
Modular, Hierarchical Modeling Concepts for Support of 
Heterogeneous Systems Design 

Christoph Schaffer 

I n s  t i tu t e of S ?; s t em s S ci e 11 ce 
Johmnes Kepler Ui i ivers i  t y  Linz 

A-4040 Linz 
A us t si a 

Abstract 
Desigil of conipuler 6ased sysfems (CBS) rcquzres 
siippori iools aiid iechntques ilia1 can adegr in ie ly  
muiinge i h e  complerify of the uiiderlytng eng~neer- 
27tg acizvztres a n d  processes. I n  lh?s pnper ,  the  pra- 
mnry  focrrs is on fhe  desigil aspecls of the  eiigz- 

neering of conipufer-bused sysfems (ECBS) process. 
More specifically, i t  IS detnoasirnied how sysiems 
l l ieory a7iR sfrucfured knowledge represenfat~oii co i i -  
cepts can he used io m a k e  the system level desigi l  

more manageable and efficient. 

Keywords: heterogeneous sys tenis design, knoml- 
edge based design, l i a rd~~~are /sof tware  partitioning, 
structured knowledge representation. 

1 Introduction 
Over the years, various engineering domains such as 
electronics, mechanics, aerodynamics or computer 
scien ce have developed t hei r own a 11s tract ion mecli- 
aiiisms to  cope with tlie increasing systems comples- 
ity. This  worked well for problenis with a clear focus 
on  one specific domain. However, today’s systenis 
usually coiisist of a mixture of electronics, software, 
and  iiiechanical components. Therefore we have to 
extend domain specific view to  a iiiore general one, 
i.e., the systeiiis view. Systems level is synonymous 
with a significant abstraction which allows the de- 
signer t o  carry out multiple, different investigations 
without being hindered by the constraints imposed 
by tlie domain, for instance, by the  selected realiza- 
tion technology. 

System level design comprises tlie following main 
activities: 

Jerzy I\!. Rozenblit 

Dept.. of Electrical and Computer Engineering 
The University of Arizona 

Tucson, Arizona S5i21 
u.s..4 

system level modeling 

0 system level simulation 

system level analysis 

0 system level partitioning 

0 integration into a concurrent engineering envi- 
r on ni e 11 t . 

At the systems level, niaiiy aspects of the final sys- 
ten1 will be  hidden. Therefore w e  should adequately 
address tlie design coinplesity and ensure i ts  cor- 
rectness since faults made  a t  tlie systems level may 
have a devastating impact on the subsequent design 
steps. hIore specifically, we have to define the  func- 
tional behavior, the systenis architecture, par t i t ion 
the system into hardware, software and mechani- 
cal par ts ,  while guaranteeing tha t  all the functional 
and nonfunctional requirements will be met  by the  
proposed design. 

In this paper, we present a multi layered design 
approach t h a t  combines structured knowledge rep- 
resentation methods, knowledge-based techniques, 
and systems concepts to  assist in inanaging the  com- 
plexity of the  system level design of CBS. T h e  con- 
cepts presented here can be used to  define asystein’s  
life cycle t h a t  addresses the  following needs: 

0 a b s t r x t i o n  to  reduce complexity, 

0 early feedback through simulation, 

0 rapid prototyping of CBS, 

0 support  design with a. knowledge representation 
scheme, (therefore multiple steps in the  life cy- 
cle can be nearly automated), 

specification support 0 design of highly reusable components, and  

0- 7803-2531 - 1 / 95/ $4.00 @ 1 995 I EEE 
200 



0 suppor t  of iiardn-are/softivare (II\Y/S\Y) par- 
t i  t.ioni ng 

011 r a pp roach coni p lemen t s recent clevelop I lien t s 
that emphasize tlie use of systems concepts in  the 
engineering of computer based systcnis [SI 91. 

2 General Considerations on 
Systems Level Design 

Tlie increasing comp1esit.y of coniput.er based sys- 
tems and tlie decreasing time-t,o-marliet factor make 
it necessary to improve and ,  perhaps, partially au- 
t.oniate some of the act.ivities i n  t,he syst.ems engi- 
neering process. 

I-Iigliest gains can be  achieved if  it. is possible to 
reuse previously developed components in new de- 
signs. I n  the  hardware domain, reusabi1it.y is sup- 
ported by many off-the-shelf components. In soft- 
ware, the  object-orienkd paradigm contributes to  
higlier reusability. In the 19iOs, IBXl had iden- 
tified (through their System h’etn~orl; Architecture 
(SEA))  [7] tlie need for design abst.raction by in- 
troducing several networli layers. Thus  is it was 
possible to define a standard which guaranteed tha t  
networlc functions could be reused by different sys- 
tems. 

While it is clear t,liat the need for reusability is 
well recoghized in various domains, i t  is also true 
tha t  large numbers of reusa.ble components can- 
not be handled efficiently without the support  of 
a knowledge base. This  is due t.o the multiplicity 
of component variants, various decompositions, and 
potentially combinatorial number of possible ways 
in  which they can be coupled. One can envision de- 
sign as a search process t,liat operates on the vast 
space of coniponents and their interdependencies, 
and  generates a. system by selecting, coupling, and 
relating various modules so tha t  tlie overall design 
objective is met .  Therefore, effective procedures a.re 
needed t h a t  can iiianage tlie complexity of both t,he 
underlying design spaces ancl the  search procedures. 

When we esa.mine conventional system level de- 
sign processes, we observe tha t  the reusability of 
components is not a high priority issue. Typi- 
cally, tlie systems are built from scrat.cli, even if the  
new system is very similar to an  alrea.dy existing 
one. T h i s  is due to systeni designs being very of- 
ten strongly coupled to tlie underlying architecture. 
Therefore, if a systeiii were designed to be esecuted 
as software. for instance, on a GSOOO processor, it 
iniglit be difficult or even iiiipossible to reuse the  
design aiid run i t  on a n  ASIC as pure hardware. 

Both systems behave iiii the  sallie way; however their 
speeds m a y  be different for different realizations. 

By introtlucing a layered partitioning (LP) model, 
\vIiicli is Iwed  on tlie ivorl; done in [ 5 ,  61. we show 
how to facilitate design of hiplily reusable compo- 
ne11 t s. 

3 System Architecture 
S p e c i fi cat io n 

IYe employ t.lie notion of an architecture as a kernel 
structure for building several partitions, each with 
the goal of mapping tlie requirecl functionality to a 
physical entity. Based on the  approach presented 
in [2], we will discuss t.he systeiii, liardware, and 
soft.ware archit.ecture. 

S y s t e m s  a r c h i t e c t u r e :  A t  this level we consider 
the architect.ura1 properties which are indepen- 
dent from the reslization technology used. Is- 
sues such as the  geograpliic distance between 
components, the topology (e.g., bus, s tar ,  ring 
etc.) ,  whether a component is mobile or sta- 
tionary, are considered a t  this layer. 

S o f t w a r e  arcliitectiure: T h e  software structure is 
addressed here, e.g., the  operating system used 
to run the software on, modularization, etc. 

H a r d w a r e  architecture: \Vitliiii the hardware 
architecture we define the  needed hardware 
components (microprocessors, ASIC, off-tlie- 
shelf conipolielit!j, etc.) which are needed to 
fulfill all tlie functional and  nonfunctional re- 
quirements. 

To  malie a clear separation between tlie compo- 
nents at tlie different (architectural layers we eiiiploy 
the  terms system coniponent, software component, 
and hardware component. We strive to  clearly sep- 
arate the component:, and  intioduce a hierarchical 
reference architecture. This is no t  a trivial task as 
there is a wide lati tude in how tlie real problem can 
be addressed. For example, consider the small sys- 
tem depicted in Figure 1. 

Tlie three interacting components caii be realized 
in a varietsy of ways If we decide to realize all 
tlie components in hardware, we have to realize the 
communication channel between the  components in 
hardware, too. However, if we decide to  realize them 
all in software tlie cliarunel caii be realized by a queu- 
ing nieclianisin. T h e  niost complicated case will OC- 

cur when we want to realize two coiiipoiients in soft- 
ware and  only one in hardware. Then, a software 

201 



Figure 1: System of interacting components 

Component 
Layer 

Port Layer 

Channel 
L y c r  

and a hardware channel are required. ]Ye \vi11 also 
have to convert software signals t.o a represent at ion 
t,liat can be understood b y  t.lie hard\:.are coniponent. 
and vice versa. 

Tllerefore, each t.ime \ye change the systeni par- 
titioning, i t  is likely tha t  \ye will need another re- 
alization of a coniiiiuiiicat,ioii channel, or that  we 
will have t.o int.roduce new functionn1it.y by the re- 
quired conversions. To overcollie these problems we 
will use tlie layered partitioning model introduced 
in the ensuing section. 

Component 
Layer 

Pori Layer 

Channcl 
Layer 

4 Layered Partitioning (LP) 
Model 

As shown in Figure 2, the LP model consists of the 
component, port ,  and channel layers. At each of 
these layers we can find technology free components 
which correspond t o  the systeiii components defined 
above. 

Figure 2: LP niodel 

Component Layer: \Vien we refer to tlie system 
architecture before any partitioning into hard- 
ware, software, or iiiechanical parts,  then all the 
coinpoiients available in  t h e  systeni architec- 
t.ure will also be available within tlie component 

layer. To distinguish these components from 
tlie components of the  channel and port  lay- 
eIs \w call t hem co7~ ipone t1 f  l aycr  con?po7~ci i ts  
(COT,C). 

Tor I.rnnsport. of (lata fI'Gil1 among COLCS. The 
Cl innnel  Layer: Tlie channel layer is responsilzle 

components used here are callrd c I i a 7 i n e l  l a y e r  
c o 7 7 i p 0 n ~ n . f ~  (CHLC). The  CHLC uses a coni- 
munication medium ((31) to transport  data .  
CHLC: is iiit.roduced after we do the first hard- 
\vare/software part.itioiiing. 

Port Layer: At this layer we define all the  func- 
t.ionality needed for dat,a type conversion. 
These kinds of componei1t.s are called pori l ayer  
CO "'BO 11 en fs  (P  LC). 

\ I 'e emphasize tha t  although the CHLC and PLC 
wil l  be determined by partitioning the system into 
hardware and software, they still belong to  the  real- 
ization technology free system architecture. These 
components are only a means to  realize a proposed 
partitioning - \ye still must decide if a PLC or a 
CHLC should be realized i n  hardware or i n  software. 

5 The System Entity 
Structure (SES) 

To adequately represent the multi tude of a. 
computer-based systeiii's elements we propose to 
use a knowledge representation scheme called sys- 
teni entity st.ructure (SES) and its enhanced, frame- 
based represent.at,ion called Frases [3, 41. Through 
SES, we can espress an object's decomposition hi- 
erarchy, the taxonomy of design elements, the  con- 
straints on coupling of objects identified in  decom- 
posit.ions, and the const.raints on selection of ele- 
ni en t.s given b y  t,he t,ason oiii i c re1 at ion ships. 

A system entity st.rucbure is a labeled tree. Nodes 
of t,lie tree are called entities, aspects, specializa- 
tions, and  multiple decompositions. An entity node 
represeiit,s a real world object (which can be inde- 
pendent or can be identified as a coiiiponent of some 
decomposition or  specialization of a real world ob- 
ject. Aspects are decomposition types, or in  other 
words decomposition views. Specializations is a tax- 
onomic relationship, i.e., a particular way of classify- 
ing an entity. h multiple decomposition is a special 
type of decomposition (aspect) used to  represent en- 
tities whose number in a system may vary. 

As a n  esaniple (upon which we illustrate the  sys- 
tems engineering c0ncept.s discussed in this paper), 
consider a high level SES representation of a ship 

202 



Ship Communication System 

I ... 

r 

Hardware System 
I Arc 

Processors 
Ill 
I l l  Star Ring 7 Processor 

*s,',,,torola 

Functions 
I l l  tecture 

Function 
II 

Connection 

Line Conference Man. Half Automatic 
Automatic 

Equi ment 

I I 1 
Radios 
Ill 

Devices 
I l l  

Stations 
Ill 

Radio 

Alarm ,--i 
K O r d e r  Try 

UHF VHF HF , Us,tjr Inted; , Myye , 
type XI .... type xN , ,hp , , Yuput yobile Stationary 

Simple Keyboard Touch Lamps Screen LCD 
Key; 

- Selection Rule '-1 
if required flexibility = high or 

required reliability = high 

then 
topology = bus 

Screen 

' EIF 
(Processor 

(Model: (Value ASIC)) 
(Attributes: (Clock rate (default 66)) 

(Cache size (default 128)) 
.... 

(Design Spec: 
(constraint (value ((> MIPS 50) 

(c cost 300) 
(c power clonsumption 0.5)))) 

Figure 3: SES representation of a ship communication systein 

233 



communication system shown in Figure 3.  The Ship 
Coiiiniuiiicatioii Systeni e11tit.y represents t.lie sys- 
tem t,o be designed. I t  consists of inajor aspect.s such 
as Function, System Architecture! Hardware, and a 
Topology specialization with t.he entities Bus, Star.  
and Ring. Systems Architecture is decomposed into 
Equipment. T h e  Equipment consists of Radios, De- 
vices, and Stations. These are classes of objects. 
Their instances are Radio, Device, and Station, re- 
spectively. (The  triple vertical line denotes a spe- 
cial the multiple decomposition [4] - a relation that  
breaks up a class into a set of instances whose iiuiii- 

ber inay vary.) Functions are Line and Conference 
Connections with Manual, Half-automatic, and Au- 
tomatic t.ypes of connection. 

An SES specifies a family of possible arrange- 
ments of components for the system being designed. 
Aspects and specializations allow us to specify a 
family of design alternatives by selecting different 
components and decompositions. The multiplicity 
of t.asononiic and decomposition relationships in a 
large design entity structure leads to a conibinato- 
rial explosion of possible model alt,ernatives. Tliere- 
fore, i t  is necessary to provide procedures that  ef- 
fect’ively reduce both the complexity of the search 
process for admissible model structures and the size 
of the search space it.self. We have developed a pro- 
duction rule-based procedure, called prtining t o  ad- 
dress this problem. 

Pruning the system entity structure results in a 
set of alternative design model structure [3, 41. As 
described in [4], this is done by defining selection 
rules for each specialization, and synthesis rules for 
decomposition nodes of tlie system entity sbructure. 
(An example of a selection rule is shown in the fig- 
ure.) 

TO improve tlie efficacy of‘ design representation, 
we have augmented SES with a frame-based scheme 
called Frames and Rules Associated System Entity 
Structure (Frases). Frases combines the frame, rule- 
based, and SES knowledge representations. An un- 
derlying d a t a  structure of Frases is the system en- 
t i t y  tree. Each node of the SES tree has a frame 
attached to  it tha t  encompasses declarative and pro- 
cedural knowledge in a design problem. Such a 
frame is called Entity Informniton Frame (EIF).  An 
Entity Information Frame (EIF)  integrates design 
knowledge by providing slots for representing de- 
sign attr ibutes,  functional, and procedural knowl- 
edge. Thus,  the SES layer assures tha t  the deconi- 
posit.ion, taxonomic, and coupling relat.ionships are 
properly specified while each EIF captures tlie ad- 
ditional design information such a s  at.tributes. con- 
straint.s, requirements, etc. In the figure, we have 

shown a simple EIF for the entity ASIC Processor. 
Further details on the Frases representation can be 
found in [3]. 

6 The Systems Life Cycle 
In the following we proceed t o  show how tlie SES 
and LP niodels can be used in designing computer 
based systems. For the sake of brevity, we use a 
small part of the ship communication system as a 
illustrative example. 

6.1 Specification Support 
When starting a new project, a designer typically 
works with an informal specification of requirements 
which should be fulfilled by the system. For large 
scale, complex systems it  is difficult t o  prove tha t  
all the requirements are complete and consistent. 
Life Cycles as presented i n  [l] handle this problem 
by building execut.able models based on the infor- 
inal requireinelit specification, and by using analysis 
(such deadlock, reacliability, etc.)  and simulation 
techniques. By using those methods, the designer 
can determine if there are missing or inconsistent 
requirements. In addition, by “animating” the mod- 
els, designers can better comprehend how the sys- 
tem is intended to behave. 

In our proposed methodology, the SES is the basis 
for the selection and configuration of tlie system’s 
compone1it.s. In the initial design phases, when 
boundaries between the system and its environment 
are defined, the foIlowing two cases are considered: 

1. 

2. 

‘The boundary defined by the requirement spec- 
ification itself. This kind of environment is 
called the ezternal entiironment. 

By modeling the external system environment, 
we bet.ter understand the requirements for the 
system to be built. We recognize tha t  some of 
them can be realized by components which are 
available on the market. Therefore, if we use 
such components, tlie requirement for the re- 
mainder of the system to be built may change, 
depending on the functionality given by the al- 
ready selected components. This process can 
be it.erative in that  each selection of certain 
components will result in new constraints tha t  
have t.o propagated onto the remaining selec- 
tion decisions and so on. The  components 
whose selection is driven by the external en- 
viroiiment constitute what we call the ~nternal 
e n  turo 11 me l i t  . 

204 



For illustration, consider the following example. 
A requirement stipulabes that radio communication 
within the AM frequency band be available. I t  
would be unreasonable to  design and build a new 
AM radio. Instead, we use the knowledge associated 
with the SES representation of our domain problem 
to. From the SES, we realize that, t,here are AT dif- 
ferent. t.ypes of Ah4 radios available on the market. 
As mentioned above, each entity has a frame at- 
tached to it with attributes such as price, weight, 
size, power consumpt.ion, etc. Based on t,he at- 
tribute values, we select a radio type most suitable 
for the design problem a t  hand. 

Now, we can now proceed to select an appropri- 
ate t.ype of user stations. This requires that  a choice 
of a mode (i.e., stationary or mobile) be made and 
that  this choice be propagated ont.0 the type of in- 
put interface. (Choosing the mobile inode of opera- 
tion restricts the number of keys on the input device 
.to twent,y (20) due to  both power consumption and 
space restrict.ions.) By proceeding in this fashion we 
can configure the internal environment,. Addition- 
ally, we can estimate the overall costs, weight, size, 
and other parameters. This helps in ensuring that  
some of the nonfunctional requirement can be met. 

IYhen we select a specific component, e.g., an AM 
radio, we also create a COCL that  holds a behav- 
ioral description of the interface for the selected type 
of the AM radio. 

Having selected one or several possible configura- 
tions of the internal environment, we proceed with 
the functional requirements. Now, the SES repre- 
sentat ion provides knowledge about the functional- 
i t y  of a system in the domain of interest. In our 
ship communication system, we can select a type 
of conference connection form those SES defines 
as feasible, i.e., manual, half-automatic, and fully- 
automatic. If we select the fully automatic confer- 
ence connection, we must choose the specific sta- 
tions which will be part of the conference cycle. As 
a result we may arrive at a model shown in Figure 
4.  

The model has  three user stations (one of them 
is mobile), two radios, and a tape recorder. The  
system should allow fully automatic 2 point con- 
nections between user stations 1 and 2 and a half 
automatic 2 point connection between user stations 
2 and 3. Additionally, it  should be possible to  record 
the calls a t  user station I .  User station 2 should be 
able to make external communication with an Ah4 
and an U H F  radio (Remark: not all of this func- 
tionalit,y is shown i n  the SES of the communication 
system). 

Since we assume that the behavior of all the se- 

I ......_............ _._ ............. ~ ......-...........’ 

Figure 4: Pruned Substructure 

lected components is described by a formal language 
such as SDL or STATECHART, we will be able to  
“animate” the system and thus check if the system 
fulfills all the functional requirements. We can also 
use deadlock, reachability analysis, and other tech- 
niques to determine if the system is functionally cor- 
rect. 

So far, we have only cons,idered a design approach 
where all of the requested components are already 
available in the SES representation of the system. 
However, in many systems we need to build new 
components which are not available “off the shelf”. 
This situation will be reflected in the specification 
support phase by building the so called Specificafton 
Models [5, GI. 

Rather than describing the functionality in a very 
detailed manner, we propose to use an abstract de- 
scription as a specification for the design of the new 
component. This abstract description should be 
available in an executable form [l]. 

6.2 System Level Modeling 
As stipulated above, the Specificaiion Models are 
thought of as surrogates of the unavailable com- 
ponents. In the system b e l  modeling phase, we 
convert the Specification Models to so called Design 
Models. They are used to realize all the require- 
ments defined in the Specification Model. Whereas 
the Specification hdodel specifies what the compo- 
nent has t,o do,  tlie Design Models shows how this 
behavior is achieved. The  requirements in the SPEC- 
t f icat ton Model will be repla’ced in the Design Model 
by real pa.rameters determined while designing the 
component. 

Design models allow us to run performance simu- 
lation to  determine measures such as da ta  rat,es a t  
t.he communication channels, to identify time criti- 
cal parts or bottlenecks within the system. 

The nest. phase in our approach is to  determine 
the geographic distances (geographic partitioning 
(GP) )  between the components (For example, Fig- 

205 



Station I Recorder I 

Figure 5: Determining geographic partitions 

ure 5 illustrates the distances between the user sta- 
tions and the radios.) Then.  we proceed to  select 
the topology. In the best case, the requirements, 
geographic partitioning and performance simulation 
results restrict the search space to  one outcome. 
If there are more possibilities, the best solution is 
determined by re-evaluating design parameters and 
running performance simulation again. The  best 
topology can be selected through this iterative pro- 
cess. By validating the design early on, we are able 
t o  understand how well the functional and nonfunc- 
tional requirements are met  by the proposed design. 
If necessary, the design can be further refined. If 
problems occur, corrections can be made very early 
in the life cycle. 

The  geographic partitioning step introduces vari- 
ous physically distributed partitions. Together with 
the da ta  rates of the coininunication channel deter- 
mined while executing the performance simulation 
of the system, the partitions are an essential pa- 
rameter used in the selection of the communication 
medium (CM). Since the realization of the cominu- 
nication between the components might have a sig- 
nificant impact on the overall system performance 
and cost, we again at tempt  to  find the best design 
solution. We search the SES to find possible real- 
ization for our communication t a s k .  

Communicadon Media (CM) 

I I  
Sim le Media 

IP 

I I  
Com lex Media 

!I r- ... 1- ... 
Telephone LAN 
Nciwork 

Twisied Opiical Radio 
Pair Fiber 

Figure 6: SES of communication media 

Figure 6 shows a representation of the commu- 
nication media (CM). Again the parameters i n  the 

entity information frames give us costs, weight, er- 
ror rate at the medium by a given da ta  rate,  signal 
to  noise ratio, etc. 

If all the required parameters for selecting the ap- 
propriate Chl are given by the preceding steps of the 
systems life cycle, the medium (or media) fulfilling 
all the requirements can be selected with relative 
ease. For esanipie, assume a component has  t o  be 
a mobile station. This will restrict the possible re- 
alizations for the CM dramatically. 

For CMs we also select associated performance 
models (Figure 7 ) .  They are used for performance 
evaluation. We can thus determine if the  system 
still fulfills all the performance requirements. 

(Channel) 

Ra lntl 

Performance Models 

Figure 7 :  Associating performance models 

So far,  we have discussed the introduction of phys- 
ical partitions by executing only the GP step.  In 
addition to  GP, we must also consider the hard- 
ware/software partitioning. 

6.2.1 Hardware Architecture 

We use the da ta  gathered while running perfor- 
mance Simulation to determine some of the require- 
ments for the needed hardware. We may identify a 
t ime critical component, e.g., one tha t  has to deliver 
a signal every microsecond - a potential candidate 
t o  be realized in hardware (HW). T h e  parti t ions 
generated while executing the G P  step can now be 
used as parameters for selecting the needed hard- 
ware components. Having an isolated view of such 
partitions, helps us determine the appropriate input 
and output da ta  rates. 

Here, an SES of the hardware can be used to de- 
cide on appropriate elements. This  SES will also 
hold different performance models for all of the H W  
components. When realization components are de- 
cided upon, we can begin to check if the all the func- 
tional as well as nonfunct,ional requirements can be 
met .  

Figure 8 shows our system with all the  function- 
ality (except for the mobile Component) mapped 
to  one single processor. The  mobile component is 

206 



.............................................. 2-m 

Figure 6: Introducing a hardware architecture 

mapped onto i ts  own microprocessor. This mapping 
can be achieved easily by using a tool environment 
such as the  one described in [l]. By running perfor- 
mance simulation, we now examine the effects of the 
hardware architecture on the overall system perfor- 
mance. A variety of hardware realizations can be 
tested in this manner.  For example, an alternative 
scenario would be t o  realize the radio and recorder 
interfaces by an ASIC. In that  case we have to  use 
the performance model of an ASIC as shown in Fig- 
ure 9. 

6.2.2 Software Architecture 

To run our system on a microprocessor, we need 
an operating syst,em (OS). The  requirements dic- 
ta te  the choice of tlie best OS. Typical questions 
that we must answer are: “Do we need a real t ime 
operating system, how many processes, tasks have 
t o  be executed and how will the system behave if 
the number of tasks and therefore the overhead due 
the operating system increases?” 

We propose to  use an OS representation SES with 
various operating systems, performance, costs and 
other measures in this phase. Coupling rules will 
tell us if a selected operating system can be used in 
conjunction with a specific microprocessor. Again 
we will use performance models, and by mapping 
COLCs t o  the different software components (tasks, 
processes, etc.) we will be able to determine how the 
operating system behaves on a specific microproces- 
sor. 

Figure 9 shows the chosen software a rch i tec ture  
for oiir ship cominunication syst.em. Stations 1 and 
2 are esecuted as individual tasks  011 microprocessor 
2 wliereas the mobile station is esecut.ed on inicro- 
processor 1. 

f?dA27 , ............................................ Se I 6 2  ; 

; .................................................... : 

Figure 9: Hardware and software architecture 

6.2.3 I d e n t i f i c a t i o n  of Channel Layer Com- 
ponents 

After we have introduced the first hardware and/or 
software architecture and determined tha t  all the  
requirements can be met by this architecture, we 
proceed to  identify the channel layer components 
(CHLC). I n  the ship comrnunication system, two 
microprocessors are used to realize the required 
functionality. Let us further assume tha t  the soft- 
ware architecture is already specified. 

Using the SES representation, we determine the 
required communication media. Since one of the 
processors holds the mobile !station and the distance 
between both processors might be long (e.g., 200 
meters), we must use radio waves as a communi- 
cation medium. The  comniunication between the 
software components can be realized by a simple 
queuing mechanism. 

Given the da ta  rate of the channel, the error rate,  
the required error rate, etc.., we can select an ap- 
propriate protocol to be used, and subsequently an  
CHLC which realizes it. Ag,ain the SES holds per- 
formance models of the CH’CL. In the first perfor- 
mance simulation run, we use the models to  de- 
termine if the CHCL fu1fill;s all the  requirements. 
If this is tlie case, we supplement COLC with the 
CIILC. Changes are now required in the hardware 
and soft.ware arc11it.ecture. It  is clear that we need 
a t,ransceiver to send and receive d a t a  to/from the 
mobile microprocessor. The software archit.ecture 
need not be changed significantly because we use a 
standard queuing mechanism. 

20 7 



6.2.4 Identification of Port Layer Compo- 
nents 

Having determined all tlie CHLCs, we address the 
required port  functiona1it.y. The port,s are used to 
reconcile t,he different signal representat.ions. We 
now need to convert signals sent by the mobile com- 
ponent (software signals) to  hardware signals that  
can be modulated and transmitted. At the receiver, 
the hardware signals must be converted to  software 
signals. These conversions require functional speci- 
ficat,ions. We search for them in a domain specific 
SES. 

We use performance models first to  determine if 
all the requirements are met .  If they are, we use the 
selected port layer components (PLC)  described by 
a formal language. \17e add these PLCs to our sys- 
tem consisting of COLCs and CHLCs. \Ye esam- 
ine tlie hardware and software architecture again 
and we realize the H\V/SW signal type conversions 
(and vice versa) by dedicated IO devices. Simula- 
tion determines if all the requirements are met by 
the proposed design. 

If all the requirements are met ,  we have a fully 
partitioned system with the requisite microproces- 
sor, memory, 1/0 devices and communication me- 
dia.  However, it should be emphasized tha t  a11 our 
components are still described a t  systems level. 

7 Conclusion 

In the design approach presented here, we recognize 
tha t  the clear separation between system level mod- 
eling, simulation, analysis and partitioning may not 
always be enforced. To allow early feedback, which 
is essential in a complex design process, we should 
be able to make many iterations between all these 
phases. By facilitating such iterations, we can ex- 
amine the impact of a design decision very early in 
the cycle. 

We plan to refine the design desiderata and phases 
presented here into a formal methodology for het- 
erogeneous systems design. 

References 

P. Gerlich, C. Schaffer, 1 7 .  Dehus and Y .  Ta- 
nurlian. EaSy\:aDe: Validation of System De- 
sign by Behavioral Simulation. Proc. of t h e  3rd 
ESTEC M'orkshop o n  Szmulnlors for Europeaw 
S p a c e  pro gran,^, Nordwijk, November 1004 (in 
press). 

D. Ilatley and I Pirhhai. Sfrategzes for Real- 
Trm c $ 'gsI fn?  .!?pec~ficalzon, Dorset, Kew York, 
1988. 

J .\V. Rozenblit. and J .F. Hu, Integrated Iinowl- 
edge Representation and Management in Simu- 
1at.ion Based Design Generation, IMA CS Jour- 
nal of Mathematics and Computers in Simula- 
t i o n ,  34(3- 4 ) ,  262-282, 1992. 

J .W.  Rozenblit and Y.M. Huang, Rule-Based 
Generation of Model Structures in Multi- 
facetted Modeling and Systeni Design, ORSA 
Journal on Computing, 3(4),  330-344, 1991. 

C. Schaffer. An Approach to  Design Com- 
plex. Heterogeneous Hardware/Software Sys- 
tems. Proc. of f h e  Iiiternational Conference 
on C.'oniputer Aided Systems Technologies, May 
1994. Ottawa Springer Verlag, (in press). 

C. Schaffer. HW/SW Codesign - A Systems 
Level Approach, Internal Report ,  Johannes Ke- 
pler University, Dept. of Systems Theory and 
Information Engineering, August 1994 

M . Schwartz. Telecommunication Neiuiorks: 
Protocols, Modeling, and Analysis, Addison- 
Wesley, 198i. 

G.  Scliweizer and h4. Vosss. Managing the 
ECBS Process - Towards a System Theory for 
ECBS. Proceedings of the 1994 Systems En- 
gineering of Compuier Based System, IEEE 
Computer Society Press, pp. 124-130, Stock- 
holm, May 3994. 

B. Tliome (Ed. ) .  Systems Engineering: Princi- 
ples a n d  Practice of Computer-Based Systems 
Engineering, John Wiley and Sons, 1993 

208 


