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Abstract

A fundamental problem for network analysis is the discovery of cohesive sub-

groups, cliques, blocks, or communities within networks. One of the current

obstacles in multi-mode networks research is the gap between the ground-truth

and observed data. In this paper, we discuss an innovative approach to data

synthesis, using the theory of network semigroup algebras with linear system

theory, to produce generative, stochastic, nonlinear models. Since our moti-

vating and illustrative example is a human-centric cyber-security problem, we

model human-human, human-machine, and machine-machine interactions. We

also apply and extend a multi-mode community detection and show both it and

simulation correctly.
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1. Introduction

A fundamental problem for network analysis is the discovery of cohesive

subgroups, cliques, blocks, or communities within networks. An explosion of

developments followed the work of Girvan and Newman [1], bringing com-

munity detection to the attention of the mathematics and statistical physics

communities [2]. If we extend networks from social and biological realms to

encompass mixed networks, including but not limited to computer, evidence,

time, and social networks, then we call this construct a multi-mode network (cf.

De Domenico et al. [3]). Combining these two facets, the problem of multi-mode

community detection emerges. Multi-mode networks have wide applicability,

encompassing all the aforementioned networks.

Recently, cyber criminals have already taken a multi-mode approach to pen-

etrate secure systems [4, 5, 6]. As such, the study of multi-mode networks

is one promising venue for human-centric cyber-security. Most cyber-security

approaches use graph theory [7], packet tagging/marking [8], signatures [9], deep

packet inspection [10], and anomaly detection [11, 12]. However, Oh et al. [13]

have focused on the social aspects of security. This motivates our investigation

into multi-mode networks for security purposes.

Nevertheless, one of the current drawbacks to multi-mode research and anal-

ysis is the lack of data for which the ground-truth is known. By ground-truth, we

mean what is truly happening as opposed to the data, which may be incomplete,

noisy, filled with red herrings, include purposeful mistruths, or any combination

of these. Such incomplete knowledge hinders the development of new techniques

that could unearth the ground-truth. So how does one deal with an unknown

ground-truth?

Consider the following four remedies to this lack of ground-truth information.

First, one could attempt to collect the real world multi-mode data. However,

this would be cost prohibitive, potentially unethical, and would fail to provide

the ground-truth. Second, one could orchestrate a scenario and collect all in-

formation. This approach would probably produce unrealistic data or be cost
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prohibitive. Third, one could generate synthetic data using existing theory.

Fourth, the previous three techniques could be combined in a hybrid approach.

In this paper, we discuss an innovative approach to data synthesis using

existing theory. Since our motivating example is a human-centric cyber-security

problem, we combine the theory of network semigroup algebras with linear

system theory to produce a generative, stochastic, nonlinear model of human-

human, human-machine, and machine-machine interactions. Moreover, our data

synthesis allows the multi-mode network to evolve over time, allowing us to

investigate analysis methods that exploit temporal information. We investigate

the technique discussed in Melamed et al. [14] with the synthetic data generated

here. This technique ignores temporal information, but we extend it by taking

a temporal difference and examine these results as well.

Section 2 reviews existing data synthesis techniques, multi-mode represen-

tations and analysis, network semigroup algebras, and a brief review of linear

system theory. We combine linear system theory with network semigroup al-

gebra to arrive at a generative, stochastic, nonlinear model in Section 3 before

discussing an illustrative example in Section 4. We conclude with a discussion

of future work in Section 6.

2. Background

We briefly review five subjects in this section. After covering the justifi-

cation, recent history, and ethics of data synthesis, we discuss network repre-

sentations and their extensions into multi-mode networks. Then, we rehash

prior work using network semigroup algebras. Since we combine multi-mode

networks and semigroup algebras with discrete state-spaces, we recall the basics

of discrete state-spaces. The last bit of background we examine is a recent

multi-mode partitioning methodology.

2.1. Data Synthesis

Data synthesis can be seen as the outcome of a simulation. Simulations and

modeling have long been used to replace or supplement real data and make pre-
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dictions. Consider how physics provides mathematical models of nature; these

models helped send humanity to the moon. Researchers sometimes optimize

a real system by optimizing a model of the system. Traffic simulations have

helped scientists test/optimize traffic control [15]. Discrete Event Simulations

(DES) of Discrete Event System Specifications (DEVS) date back to the work

of Zeigler [16]. However, so far simulations within social networks have mostly

been limited to the propagation of ideas [17], emotions [18], and diseases [19].

On the other hand, Kumar et al. [20] studied the evolution of social networks

with an emphasis on the growth and migration of star networks. While there

exists some research into the evolution of multi-mode networks [21], it is fo-

cused on clustering and community detection, rather than multi-mode network

simulation.

One more concern with regards to the generation and use of synthetic data:

ethics. Never attempt to present data generated from a model as data from the

real world. The National Science Foundation (NSF) states that data fabrication

and falsification are forms of research misconduct.1 One should always make

every effort to ensure synthetic data is understood by all as the result of an

imperfect model. Always overtly disclose the use of simulations and data syn-

thesis. The methods discussed in this research should never be used to generate

synthetic data that could even be misinterpreted as genuine multi-mode data.

George E. P. Box captured this idea when he said “essentially, all models are

wrong, but some are useful.” Our method provides useful data, but it should

not be mistaken as the real thing.

2.2. Network Representations

There exist many common representations for networks in general: adjacency

lists, adjacency matrices, and incidence matrices. The term adjacency means the

structure describes the relationship between nodes. The term, incident, is used

to describe relationships between nodes and vertices. Lists tend to be more

1See http://www.nsf.gov/oig/_pdf/presentations/session.pdf
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efficient for representing sparsely connected networks and matrices for dense

networks. Adjacency matrices are commonly used in the literature [22, 23, 1,

24, 2, 14, 3]. However, when dealing with multiple modes, adjacency matrices

need some adaptation. De Domenico et al. [3] use multi-layer adjacency tensors.

Kivelä et al. [25] provide a review of several more multilayer network extensions.

We adopt a matrix of matrices approach. This is similar to the representation

in De Domenico et al. [3], yet avoids tensorial notation (for better or for worse).

This representation is interchangeable with block-matrices, allowing us to use

block notation similar to that presented in Melamed et al. [14]:\left(        
Z1,1(n) Z1,2(n) Z1,3(n)

Z2,1(n) Z2,2(n) Z2,3(n)

Z3,1(n) Z3,2(n) Z3,3(n)

\right)        
where any double underlined variable is a matrix per sé. We use this double

underline notation throughout the rest of this paper. Similarly, singly underlined

variables are column vectors. Any variable without any underlines is a scalar.

For asymmetric matrices, the entity of the row has a connection/influence on

an entity of the corresponding column when there is a connection. This is in

agreement with using right multiplication to chain on the next relationship or

action.

We have one final note about this matrix of matrices perspective. Each

block-matrix can be interpreted as a different kind of network. Carley [26] gives

an example using four modes. The matrix involving interactions between people

is a social network. Interactions between people and knowledge, Carley calls a

knowledge network. In our approach, interactions between computers occur in

a computer network; interactions between computers and people are called a

user network.

2.3. Network Algebras

Network algebras provide a means to describe compound relations. Pio-

neering work was done by Boorman and White [27]. Breiger and Pattison [22]
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say that if there are two types of connections, say L and M (for loans and

marriages between families), then we ought to consider L2, LM , M L, M2, etc.

In this scenario M L connects family A to family C, such that a member of A is

married to a spouse in some family (B) containing someone who makes a loan

to C. The semigroup is just the clamped2, multiplicative closure of all types of

connection matrices. The semigroup describes all possible interactions between

these connections. Now if we consider a new type of connection/relationship,

which may even be a temporal update to an existing type of connection, it

makes sense to consider at least the simple compound relations described by

the existing semigroup; one family may be more likely to give a loan to another

family that shares a marriage connection. Martino and Spoto [24] share this

same idea of using compound relations to form new relations.

Breiger and Pattison [23] discuss algebraic models for social networks in gen-

eral. This includes algebras from networks with types of relationships, including

the aforementioned semigroups. They present role algebras as a local network

analogue to semigroups, which are in turn algebras with a single binary opera-

tion, and partial algebras as algebras with restrictions on repeated operations.

In multi-mode networks, the definition of “local” is ambiguous, leading to both

mode roles (semi-local roles) and individual roles (fully local roles). Moreover,

sometimes we require partial algebras for computational feasibility, especially if

one goes beyond binary multiplication.

2.4. Discrete State-Spaces

Discrete linear systems may be described in state-space form as [28, chap.

3.4][29, chap 8.1]:

x(n + 1) = x(n)A(n) + B(n)u(n), (1)

y(n + 1) = x(n)C(n) + D(n)u(n) + N(n), (2)

2The result of clamped matrix multiplication must return a matrix where all connections

are in the interval [0,1], sometimes resulting in nonlinear behavior.
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where

\bullet x(n) is the state vector at time n,

\bullet y(n) is the output vector,

\bullet A(n) is a matrix describing the linear system,

\bullet B(n) is an input mixing matrix,

\bullet C(n) is a matrix mapping from the state vector to its contribution of the

output,

\bullet D(n) is an output mixing matrix,

\bullet \scrN (n) is a noise vector,

\bullet u(n) input to the system, and

\bullet n is the discrete time.

Typically, B(n), D(n), and u(n) are ignored unless one is attempting to control

the system. One can readily see that these terms may be ignored when u(n) is a

vector of zeros. Standard linear system theory rarely explicitly states noise (\scrN ).

One could also include a noise term influencing the state. However, we chose to

ignore noise in the feedback loop to better match our extension to multi-mode

networks.3

2.5. A multi-mode partitioning methodology

Melamed et al. [14] use a multi-mode eigenspectrum approach to partition

multi-mode networks. It is the combination of the multi-mode networks set

forth by Fararo and Doreian [30] and the eigenspectrum approach of Newman

[31]. Essentially, intra-mode connections are ignored, each cross-mode matrix

is replaced with its modularity matrix (the connection matrix subtract the null

3Even multi-mode networks may have noise in their feedback loop, but for simplicity we

ignore it in this paper.
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model), and entities are partitioned using the eigenvectors from the resulting

matrix (of matrices).

Let A\prime be a binary adjacency matrix and P (A\prime ) be the null model matrix

describing the probability of connections. Then each modularity matrix is

B\prime 
\biggl( 
A\prime 
\biggr) 

= A\prime  - P

\biggl( 
A\prime 
\biggr) 
. (3)

P

\biggl( 
A\prime 
\biggr) 

is a matrix representing the null model. It is usually the outer product

of row sums with column sums normalized by the total number of connections,

P

\biggl( 
A\prime 
\biggr) 

=
A\prime 

i,\Sigma A\prime \intercal 
\Sigma ,j\sum 

l

\sum 
k A

\prime 
l,k

(4)

A\prime 
\Sigma ,j =

\sum 
k

A\prime 
k,j

A\prime 
i,\Sigma =

\sum 
k

A\prime 
i,k

\intercal 
,

or sometimes a matrix filled with the average connection strength,

P

\biggl( 
A\prime 
\biggr) 

i,j

=

\sum 
l

\sum 
k A

\prime 
l,k\sum 

l

\sum 
k 1

.

Compute P (\cdot ) for all cross-mode adjacency matrices. The next step to partition

the multi-mode network is to zero out the block-diagonal. For concreteness,

assume we are working with three symmetric modes:\left(            

0 B

\Biggl( 
Z1,2(n)

\Biggr) 
B

\Biggl( 
Z1,3(n)

\Biggr) 

B

\Biggl( 
Z1,2(n)

\Biggr) \intercal 

0 B

\Biggl( 
Z2,3(n)

\Biggr) 

B

\Biggl( 
Z1,3(n)

\Biggr) \intercal 

B

\Biggl( 
Z2,3(n)

\Biggr) \intercal 

0

\right)            
Taking this result, its eigenvectors may be used to partition the network. Using

the eigenvector having the largest eigenvalue, the community can be partitioned

into two groups using the signs of the eigenvector. Naturally, this can be recursed

to partition into more than two communities. Newman [31, 32] recommends

repeating this process as long as it improves the modularity and provides a
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thorough discussion about how to get subsequent partitions. Taking the entities

in one or both communities, further partition them using the signs of the second

largest eigenvector.

Melamed et al. [14] originally tested their technique on a small didactic

example. However, to fully verify their method, they had to simulate thousands

of networks. Their simulated networks were based primarily on three factors:

size, density, and probabilities of ties between communities. One may question

the realism of these simulated networks. Thus, this serves as further motiva-

tion for us to create better simulated multi-mode networks. Moreover, we will

investigate this method, including extensions to temporal multi-mode networks.

3. Data Synthesis Approach

The primary thrust of our work is to create better realistic multi-mode

networks through an extension of discrete state-spaces to multi-mode network

semigroup algebras. Our proposed method allows us to embed ground-truth,

watch it evolve, and watch an apparent-truth evolve as well. We first extend

linear system theory to single mode network systems in Section 3.1. Then, in

Section 3.2, we extend this to multi-mode networks.

3.1. Single Mode Network Data Synthesis

We start this section by introducing one possible network system extension

to linear system theory, explaining and justifying the three primary modifica-

tions. The bulk of this section discusses the semantics of each variable and their

relation to network algebra. Again, as mentioned previously, for asymmetric

matrices the entity of the row has a connection/influence on an entity of the

corresponding column when there is a connection. If the reader prefers the

opposite, take the transpose of all matrix expressions.
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X(n + 1) = X(n)A(n) + B(n)U(n), (5)

Y (n + 1) = X(n) \odot C(n) + D(n) \odot U(n) + N(n), (6)

s.t.

0 \leq X(n)i,j \leq 1

0 \leq Y (n)i,j \leq 1

A(n) \in S

(7)

where \odot is the Hadamard (elementwise) product, and

\bullet X(n) is the ground-truth/state matrix at time n for one type of relation,

\bullet Y (n) is the apparent-truth/state,

\bullet X(n)i,j is the element at the ith row, jth column of X(n),

\bullet Y (n)i,j is the element at the ith row, jth column of Y (n),

\bullet A(n) is a (stochastic) matrix describing new interactions,

\bullet B(n) is an input mixing matrix,

\bullet C(n) is a ground-truth masking matrix,

\bullet D(n) is an output mixing matrix,

\bullet N(n) is a noise matrix,

\bullet U(n) is the input to the system, and

\bullet n is the discrete time.

\bullet S is the semigroup of (other) ground-truth relationships.
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We will ignore B(n), D(n), and U(n) in this paper, saving their use for future

work. One can see that the influence of B(n) and D(n) disappear when U(n)

is a matrix of zeros.

There exist three key differences between typical linear system theory and

our multi-mode network extension. In the multi-mode network systems, the

ground-truth state, the apparent state, and input are all matrices. This is rea-

sonable since the multiplication between X(n) and A(n) models the events the

network algebra predicts and the resulting state natively reflects the relationship

matrix. Second, (6) replaces standard matrix multiplication with elementwise

multiplication. We justify this with the following two facts: (A) the Hadamard

product makes it easy to model hidden information and (B) it seems strange

that observed connections would be a linear combination of the ground-truth

connections. The third difference is that (5) and (6) are made nonlinear through

the constraints that each connection is clamped to the range [0, 1].

X(n) represents the ground-truth relationship matrix for a single kind of

relation. By ground-truth, we mean that this represents the true state of the

world. This is as opposed to the apparent-truth, Y (n). Y (n) is the relationship

matrix as observed, including noise and missing information. Thus, the differ-

ence between X(n) and Y (n) represents the information gap between what is

actually happening and is thought to be happening. Ignoring input into the

system,

X(n) = X(0)A(0)A(1) . . . A(n - 1),

where A(n) for all n also comes from ground-truth relationships.

Compositions of typed relations (interactions) may lead to new relations

[24]. A temporal update is one such new relation. Thus, A(n) is used to update

the current state. Specifically, A(n) is a matrix from the semigroup formed

from ground-truth relationships. These relationships may be latent or clearly

visible; our generative model is indifferent toward whether these additional types

of relationships are hidden. A(n) is rarely selected from the full semigroup

algebra, but rather is selected from a partial algebra consisting of only a few
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repeated operations. This is to model only so many events happening within

a single temporal update. For example, if up to three events were allowed to

happen in a single temporal update, then A(n) would be randomly selected from

the partial algebra generated using only three matrix multiplications of ground-

truth relationships (including the identity matrix). This random selection makes

our model stochastic.

How should one select A(n)? It depends on the desired level of realism and

the amount of data one has. With minimal data and realism, all matrices in the

partial semigroup algebra (PSA) have equal probability. For a moderate level

of fidelity, probabilities of fundamental types of interactions can be multiplied

together to estimate the probabilities of all matrices in the PSA. Extending the

marriage and loan example in [22], if the probabilities interactions involving a

loan relationship, a marriage relationship, and no relationship are P (L) = 0.2,

P (M) = 0.1, and P (I) = .7, then the probability ofML would be 0.2\cdot 0.1 = 0.02.

For the most realistic scenarios when data is abundant, A(n) may be selected

using a Markov process. This would allow the probability of ML to differ from

LM .

What if the X(n) is not a network at all, but rather some physical pro-

cess. Those with a background in quantum physics or quantum computation

may note the similarity of (5) to the methods of using group theory to evolve

quantum states. Quantum information may be modeled to evolve discretely in

time through the use of group theory [33, chap. 2.3]. Using this analogy, A(n)

may be a Hadamard quantum gate. This is only an imperfect metaphor, since

“kets” are also vectors and the equations typically do not model interference in

the same fashion. However, this still provides some physical justification for

our simulation model even when the state represents something other than a

network.

U(n) allows us to model the connections we can influence. B(n) primarily

serves as a convoluting matrix, limiting the controllability of this stochastic

dynamic nonlinear system. Moreover, control of such a system would in general

be complicated. We conjecture that only rarely will the system ever be control-
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lable. The nonlinear and non-curvilinear nature (clamping connections to the

range [0, 1]) will make linear control theory inapplicable and optimal control

difficult. Moreover, some entities are sentient, making this a game theoretic

problem. We believe that numerical optimization techniques may make certain

desired outcomes more likely, but due to the stochastic nature these will be

computationally expensive. To further complicate matters, the role of D(n) in

(6) is uncertain. Perhaps it models our ability to deceive ourselves in our power

to control the system? As such, we leave the entire subject of control to future

work.

3.2. Multi-mode Network Data Synthesis

Now we use a matrix of matrices representation for multi-mode networks.

The block-diagonal matrices represent interactions within a single mode, while

the block off-diagonal matrices represent interactions between modes. Using the

matrix of matrices representation, the state (either ground-truth or observed)

would look like: \left(        
Z1,1(n) Z1,2(n) Z1,3(n)

Z2,1(n) Z2,3(n) Z2,3(n)

Z3,1(n) Z3,2(n) Z3,3(n)

\right)        .

Here, Zi,j(n) corresponds to an X(n) or Y (n). The block-diagonal matrices are

updated using (5) for the ground-truth and (6) for the observed state, just as

previously discussed. Updating the block off-diagonal matrices presents a new

challenge since they are generally rectangular.

We see two possible approaches for updating these off-diagonal matrices.

The first approach uses only (5) and (6) for each sub-matrix, but Ai,j(n) and

Ci,j(n) must be appropriately sized matrices. Meanwhile, the second approach

still uses (5) and (6), but only for the block-diagonal elements. The block off-

diagonal elements are updated using matrices that map between intra-mode

interactions and inter-mode connections. For example,

Zi,j(n + 1) = Zi,j(n) + Ai,i(n)Mi,j(n),
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where Ai,i(n) is an n \times n state matrix and Mi,j(n) is an n \times m inter-mode

mapping matrix. Here, inner-product multiplication is natural. It allows entities

in one mode to correspond to entities in another mode.

Some researchers may want to use the first approach. We offer the following

comments and describe behaviors from this approach. In this approach, one

may choose to update any number of cross-mode matrices in a single unit of

time. For concreteness, let us examine three modes. The cross-mode matrices

would be \left(        
0 Z1,2(n) Z1,3(n)

Z2,1(n) 0 Z2,3(n)

Z3,1(n) Z3,2(n) 0

\right)        .

We will first consider symmetric connections. If symmetry is desired, allow

Zi,j(n) = Zj,i(n)\intercal . This would also ensure all block-diagonal matrices are

square, but still potentially of different sizes. Each cross-mode matrix would

correspond to an instance of an X(n) matrix. But, X(n) depends on A(n - 1),

and A(n  - 1) is vague in this cross-mode scenario. A(n) must be a square

matrix for repeated operations to make sense, but cross-mode matrices will

be rectangular in general. Using the convention that subsequent interactions

are right multiplied, A(n) must be a square matrix having as many columns

as the cross-mode matrix. Thus, A(n) represents the entities from the mode

of the corresponding column. To preserve symmetry, after updating Zi,j use

Zi,j(n) = Zj,i(n)\intercal to update the corresponding cross-mode matrix. Another

side effect of this approach is that, without further modification, the connections

for each cross-mode adjacency matrix will update independently of each other.

For our purposes, this behavior is undesirable.

Extending the first approach to handle asymmetric connections offers ad-

ditional flexibility. If Xi,j(n) were rectangular, then Ai,j(n) must have differ-

ent dimensions than Aj,i(n). In general, this will drive asymmetry, which is

sometimes desirable. However, this increases the independence of cross-modes

further, a behavior we are trying to avoid. This brings us to our second approach
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for updating the cross-mode matrices.

The second approach, which we use in Section 4, is to propagate the updates

from the matrices along the block-diagonal. Suppose we update Z2,2(n) using

the method described in Section 3.1. Denote the interaction matrix for the

second mode as A2,2(n) and the visible state as Y2,2(n). Propagating these

changes symmetrically, we have:\left(        
\cdot Z1,2(n + 1) \cdot 

Z1,2(n + 1)\intercal Z2,2(n + 1) Z2,3(n + 1)

\cdot Z2,3(n + 1)\intercal \cdot 

\right)        , (8)

where

Z2,2(n + 1) = Y2,2(n + 1)

Z1,2(n + 1) = Z1,2(0) + M1,2(n)A2,2(0)A2,2(1) . . . A2,2(n)

Z2,3(n + 1)\intercal = Z2,3(0)\intercal + M2,3(n)A2,2(0)A2,2(1) . . . A2,2(n) (9)

(10)

and \cdot is a placeholder for matrices which stay the same. Mi,j(n+ 1) is an event

mapping of the same dimensions as Zi,j(n + 1). Mi,j(n + 1) is a rectangular

matrix describing how interactions within the column mode may affect the row

mode. The cross-modes above and below the updated mode use their event

mapping matrices directly. The cross-modes to the left and right come from the

transpose of the vertically updated elements. This means they use the transpose

of the mapping, for left matrix multiplication, and transposes of the actions:

Z2,3(n + 1) =

\Biggl( 
Z2,3(n + 1)\intercal 

\Biggr) \intercal 

= Z2,3(0) +

\Biggl( 
M2,3(n)A2,2(0)A2,2(1) . . . A2,2(n)

\Biggr) \intercal 

= Z2,3(0) + A2,2(n)\intercal A(n - 1)2,2
\intercal 
. . . A2,2(0)\intercal M2,3(n)\intercal .
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This has the desirable property that a single interaction within one mode pro-

duces dependencies between across modes.

We conclude this section with a few more notes about Mi,j(n). Mi,j(n)

may optionally be stochastic, which is the primary reason we gave it a temporal

index. Asymmetry can be introduced by allowing Mi,j(n) \not = Mj,i(n)\intercal . The sub-

matrices may also be asymmetric, even if the multi-mode matrix of matrices is

symmetric in terms of its block matrices.

4. Illustrative Example

Here, we provide a simple illustrative example of how our method can be

used to simulate multi-mode networks over time. In this concrete example,

we will create an initial state and evolve it into a new state. The initial condi-

tions/connections are explained in a story like fashion. The multi-mode network

dynamics are also specified allowing the network to evolve through the processes

in Section 3.1 and 3.2. After that, we analyze the results of the simulation using

standard methods and the partitioning method discussed in Melamed et al. [14].

4.1. Initialization

Consider the following pilot scenario. Let there be three people: Alice, Bob,

and Carol. The ground-truth is that Bob, through Alice, hears about Carol.

Bob decides to compromise Carol’s computer in order to steal her identity. In

the process, Bob was seen using a library computer. However, since Bob could

not compromise Carol’s computer directly, he installs a worm/virus/script on

one of the library computers to infect computers it connects to, spreading the

script. Eventually, his virus infects Carol’s computer when she uses a library

computer to log into her home computer.

The initial intra-mode matrices are listed below. Starting with the intra-
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mode matrix for people, each row/column corresponds to Alice, Bob, Carol:

PEP =

\left(      
1 1 1

1 1 0

1 0 1

\right)      .

In the initial intra-mode matrix for evidence, each row/column corresponds to

the library, the virus, Bob’s fingerprints, and a candy bar wrapper (as a red-

herring):

EV I =

\left(         
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

\right)         
.

Effectively, no evidence is initially connected. The initial computer intra-matrix

is shown below, with each row/column corresponding to the first library com-

puter, the second library computer, and Carol’s computer.

COMP =

\left(      
1 0 0

0 1 0

0 0 1

\right)      ,

that is, all computers are initially disconnected from each other.

Now, consider the cross-mode matrices. For clarity, these are expressed as

mode 1\times mode 2. The \times symbol stands for “cross,” as in cross-mode. The first

initial cross-mode matrix we discuss is the people–evidence matrix. Its rows are

people in the same order as in the PEP matrix and the columns are evidences

in the same order as the EV I matrix:

PEP \times EV I =

\left(      
0 0 0 0

1 1 1 0

1 0 0 0

\right)      .

This says that Bob has ties to the library, the virus, and his fingerprints. It also

shows that Carol uses the library, but she is unrelated to the fingerprints.
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The next initial cross-mode matrix describes the relationships between the

evidence and computers. The rows correspond to the evidence in the same order

as it is mentioned in EV I and columns correspond to the two library computers

and Carol’s computer:

EV I \times COMP =

\left(         
1 1 0

0 0 0

1 0 0

0 0 0

\right)         
.

This tells us the first two computers are in the library. This also says that Bob’s

fingerprints are on the first library computer. The second row says initially no

computers have any viruses on them. The virus is a dynamic element, not yet

present at the initialization of the simulation.

The cross-mode matrix for the people cross computers is:

PEP \times COMP =

\left(      
0 0 0

0 0 0

0 0 1

\right)      .

This means the third computer is Carol’s computer. Thus, the initial setup is:\left(       
PEP PEP \times EV I PEP \times COMP

PEP \times EV I\intercal EV I EV I \times COMP

PEP \times COMP \intercal EV I \times COMP \intercal COMP

\right)       , (11)
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which expands to \left(                           

1 1 1 0 0 0 0 0 0 0

1 1 0 1 1 1 0 0 0 0

1 0 1 1 0 0 0 0 0 1

0 1 1 1 0 0 0 1 1 0

0 1 0 0 1 0 0 0 0 0

0 1 0 0 0 1 0 1 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 1 0 1 0 1 0 0

0 0 0 1 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 1

\right)                           

. (12)

Now, for simplicity, we only consider dynamics of the computers. We ignore

who logs into Carol’s home computer; we only care if/when it is logged into

and what the current state is when that occurs. Consider two possible interac-

tions: computer 1 connects to computer 2 and computer 2 connects to Carol’s

computer. The first interaction, corresponding to a potential A3,3 event is:

\left(      
1 1 0

0 1 0

0 0 1

\right)      . (13)

The second interaction is captured by:\left(      
1 0 0

0 1 1

0 0 1

\right)      . (14)

Lastly, we let the identity matrix be part of the semigroup algebra, correspond-

ing to nothing happening. Technically, this means our semigroup algebra is

also a monoid. Our monoid contains five possible outcomes: nothing happens,

just (13), just (14), (13) \cdot (14), and (14) \cdot (13). Notice that only (13) \cdot (14),
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interpreted as computer 1 connects to computer 2 followed by computer 2 con-

nects to Carol’s computer, produces a connection from the first computer to

Carol’s computer. If the order of connections is reversed, then Carol’s computer

remains safe. This is because we are modeling short-term/asymmetric connec-

tions. These matrices would be symmetric if we wanted to model persistent

connections.

The above is only sufficient for intra-mode simulation. We still need mapping

matrices to use (8) and (9), to propagate these changes across modes. They may

be deterministic or stochastically selected. In this example, allow there to be

just one mapping matrix:

M2,3(n) =

\left(         
0 0 0

1 0 0

0 0 0

0 0 0

\right)         
. (15)

The rows correspond to the evidence matrix and the columns correspond to the

computers. This means the first computer has is infected by the computer virus.

If the computers go unused, Bob’s virus just sits there. However, interaction

(13) will cause the virus to spread to computer 2. If interaction (14) occurs

first, the virus will remain quiescent.

Likewise, we will need another mapping matrix to describe how interactions

within the computer mode will influence the human mode. Bob, being the

author of the virus, will become associated with the infected computers. This

makes the M1,3(n) matrix:

M1,3(n) =

\left(      
0 0 0

1 0 0

0 0 0

\right)      . (16)

The ground-truth is that Bob becomes associated with the first computer after

he infects it; the rest of the connections will follow.
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4.2. Simulation Results

Using (8) and (9) with A3,3 = (13) \times (14), M2,3(n) described by (15),

and M1,3(n) described by (16), a single temporal update makes the following

changes. COMP , EV I \times COMP , and PEP \times COMP become

COMP (1) =

\left(      
1 1 1

0 1 1

0 0 1

\right)      ,

EV I \times COMP (1) =

\left(         
1 1 0

1 1 1

1 0 0

0 0 0

\right)         
,

and

PEP \times COMP (1) =

\left(      
0 0 0

1 1 1

0 0 1

\right)      .

This makes the ground-truth matrix after the first update (corresponding to

at least two interactions):\left(                           

1 1 1 0 0 0 0 0 0 0

1 1 0 1 1 1 0 1 1 1

1 0 1 1 0 0 0 0 0 1

0 1 1 1 0 0 0 1 1 0

0 1 0 0 1 0 0 1 1 1

0 1 0 0 0 1 0 1 0 0

0 0 0 0 0 0 1 0 0 0

0 1 0 1 1 1 0 1 1 1

0 1 0 1 1 0 0 0 1 1

0 1 1 0 1 0 0 0 0 1

\right)                           

. (17)
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The difference between this matrix and the initial state is:\left(                           

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 1 1

0 1 0 0 1 0 0 0 0 1

0 1 0 0 1 0 0 0 0 0

\right)                           

. (18)

4.3. Analysis

We investigate a few analysis methods here on the initial connection ma-

trix, the evolved connection matrix, and the matrix of changes. This includes

measures of centrality, betweenness, and the modularity technique mentioned in

Melamed et al. [14]. We only analyze the ground-truth matrix to demonstrate

the network structure exists before noise is added and some connections are

masked.

Melamed’s, Breiger’s, and West’s technique produced the following results

shown in Table 1. Initially, with two partitions this technique works well to

isolate Bob, the virus, his fingerprints, and the computer he installed the virus

on. However, the method fails to extract Bob with the virus in the evolved

system. The maximum modularity with three partitions splits Bob, the virus,

his fingerprints, and the computer he installed the virus on into two groups.

Again, the pattern is lost in the evolved connection matrix.

Does this mean there is something wrong with the analysis technique or

something wrong with the simulation? Melamed et al. [14] use Newman’s

definition of expected values [31]; the probability that a connection exists is

equal to the outer product of probabilities that a connection is present for the

row and a connection is present for the column. That is, Newman used the
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Table 1: Partitioning by method in Melamed et al. [14]

Matrix Modularity Entity Partitions

Initial 0.2083
(1) Alice, Carol, library, candy bar, computer 2,

computer 3

(2) Bob, virus, fingerprints, computer 1

Final 0.1429
(1) Carol, library, virus, computer 2, computer 3

(2) Alice, Bob, fingerprints, candy bar, computer 1

Initial 0.1771

(1) Alice, Carol, library, candy bar, computer 2,

computer 3

(2) Bob, virus

(3) fingerprints, computer 1

Final 0.1488

(1) Alice, Bob, fingerprints, candy bar, computer 1

(2) virus, computer 3

(3) Carol, library, computer 2
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null model described by (4). The method depends on sparsity. The evolved

multi-mode network shows Bob has connections to almost everything, ruining

his significance, and subsequently places him in the same group as the candy

bar. Replacing the null model with the uniform model, (3), produces the data in

Table 2. This alternative partitioning works better on this illustrative example,

highlighting Bob, the virus, and the evidence before and after simulation.

Moreover, when we tried the technique described in Melamed et al. [14],

we encountered a problem analyzing the \delta matrix. The evolved state was not

sufficiently different from the original state. This problem was compounded

using Newman’s null model, (4). The independence model produced only zero

eigenvalues (and hence all partitions considered equal). However, using the

uniform null model, (3), produced positive results. These are summarized in

Table 2. The ∆ matrix describes activity. Melamed’s, Breiger’s, and West’s

method, with a uniform null model, when applied to changes in the network,

appears to effectively isolate activity.

The uniform null model makes a lot of sense when analyzing changes in

network connectivity. It follows from the maximum energy principle. It is

robust, working even when the changes in connections form an ultra sparse

matrix. Lastly, empirically, at least on this pilot problem, it appears to work.

The question remains whether the uniform null is appropriate to use in the

absence of temporal data. Investigation of other alternative null models is saved

for future work.

Betweenness metrics are shown in Table 3. Again, the ∆ Matrix (changes

that happened during simulation) highlight Bob, the virus, and the comput-

ers. Notice that compared to the final matrix, the ∆ Matrix shows a larger

betweenness value for the virus and a lower value for Bob. In some regards, this

reflects that stopping Bob and stopping the virus would have similar effects on

the network.

Tables 4, 5 and 6 display the eigenvector, Katz, and degree centrality mea-

sures. Katz centrality measure uses a decay parameter less than or equal to the

inverse of the largest (by magnitude) eigenvalue. Since the largest eigenvalue of
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Table 2: Melamed et al. [14] partitioning with a uniform null model

Matrix Modularity Entities

Initial 0.3924
(1) Bob, library, virus, fingerprints, computer 1,

computer 2

(2) Alice, Carol, candy bar, computer 3

Final 0.3214
(1) Bob, library, virus, fingerprints, computer 1,

computer 2, computer 3

(2) Alice, Carol, candy bar

∆ 0.7083
(1) Bob, virus, computer 1, computer 2,

computer 3

(2) Alice, Carol, library, fingerprints, candy bar

Initial 0.5069

(1) Bob, library, virus, fingerprints, computer 1,

computer 2

(2) candy bar

(3) Alice, Carol, computer 3

Final 0.3690

(1) Bob, library, virus, fingerprints, computer 1,

computer 2, computer 3

(2) candy bar

(3) Alice, Carol

∆ 0.7083

(1) Bob, virus, computer 1, computer 2,

computer 3

(2) candy bar

(3) Alice, Carol, library, fingerprints
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Table 3: Betweenness metric

Entity Betweenness

Initial Matrix Final Matrix ∆ Matrix

Alice 5.333 1.117 0

Bob 24 19.10 1.500

Carol 16.67 2.750 0

Library 28 4.900 0

Virus 0 1.333 1.500

Fingerprints 2.667 0 0

Candy bar 0 0 0

Computer 1 3.333 4.567 0.6667

Computer 2 0 0.9167 0.6667

Computer 3 0 4.317 0.6667

all three matrices is 5.284, limiting the attenuation factor to 0.1892, we exhibit

the Katz centrality with a decay parameter of \alpha = 0.15. In all three metrics,

Bob and the computers become more important in the evolved state. Contrast-

ing these three metrics, only the eigenvector centrality always weights the first

computer (originally infected) more central than Carol’s computer. The other

two metrics swap the emphasis between these computers after the state evolves.

This swap is also present in the ∆ matrix.

Naturally, many more tests could be conducted. De Domenico et al. [34]

discuss centrality in interconnected multilayer networks. This metric will be

investigated in future work.

5. Computational Complexity Analysis

The simulation methodology discussed in Section 3.2 has a computational

complexity bounded by \scrO (t\cdot s2m \cdot st), where sm is the maximum size of all modes,

st is the total size of the multi-mode network, and t is the number of time steps.

The slowest operation is updating the inter-mode matrices. In the worst case
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Table 4: Eigenvector centrality

Entity Eigenvector Centrality

Initial Matrix Final Matrix ∆ Matrix

Alice 0.3207 0.1572 0

Bob 0.4920 0.4997 0.4502

Carol 0.3615 0.1738 0

Library 0.5055 0.3459 0

Virus 0.1849 0.3617 0.4502

Fingerprints 0.2983 0.2263 0

Candy bar 0 0 0

Computer 1 0.3020 0.4700 0.5661

Computer 2 0.1899 0.3382 0.4204

Computer 3 0.1358 0.2416 0.3122

Table 5: Katz centrality, \alpha = 0.15

Entity Katz Centrality

Initial Matrix Final Matrix ∆ Matrix

Alice 1.050 1.951 0

Bob 1.657 5.573 0.8025

Carol 1.293 2.480 0

Library 1.695 3.612 0

Virus 0.6454 3.967 0.8025

Fingerprints 0.9992 2.145 0

Candy bar 0.1765 0.1765 0

Computer 1 1.005 3.582 0.5408

Computer 2 0.6521 3.835 0.7719

Computer 3 0.5811 4.489 1.038
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Table 6: Degree Centrality

Entity Degree Centrality

Initial Matrix Final Matrix ∆ Matrix

Alice 3 3 0

Bob 5 8 3

Carol 4 4 0

Library 5 5 0

Virus 2 5 3

Fingerprints 3 3 0

Candy bar 1 1 0

Computer 1 3 5 2

Computer 2 2 5 3

Computer 3 2 6 4

scenario, each event mapping matrix (sized sk by sm) is multiplied by an sm

by sm matrix. This means updating a single inter-mode matrix is bounded by

s2m \cdot sk. However, this must happen for all modes. Noting that
\sum 

k sk = st, a

single time step takes \scrO (s2m \cdot st). Thus, the run time is bounded by \scrO (t \cdot s2m \cdot st).

6. Conclusions and Future Work

Multi-mode networks extend social, biological, computer, and evidence net-

work. Moreover, multi-mode networks easily capture temporal data with time

slices. However, automated processing of multi-mode networks is still in its

infancy. Before we can even begin to test analysis tools on multi-mode net-

works, we need both data and the ground-truth. While multi-mode data is

becoming more available, it remains scarce. Scarcer still is knowledge of what

actually happened. In an effort to overcome these obstacles, we formulated a

multi-mode simulation framework built upon semigroup network algebras, linear

system theory, and group theory.
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We developed a multi-mode network simulation framework where the ground-

truth can evolve according to a semigroup algebra, but the same methodology

also happens to allow discrete linear systems to evolve, too. In this gen-

eral framework, the output is the ground-truth plus noise and some connec-

tions/evidence are hidden. Due to the similarity between linear system theory

and our multi-mode simulation, it would be interesting to see if control methods

of linear systems may be generalized to at least partially work on multi-mode

networks. This in turn would open up the future study on control of multi-mode

networks.

We tested the technique described in Melamed et al. [14] and found that

a different null model works better on our synthetic data. The uniform null

model allowed us to better partition the active agents in an illustrative example.

Moreover, the uniform null model makes a lot of sense when looking at how

connections change over time due to its empirical efficacy, robustness to ultra

sparse changes, and the fact that it follows from the maximum entropy principle.

It was this kind of test we were hoping synthetic data can aid in future multi-

mode analysis research.

Kivelä and Porter [35] discuss isomorphisms in multilayer networks, across

a variety of network types including temporal networks. This leads to another

interesting extension to our own work. What if we could simulate backward in

time as well as forward in time? The reasons to rewind a network are myriad,

ranging from answering how a network evolved into its current state to rewinding

from a goal/target network to see how easily reachable it is. If the updates

applied the multi-mode network are invertible, then in a probabilistic sense, the

resulting networks are all isomorphisms of each other.
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