout the
codesign process. With Siemens Personnel, we are
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Figure 1. Model-Based Codesign

advocating an advanced codesign methodology in which
abstract hardware/software models can be developed and
validated prior to technology assignment. This approach
is illustrated in Figure 1. The benefits of using an
abstract system specification as a unifying HW/SW
representation are: a) late partitioning, b) stepwise
refinement fostering  component reuse regardless of
their technology, and c) the availability of a reference
architecture in which components can be specified at
multiple abstraction levels (e.g. system, instruction set,
register-transfer,  logic, or circuit level in the case of
hardware, and OS, applications, utilities, etc. in the case
of software components.
The above methodology, has been described in detail in

[1]. Here, we briefly summarize its major tenets. Our
basic supposition is that models serve as design
blueprints for developing system. The modeling phase
denotes the definition of the system’s components (its
object model) and associated behaviors. This phase
results in the system’s model that is subject to a
validation and stepwise refinement process. A validated
model is simulated in a specific set of experimental

conditions (called experimental frames) to verify its
adherence to the initial requirements, constraints, and
design objectives. Technology assignment is then
carried out from the verified model specification.
Our approach lends itself well to the automotive

application at hand. The car industry is increasingly
reducing design cycles and is keen saving costs. At the
same time, the electronic components used in
automobiles become highly complex embedded systems.
The traditional, separate design of hardware and
software and software components is difficult to justify,
especially in view of the sophistication of the functional
characteristics of the components being built.
In the following section, we define a set of

requirements for our proposed application of the model-
based codesign approach.

3. Requirements for automotive safety
electronic systems

We begin with a set of high level requirements that
automotive electronics should fulfill. Cost and schedules
are general design and realization process constraints.
Reductions in weight and space are required in order to
produce fuel efficient vehicles and to conform to stricter
environmental pollution laws. The electronics should be
minimized in weight and size while providing
maximum safety.  It has to withstand extreme operating
conditions of a car, e.g., extreme fluctuations in
temperature and relative humidity.
A safety device should be able to detect and suggest

solutions to handle hazardous driving conditions. It
should interface with standard diagnostic stations which
are used for detailed error analysis. An emphasis must
be placed on a user friendly interface that could update a
driver about the current status of the vehicle and its
environment.
Additionally, we perceive requirements that apply to 

specific subsystems. As indicated before, we are
focusing on a model-based codesign of a unit called 
autonomous, intelligent cruise control unit (AICC). The
AICC system can be seen as an extension of the regular
cruise control, not only keeping a fixed speed, but also
adapting to the speed of the vehicle ahead. It controls
the relative speed between two vehicles traveling in the
same lane. Furthermore, it asserts longitudinal elements
of control but no lateral control. Although the system is
autonomous, meaning it does not rely on communication
between vehicles, the driver remains in full control since
he or she can override the device, e.g., by braking.
The circuitry of a safety unit must satisfy real-time

constraints. It should not fail in emergency situations. A



standard cruise control nowadays does not represent a
true real-time design problem. However, the design of
an AICC system must take into account large amounts
of data, especially from the vision sensors,  and process
such data in a timely manner so that safety requirements
are met.
In the design of AICC, it is necessary to guarantee that

the safety distance is kept within a small margin of error
under normal traffic conditions. In our design, this
refers to the vehicles in front and back. The device
should differentiate between obstacles and moving
objects, warn the driver and suggest or take appropriate
actions.
We elaborate on the AICC specifications in Section V.

First we provide a general object model that allows us to
structure the domain of automotive safety aspects and to
select a subset of elements that can constitute the
autonomous, intelligent cruise controller.

4. Object model definition

Our modeling approach is to first focus on the
structural aspects of a domain in which a particular
system is being developed. We accomplish this by
defining an object model [18] for the domain, by
selecting an instance of this domain model that
underlies the structure of the system under development,
and then by defining behavioral specifications. This
methodology has been described in detail in [1].
Domain object models are represented using the system

entity structures --- a tree like diagrams that reflect a
hierarchy of object decompositions and taxonomies
[15,17]. A high level view of various aspects of
automotive safety is shown in Figure 2. (The double
vertical lines reflect a taxonomy of components. A
single line that denotes a decomposition.)
The SES of Figure 2 was specified with a focus on

safety systems using micro-electronic devices. First, four
broad approaches were taken to divide the domain of
automotive safety into a systems aspect, an aspect
considering collision avoidance, a crash safety aspect
and the micro-electronics aspect.
An autonomous intelligent cruise control acts much

like a regular cruise control. The distinguishing feature
is the "safe distance maintenance" to the car in front and
back, detection of cars in the blindspots and, in the
future, keeping the car in the appropriate lane. More
sophisticated versions would work with a location
system which could be realized using a Global
Positioning System or an Inertial Navigation System.
The first alternative has disadvantages in cities or
tunnels, or other places where the reception of radio
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Figure 2. System Entity Structure of the Domain

waves is difficult. For more detailed descriptions of
these subsystems, we refer the reader to [3,4,6,13].
      The selection of an instance from the domain object
model is done in our approach using a knowledge-based
technique called pruning [17]. In this process, design
parameters instantiate the components offered by
taxonomies in the system entity structure tree and ensure
the coupling of elements identified in the
decompositions.

Recall, that our focus is the design of an AICC. Let
us  assume a safety system with a high budget, high
intelligence, medium room and highway as the primary
environment. At the Collision Avoidance, we select 
Autonomous Intelligent Cruise Control from among the



other nodes. For the Hardware aspect ASIC’s,
Actuators, a Micro-ProCessor, a Sensor, Technology, a
Display  and Memory are selected. At the Actuator node
only the throttle actuator is added since Collision
Avoidance is AICC and the most important reason being
that the brake is needed to disable the cruise control.
From the Sensor node we select the Vision Sensor and
Radar. The Technology is Micron for all of the devices.
On the Software side for the Micro-PC an Operating

System, an interface, and multiple components are
chosen. They consist of one driver per sensor and
actuator, maintenance as well as a fail-safe, error
detector & handler and user interface modules. Since
the budget is not constrained at the Communications
aspect, we select a bus for the inter-device
communication.  The SES tree shown in Figure 3
reflects the hierarchy of AICC’s components.
Through the above object model instantiation process,

we assure that some of the requirements are met prior to
the behavioral specification phase. Consider the
following design aspects: from a cost standpoint, there
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Figure 3. Pruned System Entity Structure for AICC

are no restrictions. Thus any technology can be selected.
Room or size are mostly a hardware problem and
therefore constrain the selection of that specific branch
in the decision tree. Dealing with real-time needs to be
addressed on the software side. An appropriate
operating system must implemented based on a priority
scheme. Different actions have a different level of
importance. In case of the AICC updating the sensor
readings should always run at the highest priority.  The
modules split the task of monitoring. For example, the
error detection routine detects if sensors are 
communicating properly.
User friendliness can be accomplished through special

user interface routines. They could run at a lower
priority to convert technical data to easily
comprehensible information. In addition, optimized
hardware should be used to support of input and output
devices. At the right point in time, the display should
provide a sufficient amount of information to the driver.
He or she should be able to monitor and comprehend a
variety of control functions. To properly address this,
complexity has to be minimized and functionality must
be maximized.
Meeting real-time constraints without loosing

functionality requires that a careful consideration be
given as to which parts of the components are written as
software routines and which are implemented using
Application Specific Integrated Circuits. From our point
of view, a model-based design approach to
hardware/software codesign is beneficial because we can
solve this problem with early simulation and guarantee a
relatively short design cycle. In applying our codesign
techniques, we have to refine each of the software
modules and provide a library of ASIC circuits.

5. Behavior specification

In Figure 4, we show a high level block diagram of the
AICC. We now specify the AICC’ s behavioral model.
The specifications are derived from the following
assumptions and informal specifications.
The intelligent cruise control is operated using five

buttons: ON/OFF, RESUME/ACC, COAST,
OBSTACLE ALERT and TAILGATE ALERT. To
prevent the misuse
of the cruise control,  it cannot be turned on or activated
if the speed of the car is less than 35 mph or if the car is
currently in reverse or neutral. Tapping the ON/OFF
button once turns on the cruise control, and doing that
twice turns it off.  Once the cruise control is turned off,
it enters a disabled state.



When the COAST button is tapped, the cruise control
is enabled and the desired speed is maintained if the
distance to the vehicles in the front is more than or
equal
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Figure 4. High Level Block Diagram for the AICC

to the required safety distance. If the safe speed is less
than the desired speed, the desired speed is saved, the
car adjusts the throttle to reach the safety distance and
then attempts to resume the desired speed. This
accomplishes the goal of keeping the safety distance
from vehicles in the front at all times. During the
enabled state, power is decreased if the speed exceeds 2
mph above the currently requested speed or increased if
it drops 2 mph below that mark. The currently requested
speed is either the safe or the desired speed. Pressing the
COAST button in the enabled mode results in reducing
the desired speed. This results in deceleration if the car
is traveling at the desired speed.
If the TAILGATE ALERT option is activated,  the unit

checks if the distance to the car in the rear is more than
or equal to the safe distance. If the safe distance
constraint is violated, the car flashes both rear indicator
lights which has the intended effect of having the
vehicle behind slow down or pass. To maintain safety
distances two radar devices - one in the front and one in
the back - are used.
RESUME/ACC resumes to previously set speed (if

there is one) when the unit is in the disabled mode.
Otherwise, this button increases the desired speed.
An OBSTACLE ALERT option warns a driver if an

object ahead is traveling at less than 50% of the driver's
car's current speed. This warning mechanism is also a
function of the current distance. It is questionable if this
application should be used during passing maneuvers on
two-way roads.
The unit is reset to the disabled state  by tapping the

brake, engaging the clutch, or if the speed falls below 35
mph. The two options TAILGATE and OBSTACLE
ALERT remain enabled regardless of the mode the

cruise control is in. A statechart representation of the
behavioral model in shown in Figure 5.
The control unit also obtains data from the internal

sensors. The vision sensors are typically chosen to be
radar units as shown in  Figure 4. The data arrives
according to a specified rate given by a specific protocol,
e.g., a CAN bus used by a lot by automobile
manufacturers today. From this data, information about
the distance and relative speeds of the surrounding
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Figure 6. AICC with Experimental Frame

vehicles can be obtained. Other information can be
retrieved from the speed sensor or sensors measuring the
momentum of the car.

6. Experimental conditions

In our methodology, system models are verified using
simulation. Experimental frames [16,21] are employed
to define circumstances under which the model is
simulated and observed. An experimental frame consists
of a generator, an acceptor and a transducer.  It is a
means of instrumenting a simulation experiment with a
mechanism that a) subjects the system’s model to the
simulated effects of the environment on the system (this
is handled by a generator), b) collects and monitors the
effects of the system on its environment by observing the
system’s model’s outputs (managed by a transducer),
and c ) controls the simulation experiment through an
acceptor module. For a schematic representation, please
refer to Figure 6.
Figure 6 illustrates how the design is tested for its basic

function of maintaining the speed within  limits
assuming that not interrupt events are generated (that is,
 no event that would disengage the AICC occurs).  The
car can be viewed as a environment that has various

characteristics depending on the model.  It is
represented as an experimental frame. This means that
the output function of the generator corresponds to an
engine load per specific model specifications. The
response of the AICC unit in form of the throttle setting
is then evaluated by the transducer. Finally, to observe
the behavior in the different states of the cruise control, 
e.g., OFF or CRUISE, and to test for correct state
transitions,  the acceptor is be used.
The AICC simulation model was developed using an

house discrete event simulator DEVS-Java [21]. The
model was decomposed in a manner that corresponds to
the functional decomposition of the real AICC. A
diagram of the model is shown in Figure 7. After
building and testing the atomic models or components
the model was then extended to the final coupled model.
It consists of a state manager which keeps track of the
state of the cruise control which is mostly influenced by
the user, the data manager which obtains data from the
functions and the sensors and distributes it to the
components that request it, and finally the functions
which each solve different calculations.
Since this model is being  implemented on a single

processor environment (Motorola 68HC11EVB) an
additional component, the scheduler, was added to the
AICC. This component was necessary to eliminate 
concurrent execution that can be achieved during the
simulation, but which cannot be realized in a single
processor implementation. We thus obtained a valid
model which can be used to resolve timing and
functionality issues, i.e. to determine the bottlenecks of
the system.
Along with the model a general user interface (GUI)

was developed to test the model of the AICC. It provides
an interface which is common to a car. While the
simulation is running the user can manipulate cruise
control buttons, speed of the car with the cruise control
and a profile of the car ahead with this interface. This
puts the AICC in a closed-loop environment where the
GUI is coupled to the model of an actual car.

7. Conclusions

This paper summarizes our current work to develop a
testbed for the model-based codesign methodology. The
autonomous, intelligent cruise control module is being
realized using the techniques presented above. At the
high level the system will be tested according to the
specified requirements and then iteratively refined down
to the lowest level where the design decisions about the
implementation in hardware or software will be made. 



Clearly, the technology assignment phase remains a
critical issue. As we have pointed out in [1],  technology
assignment is not as limited as a target architecture bound
partitioning scheme used in most existing systems today.
This is because the implementation independence of the
design persists up until this very assignment step. The
components of the validated system model can be bound to
modules of possibly different technology.
The interfaces and their synthesis are again a central point

of technology assignment. In fact, the dual steps of
partitioning and integration is now replaced by a stepwise
refinement procedure based on an abstract behavioral model
and the interface synthesis step.  The problem as such has
not, however, become easier. Interfaces are generated based
on component interrelations derived from the refined
model.  Depending on the technology choice,
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Figure 7. Diagram of the AICC Simulation Model

either signal exchange, interrupt, or other synchronization
means are chosen.  In our proposed codesign methodology,
alternative designs can be evaluated with respect to various
criteria, e.g.,  the allocation (binding) of behavioral models
or functionality to action modules (HW, SW, interfaces).

This assignment phase is guided by the performance
estimation results obtained in the simulation step.
We are currently developing a model-based representation

of the AICC module and its various subcomponents. A set
of simulation experiments for virtual prototyping and the



physical realization of the AICC is being  used to validate
its specifications. We are also designing  backtracking
search-based algorithms to facilitate the technology
assignment process.
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