Modular, Hierarchical Modeling Concepts for Support of
Heterogeneous Systems Design

Christoph Schafler

Institute of Systems Science
Johannes Kepler University Linz
A-4040 Linz
Austria

Abstract

Design of computer based systems (CBS) requires
support lools and lechnigques that can adequately
manage the complerily of the underlying engineer-
ing aclivilies and processes. In this paper, the pri-
mary focus is on the design aspecls of the engi-
neering of compuler-based systems (ECBS) process.
More specifically, il is demonsiraied how sysiems
theory and struciured knowledge representation con-
cepls can be used to make the sysiem level design
more manageable and efficient.

Keywords: heterogeneous systems design, knowl-
edge based design, hardware/software partitioning,
structured knowledge representation,

1 Introduction

Over the years, various engineering domains such as
electronics, mechanics, aerodynamics or computer
science have developed their own abstraction mech-
anisms to cope with the increasing systems complex-
ity. This worked well for problems with a clear focus
on one specific domain. However, today’s systems
usually consist of a mixture of electronics, software,
and mechanical components. Therefore we have to
extend domain specific view to a more general one,
i.e., the systems view. Systems level is synonymous
with a significant abstraction which allows the de-
signer to carry out multiple, different investigations
without being hindered by the constraints imposed
by the domain, for instance, by the selected realiza-
tion technology.

System level design comprises the following main
activities:

e specification support

0-7803-2531-1/95/$4,00 ©1995 TEEE

Jerzy W. Rozenblit

Dept. of Electrical and Computer Engineering

200

The University of Arizona
Tucson, Arizona 85721

U.S.A

o system level modeling

e system level simulation
e system level analysis

e system level partitioning

e integration into a concurrent engineering envi-
ronment.

At the systems level, many aspects of the final sys-
tem will be hidden. Therefore we should adequately
address the design complexity and ensure its cor-
rectness since faults made at the systems level may
have a devastating impact on the subsequent design
steps. More specifically, we have to define the func-
tional behavior, the systems architecture, partition
the system into hardware, software and mechani-
cal parts, while guaranteeing that all the functional
and nonfunctional requirements will be met by the
proposed design.

In this paper, we present a multi layered design
approach that combines structured knowledge rep-
resentation methods, knowledge-based techniques,
and systems concepts to assist in managing the com-
plexity of the system level design of CBS. The con-
cepts presented here can be used to define a system’s
life cycle that addresses the following needs:

e abstraction to reduce complexity,
e early feedback through simulation,
rapid prototyping of CBS,

support design with a knowledge representation
scheme, (therefore multiple steps in the life cy-
cle can be nearly automated),

design of highly reusable components, and

e support of hardware/software (IHW/SW) par-
titioning

Our approach complements recent developments
that emphasize the use of systems concepts in the
engineering of computer based systems [8, 9].

2 General Considerations on
Systems Level Design

The increasing complexity of computer based sys-
tems and the decreasing time-to-market factor make
it necessary to improve and, perhaps, partially au-
tomate some of the activities in the systems engi-
neering process.

Highest gains can be achieved if it is possible to
reuse previously developed components in new de-
signs. In the hardware domain, reusability is sup-
ported by many off-the-shelf components. In soft-
ware, the object-oriented paradigm contributes to
higher reusability. In the 1970s, IBM had iden-
tified (through their System Network Architecture
(SNA)) (7] the need for design abstraction by in-
troducing several network layers. Thus is it was
possible to define a standard which guaranteed that
network functions could be reused by different sys-
tems.

While it is clear that the need for reusability is
well recognized in various domains, it is also true
that large numbers of reusable components can-
not be handled efficiently without the support of
a knowledge base. This is due to the multiplicity
of component variants, various decompositions, and
potentially combinatorial number of possible ways
in which they can be coupled. One can envision de-
sign as a search process that operates on the vast
space of components and their interdependencies,
and generates a system by selecting, coupling, and
relating various modules so that the overall design
objective 1s met. Therefore, effective procedures are
needed that can manage the complexity of both the
underlying design spaces and the search procedures.

When we examine conventional system level de-
sign processes, we observe that the reusability of
components is not a high priority issue. Typi-
cally, the systems are built from scratch, even if the
new system is very similar to an already existing
one. This is due to system designs being very of-
ten strongly coupled to the underlying architecture.
Therefore, if a system were designed to be executed
as software, for instance, on a 68000 processor, it
might be difficult or even impossible to reuse the
design and run it on an ASIC as pure hardware.

Both systems behave in the same way; however their
speeds may be different for different realizations.

By introducing a layered partitioning (LP) model,
which is based on the work done in 5, 6], we show
how to facilitate design of highly reusable compo-
nents.

3 System Architecture
Specification

We employ the notion of an architecture as a kernel
structure for building several partitions, each with
the goal of mapping the required functionality to a
physical entity. Based on the approach presented
in [2], we will discuss the system, hardware, and
software architecture.

Systems architecture: At this level we consider
the architectural properties which are indepen-
dent {rom the realization technology used. Is-
sues such as the geographic distance between
components, the topology (e.g., bus, star, ring
etc.), whether a component is mobile or sta-
tionary, are considered at this layer.

Software architecture: The software structure is
addressed here, e.g., the operating system used
to run the software on, modularization, etc.

Hardware architecture: Within the hardware
architecture we define the needed hardware
components (microprocessors, ASIC, off-the-
shelf components, etc.) which are needed to
fulfill all the functional and nonfunctional re-
quirements.

To make a clear separation between the compo-
nents at the different architectural layers we employ
the terms system component, software component,
and hardware component. We strive to clearly sep-
arate the components and introduce a hierarchical
reference architecture. This is not a trivial task as
there is a wide latitude in how the real problem can
be addressed. For example, consider the small sys-
tem depicted in Figure 1.

The three interacting components can be realized
in a variety of ways. If we decide to realize all
the components in hardware, we have to realize the
communication channel between the components in
hardware, too. However, if we decide to realize them
all in software the channel can be realized by a queu-
ing mechanism. The most complicated case will oc-
cur when we want to realize two components in soft-
ware and only one in hardware. Then, a software

201

Cl

Figure 1: System of interacting components

and a hardware channel are required. We will also
have to convert software signals to a representation
that can be understood by the hardware component
and vice versa.

Therefore, each time we change the system par-
titioning, it is likely that we will need another re-
alization of a communication channel, or that we
will have to introduce new functionality by the re-
quired conversions. To overcome these problems we
will use the layered partitioning model introduced
in the ensuing section.

4 Layered Partitioning (LP)
Model

As shown in Figure 2, the LP model consists of the
component, port, and channel layers. At each of
these layers we can find technology free components
which correspond to the system components defined
above,

Component Component
Layer Layer

Port Layer Port Layer

Channel Channel
Layer Layer

Communication Media (CM)

Figure 2: LP model

Component Layer: When we refer to the system
architecture before any partitioning into hard-
ware, software, or mechanical parts, then all the
components available in the system architec-
ture will also be available within the component

layer. To distinguish these components from
the components of the channel and port lay-
ers we call them component layer components

(COLC).

Channel Layer: The channel layer is responsible
for transport of data from among COLCs. The
components used here are called channel layer
components (CHLC). The CHLC uses a com-
munication medium (CM) to transport data.
CHLC is introduced after we do the first hard-
ware/software partitioning.

Port Layer: At this layer we define all the func-
tionality needed for data type conversion.
These kinds of components are called port layer
componenis (PLC).

We emphasize that although the CHLC and PLC
will be determined by partitioning the system into
hardware and software, they still belong to the real-
ization lechnology free system architecture. These
components are only a means to realize a proposed
partitioning — we still must decide if a PLC or a
CHLC should be realized in hardware or in software.

5 The System Entity
Structure (SES)

To adequately represent the multitude of a
computer-based system’s elements we propose to
use a knowledge representation scheme called sys-
tem entity structure (SES) and its enhanced, frame-
based representation called Frases [3, 4]. Through
SES, we can express an object’s decomposition hi-
erarchy, the taxonomy of design elements, the con-
straints on coupling of objects identified in decom-
positions, and the constraints on selection of ele-
ments given by the taxonomic relationships.

A system entity structure is a labeled tree. Nodes
of the tree are called entities, aspects, specializa-
tions, and multiple decompositions. An entity node
represents a real world object (which can be inde-
pendent or can be identified as a component of some
decomposition or specialization of a real world ob-
ject. Aspects are decomposition types, or in other
words decomposition views. Specializations is a tax-
onomic relationship, i.e., a particular way of classify-
ing an entity. A multiple decomposition is a special
type of decomposition (aspect) used to represent en-
tities whose number in a system may vary.

As an example (upon which we illustrate the sys-
tems engineering concepts discussed in this paper),

consider a high level SES representation of a ship

202

Ship Communication System

> Topology Hardware System Functions
Architecture
Processors Function
Bus Star Ring Processor
Connection
ASIC Intel Motorola il 1l
| o P |
Line Conference Man. Half Automatic
Automatic
EquiTment
| | B
Radios Devices Stations
Radio Device Station
11
I I 1] { | 1
UHF VHF HF AM Recorder TTY Alarm ']
User Interface Mo|<]ic
type x1 type xN
[1 [|
lrﬁut Oli[lpm Mobile Stationary
! ! 1 I 1
Simple Keyboard Touch Lamps Screen LCD
Keys Screen
" EIF
(Processor
(Model: (Value ASIC))
(Attributes: (Clock rate (default 66))

Selection Rule

if required flexibility = high or
required reliability = high

then
topology = bus

(Cache size (default 128))

)
(Design Spec:
(constraint (value ((> MIPS 50)
{< cost 300)
(< power consumption 0.5))))

Figure 3: SES representation of a ship communication system

203

communication system shown in Figure 3. The Ship
Communication System entity represents the sys-
tem to be designed. It consists of major aspects such
as Function, System Architecture, Hardware, and a
Topology specialization with the entities Bus, Star,
and Ring. Systems Architecture is decomposed into
Equipment. The Equipment consists of Radios, De-
vices, and Stations. These are classes of objects.
Their instances are Radio, Device, and Station, re-
spectively. (The triple vertical line denotes a spe-
cial the multiple decomposiiion [4] — a relation that
breaks up a class into a set of instances whose num-
ber may vary.) Functions are Line and Conference
Connections with Manual, Half-automatic, and Au-
tomatic types of connection.

An SES specifies a family of possible arrange-
ments of components for the system being designed.
Aspects and specializations allow us to specify a
family of design alternatives by selecting different
components and decompositions. The multiplicity
of taxonomic and decomposition relationships in a
large design entity structure leads to a combinato-
rial explosion of possible model alternatives. There-
fore, it is necessary to provide procedures that ef-
fectively reduce both the complexity of the search
process for admissible model structures and the size
of the search space itself. We have developed a pro-
duction rule-based procedure, called pruning to ad-
dress this problem.
~ Pruning the system entity structure results in a
set of alternative design model structure {3, 4]. As
described in [4], this is done by defining selection
rules for each specialization, and synthesis rules for
decomposition nodes of the system entity structure.
{An example of a selection rule is shown in the fig-
ure.)

To improve the efficacy of design representation,
we have augmented SES with a frame-based scheme
called Frames and Rules Associated System Entity
Structure (Frases). Frases combines the frame, rule-
based, and SES knowledge representations. An un-
derlying data structure of Frases is the system en-
tity tree. Each node of the SES tree has a frame
attached to it that encompasses declarative and pro-
cedural knowledge in a design problem. Such a
frame is called Entity Information Frame (EIF). An
Entity Information Frame (EIF) integrates design
knowledge by providing slots for representing de-
sign attributes, functional, and procedural knowl-
edge. Thus, the SES layer assures that the decom-
position, taxonomic, and coupling relationships are
properly specified while each EIF captures the ad-
ditional design information such as attributes. con-
straints, requirements, etc. In the figure, we have

shown a simple EIF for the entity ASIC Processor.
Further details on the Frases representation can be
found in [3].

6 The Systems Life Cycle

In the following we proceed to show how the SES
and LP models can be used in designing computer
based systems. For the sake of brevity, we use a
small part of the ship communication system as a
illustrative example.

6.1 Specification Support

When starting a new project, a designer typically
works with an informal specification of requirements
which should be fulfilled by the system. For large
scale, complex systems it is difficult to prove that
all the requirements are complete and consistent.
Life Cycles as presented in [1] handle this problem
by building executable models based on the infor-
mal requirement specification, and by using analysis
(such deadlock, reachability, etc.) and simulation
techniques. By using those methods, the designer
can determine if there are missing or inconsistent
requirements. In addition, by “animating” the mod-
els, designers can better comprehend how the sys-
tem is intended to behave.

In our proposed methodology, the SES is the basis
for the selection and configuration of the system’s
components. In the initial design phases, when
boundaries between the system and its environment
are defined, the following two cases are considered:

1. The boundary defined by the requirement spec-
ification itself. This kind of environment is
called the eziernal environment.

2. By modeling the external system environment,
we better understand the requirements for the
system to be built. We recognize that some of
them can be realized by components which are
available on the market. Therefore, if we use
such components, the requirement for the re-
mainder of the system to be built may change,
depending on the functionality given by the al-
ready selected components. This process can
be iterative in that each selection of certain
components will result in new constraints that
have to propagated onto the remaining selec-
tion decisions and so on. The components
whose selection is driven by the external en-
vironment constitute what we call the nternal
entironment.

204

For illustration, consider the following example.
A requirement stipulates that radio communication
within the AM frequency band be available. It
would be unreasonable to design and build a new
AM radio. Instead, we use the knowledge associated
with the SES representation of our domain problem
to. From the SES, we realize that there are N dif-
ferent types of AM radios available on the market.
As mentioned above, each entity has a frame at-
tached to it with attributes such as price, weight,
size, power consumption, etc. Based on the at-
tribute values, we select a radio type most suitable
for the design problem at hand.

Now, we can now proceed to select an appropri-
ate type of user stations. This requires that a choice
of a mode (i.e., stationary or mobile) be made and
that this choice be propagated onto the type of in-
put interface. (Choosing the mobile mode of opera-
tion restricts the number of keys on the input device
to twenty (20) due to both power consumption and
space restrictions.) By proceeding in this fashion we
can configure the internal environment. Addition-
ally, we can estimate the overall costs, weight, size,
and other parameters. This helps in ensuring that
some of the nonfunctional requirement can be met.

When we select a specific component, e.g., an AM
radio, we also create a COCL that holds a behav-
ioral description of the interface for the selected type
of the AM radio.

Having selected one or several possible configura-
tions of the internal environment, we proceed with
the functional requirements. Now, the SES repre-
sentation provides knowledge about the functional-
ity of a system in the domain of interest. In our
ship communication system, we can select a type
of conference connection form those SES defines
as feasible, i.e., manual, half-automatic, and fully-
automatic. If we select the fully automatic confer-
ence connection, we must choose the specific sta-
tions which will be part of the conference cycle. As
a result we may arrive at a model shown in Figure
4.

The model has three user stations (one of them
is mobile), two radios, and a tape recorder. The
system should allow fully automatic 2 point con-
nections between user stations 1 and 2 and a half
automatic 2 point connection between user stations
2 and 3. Additionally, it should be possible to record
the calls at user station 1. User station 2 should be
able to make external communication with an AM
and an UHF radio (Remark: not all of this func-
tionality is shown in the SES of the communication
system).

Since we assume that the behavior of all the se-

Sta ! TRec ln(
Ra It f—
Ra In2*— UHF Type 3

Figure 4: Pruned Substructure

lected components is described by a formal language
such as SDL or STATECHART, we will be able to
“animate” the system and thus check if the systern
fulfills all the functional requirements. We can also
use deadlock, reachability analysis, and other tech-
niques to determine if the system is functionally cor-
rect.

So far, we have only considered a design approach
where all of the requested components are already
available in the SES representation of the system.
However, in many systems we need to build new
components which are not available “off the shelf”.
This situation will be reflected in the specification
support phase by building the so called Specification
Models [5, 6].

Rather than describing the functionality in a very
detailed manner, we propose to use an abstract de-
scription as a specification for the design of the new
component. This abstract description should be
available in an executable form [1].

6.2 System Level Modeling

As stipulated above, the Specification Models are
thought of as surrogates of the unavailable com-
ponents. In the system level modeling phase, we
convert the Specification Models to so called Design
Models. They are used to realize all the require-
ments defined in the Specification Model. Whereas
the Specification Model specifies what the compo-
nent has to do, the Design Models shows how this
behavior is achieved. The requirements in the Spec-
tfication Model will be replaced in the Design Model
by real parameters determined while designing the
component.

Design models allow us to run performance simu-
lation to determine measures such as data rates at
the communication channels, to identify time criti-
cal parts or bottlenecks within the system.

The next phase in our approach is to determine
the geographic distances (geographic partitioning
(GP)) between the components (For example, Fig-

205

Station } Qm 10m
2
Conural] 40 Type
;‘/ Unit m
UHF Type 3

T deie

Figure 5: Determining geographic partitions

ure 5 illustrates the distances between the user sta-
tions and the radios.) Then, we proceed to select
the topology. In the best case, the requirements,
geographic partitioning and performance simulation
results restrict the search space to one outcome.
If there are more possibilities, the best solution is
determined by re-evaluating design parameters and
running performance simulation again. The best
topology can be selected through this iterative pro-
cess. By validating the design early on, we are able
to understand how well the functional and nonfunc-
tional requirements are met by the proposed design.
If necessary, the design can be further refined. If
problems occur, corrections can be made very early
in the life cycle.

The geographic partitioning step introduces vari-
ous physically distributed partitions. Together with
the data rates of the communication channel deter-
mined while executing the performance simulation
of the system, the partitions are an essential pa-
rameter used in the selection of the communication
medium (CM). Since the realization of the commu-
nication between the components might have a sig-
nificant impact on the overall system performance
and cost, we again attempt to find the best design
solution. We search the SES to find possible real-
ization for our communication task.

Communic?]lion Media (CM)

I 1

Simtle Media Comilcx Media

Twised Optical Radio Telephone LAN
Pair Fiber Network

Figure 6: SES of communication media

Figure 6 shows a representation of the commu-
nication media (CM). Again the parameters in the

entity information frames give us costs, weight, er-
ror rate at the medium by a given data rate, signal
to noise ratio, etc.

1f all the required parameters for selecting the ap-
propriate CM are given by the preceding steps of the
systems life cycle, the medium (or media) fulfilling
all the requirements can be selected with relative
ease. For example, assume a component has to be
a mobile station. This will restrict the possible re-
alizations for the CM dramatically.

For CMs we also select associated performance
models (Figure 7). They are used for performance
evaluation. We can thus determine if the system
still fulfills all the performance requirements.

@ (Channel)

{Ra Int] I

Performance Models

Figure 7: Associating performance models

So far, we have discussed the introduction of phys-
ical partitions by executing only the GP step. In
addition to GP, we must also consider the hard-
ware/software partitioning.

6.2.1 Hardware Architecture

We use the data gathered while running perfor-
marnce simulation to determine some of the require-
ments for the needed hardware. We may identify a
time critical component, e.g., one that has to deliver
a signal every microsecond — a potential candidate
to be realized in hardware (HW). The partitions
generated while executing the GP step can now be
used as parameters for selecting the needed hard-
ware components. Having an isolated view of such
partitions, helps us determine the appropriate input
and output data rates.

Here, an SES of the hardware can be used to de-
cide on appropriate elements. This SES will also
hold different performance models for all of the HW
components. When realization components are de-
cided upon, we can begin to check if the all the func-
tional as well as nonfunctional requirements can be
met.)

Figure 8 shows our system with all the function-
ality (except for the mobile component) mapped
to one single processor. The mobile component is

206

mP 2

UHF Type 3

Figure 8: Introducing a hardware architecture

mapped onto its own microprocessor. This mapping
can be achieved easily by using a tool environment
such as the one described in {1]. By running perfor-
mance simulation, we now examine the effects of the
hardware architecture on the overall system perfor-
mance. A variety of hardware realizations can be
tested in this manner. For example, an alternative
scenario would be to realize the radio and recorder
interfaces by an ASIC. In that case we have to use
the performance model of an ASIC as shown in Fig-
ure 9.

6.2.2 Software Architecture

To run our system on a microprocessor, we need
an operating system (OS). The requirements dic-
tate the choice of the best OS. Typical questions
that we must answer are: “Do we need a real time
operating system, how many processes, tasks have
to be executed and how will the system behave if
the number of tasks and therefore the overhead due
the operating system increases?”

We propose to use an OS representation SES with
various operating systems, performance, costs and
other measures in this phase. Coupling rules will
tell us if a selected operating system can be used in
conjunction with a specific microprocessor. Again
we will use performance models, and by mapping
COLCs to the different software components (tasks,
processes, etc.) we will be able to determine how the
operating system behaves on a specific microproces-
sor.

Figure 9 shows the chosen software architecture
for our ship communication system. Stations 1 and
2 are executed as individual tasks on microprocessor
2 whereas the mobile station is executed on micro-
processor 1.

207

T - Task

OP ~ uperating
system

T

Eﬂ

=

(23] [

Figure 9: Hardware and software architecture

6.2.3 Identification of Channel Layer Com-
ponents

After we have introduced the first hardware and/or
software architecture and determined that all the
requirements can be met by this architecture, we
proceed to identify the channel layer components
(CHLC). In the ship communication system, two
microprocessors are used to realize the required
functionality. Let us further assume that the soft-
ware architecture is already specified.

Using the SES representation, we determine the
required communication media. Since one of the
processors holds the mobile station and the distance
between both processors might be long (e.g., 200
meters), we must use radio waves as a communi-
cation medium. The communication between the
software components can be realized by a simple
queuing mechanism.

Given the data rate of the channel, the error rate,
the required error rate, etc., we can select an ap-
propriate protocol to be used, and subsequently an
CHLC which realizes it. Again the SES holds per-
formance models of the CHCL. In the first perfor-
mance simulation run, we use the models to de-
termine if the CHCL fulfills all the requirements.
If this is the case, we supplement COLC with the
CHLC. Changes are now required in the hardware
and software architecture. It is clear that we need
a transceiver to send and receive data to/from the
mobile microprocessor. The software architecture
need not be changed significantly because we use a
standard queuing mechanism.

6.2.4 Identification of Port Layer Compo-
nents i

Having determined all the CHLCs, we address the
required port functionality. The ports are used to
reconcile the different signal representations. We
now need to convert signals sent by the mobile com-
ponent (software signals) to hardware signals that
can be modulated and transmitted. At the receiver,
the hardware signals must be converted to software
signals. These conversions require functional speci-
fications. We search for them in a domain specific
SES.

We use performance models first to determine if
all the requirements are met. If they are, we use the
selected port layer components (PLC) described by
a formal language. We add these PLCs to our sys-
tem consisting of COLCs and CHLCs. We exam-
ine the hardware and software architecture again
and we realize the HW /SW signal type conversions
(and vice versa) by dedicated 10 devices. Simula-
tion determines if all the requirements are met by
the proposed design.

If all the requirements are met, we have a fully
partitioned system with the requisite microproces-
sor, memory, I/O devices and communication me-
dia. However, it should be emphasized that all our
components are still described at systems level.

7 Conclusion

In the design approach presented here, we recognize
that the clear separation between system level mod-
eling, simulation, analysis and partitioning may not
always be enforced. To allow early feedback, which
is essential in a complex design process, we should
be able to make many iterations between all these
phases. By facilitating such iterations, we can ex-
amine the impact of a design decision very early in
the cycle.

We plan to refine the design desiderata and phases
presented here into a formal methodology for het-
erogeneous systems design.

References

[1] P. Gerlich, C. Schaffer, V. Debus and Y. Ta-
nurhan., EaSyVaDe: Validation of System De-
sign by Behavioral Simulation. Proc. of the 3rd
ESTEC Workshop on Simulators for European
Space Programs, Nordwijk, November 1994 (in
press).

[2] D. Hatley and 1. Pirbhai. Strafegies for Real-
Time¢ System Specification, Dorset, New York,
1988.

[3] 3.W. Rozenblit and J.F. Hu, Integrated Knowl-
edge Representation and Management in Simu-
lation Based Design Generation, IMACS Jour-
nal of Mathematics and Computers in Simula-
tion, 34(3- 4), 262-282, 1992.

[4) J.W. Rozenblit and Y.M. Huang, Rule-Based
Generation of Model Structures in Multi-
facetted Modeling and System Design, ORSA
Journal on Computing, 3(4), 330-344, 1991.

[5] C. Schaffer. An Approach to Design Com-
plex, Heterogeneous Hardware/Software Sys-
tems. Proc. of the International Conference
on Compuler Aided Systems Technologies, May
1994, Ottawa Springer Verlag, (in press).

[6] C. Schaffer. HW/SW Codesign - A Systems
Level Approach, Internal Report, Johannes Ke-
pler University, Dept. of Systems Theory and
Information Engineering, August 1994

[7] M. Schwartz. Telecommunication Networks:
Protocols, Modeling, and Analysis, Addison-
Wesley, 1987.

[8] G. Schweizer and M. Vosss. Managing the
ECBS Process - Towards a System Theory for
ECBS. Proceedings of the 1994 Systems En-
gineering of Computer Based System, 1EEE
Computer Society Press, pp. 124-130, Stock-
holm, May 1994.

—
©
[’

B. Thome (Ed.). Systems Engineering: Princi-
ples and Practice of Computer-Based Systems
Engineering, John Wiley and Sons, 1993

208

