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Abstract 
 This paper describes a system developed to assist in 
model-based training of minimally invasive, laparoscopic 
procedures. The key factor motivating the development of 
the device called CAST (Computer-Assisted Surgical 
Trainer) is the need to improve the state-of-the-art in 
teaching laparoscopy, and ultimately achieve better surgical 
outcomes. CAST’s design concept and architecture is 
presented with its major elements that facilitate guided (both 
haptic and visual) execution of tasks, performance 
assessment, and comparative analysis of results. Both 
software and hardware models and implementations are 
given. The system, while currently intended for off-line, 
laboratory use, has an excellent potential for real-time 
assistive functions in the operating room. 
 
1. INTRODUCTION AND MOTIVATION 
 Minimally Invasive Surgery (MIS) is a surgical 
technique involving small incisions performed by an 
endoscope and several long, thin instruments. Due to its 
techniques, the injuries to the tissue are less severe when 
compared to conventional surgery. Recovery is much 
quicker and less painful. However, from a surgeon’s 
perspective, MIS presents more challenges than a standard 
surgery. A surgeon’s operating space is limited and the 
degrees of freedom (DOF) of the instruments are 
constrained. The use of long and rigid instruments limits 
tactile feedback  that surgeons rely on during open surgery. 
Since an endoscope is used to observe the operating field, 
hand-eye coordination becomes an issue as depth perception 
is significantly impeded.  
 The limitations of MIS make it a difficult skill to master 
and perform. Moreover, many issues specific to MIS can 
result in major morbidity or potential mortality. To 
minimize the potential risks and to provide improved 
patients’ safety, much research has been done to help 
surgeons adapt to the MIS environment. The more innate 

visuospatial, perceptual, and psychomotor ability the 
surgeon has, the faster he or she will automate the surgical 
skills. The goal of any surgical training program is to help 
surgeons automate their basic psychomotor skills before 
they operate on a patient [19][20]. It has been shown that 
simulation-based training can enhance surgical MIS 
performance in both speed and error reduction.  
 Over the past decade or so, simulation in healthcare has 
become a burgeoning field. Simulation-based curricula have 
become an integral part of first responder, nursing, and 
physician training. In parallel, major equipment 
manufacturers are developing a range of surgical and other 
simulators. These simulators are intended to provide a 
“close-to-reality” experience in the medical training setting.  
In laparoscopy education, models and simulators range from 
very simple box-like trainers on which the students carry out 
vary basic tasks such as grasping or transferring an object 
from one position to another, to very sophisticated virtual 
reality-based devices that lead the trainee through a 
sequence of tasks required to complete a specific procedure 
(e.g., cholecystectomy) [21][23] 
 Our work fills the “gap” between the simple and highly 
expensive devices. In addition, we provide cognitive aids 
which do not exist in many systems presently marketed. 
More specifically, we have developed a novel platform 
called the Computer Assisted Surgical Trainer (CAST) 
which provides precise assessment, intuitive navigation, and 
haptic as well as visual assistance in the execution of 
surgical tasks. 
 We use a novel adaptive fuzzy inference engine [36] 
real-time performance assessment. The inference engine 
models the judgment criteria used by experienced surgeons 
and provides scalability characteristics in three key aspects: 
integration of new expert opinions; integration of new 
evaluation metrics; and integration of new performance 
data, for the constant improvement of an objective scoring 
system.  
 To assist in learning a task, a turn-by-turn augmented 
reality and haptic-based navigation system has been 
developed as well. By defining the configuration space of 
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the instrument, a collision-free working space can be 
established. Students are guided to follow an optimized path 
(or to avoid “no-fly” areas) and targets by utilizing a 
multimedia display technique.  
 A “smart instrument” that embeds a specially designed 
robot manipulator into the surgical instruments has been 
designed and implemented as an integral part of the system. 
In addition to the multimedia navigation information, force 
and torque can be exerted to the devices through this 
“smart” manipulator when necessary. When the system 
detects a mistake made by the user, the instrument leads the 
trainee back to the optimal task state. This approach not 
only gives the students an enhanced training ability, but it 
also provides a new type of safety guarantee capability for 
future use during the real operating procedure. In summary, 
CAST is the basis of a new training methodology for 
surgeons to enhance the situational awareness beyond 
current approaches. 
 
2. DESIGN CONCEPT AND ARCHITECTURE 
 Our CAST design concept was driven by the need to 
simulate surgical procedures in stages, represent anatomical 
variations and anomalies, permit random introduction of 
unforeseen crises, and to provide haptic and visual 
feedback. The system has methods and tools that track and 
assess trainees’ performance.  
 In [21][22][23][24], we defined three fundamental 
design layers for CAST. The foundation, called the 
Perception Layer embodies physical sensing devices, 
tracking (motion, touch accuracy, etc.) and detection 
algorithms. The key need was to design and implement the 
ability to precisely track the position of surgical instruments 
during a training session. This allows us and the trainees to 
review their performance with respect to a set of metrics 
such as the economy of movement, time, accuracy, direction 
profile, etc. [21][36]. Thus, the second design layer, the 
Comprehension Layer provides a suite of metrics and 
algorithms for performance assessment. In the 
Comprehension Layer, we also developed the ability to 
assess trainees’ performance not only quantitatively but also 
qualitatively. In [36], we presented the knowledge 
elicitation process to model the performance metrics and the 
rules involved in the assessment of minimally invasive 
surgical skills. Our assessment model is based on fuzzy 
logic, so that it is easier to mimic the judgment that is 
already performed by experienced surgeons in qualitative 
terms. An empirical study to validate our approach is 
described in [36].  
 The highest, most complex element of our system is the 
Projection Layer. Here we work on implementing 
knowledge-based reasoning as well as real-time instrument 
guidance.  
 Our design features embedded micro-sensors in the 
instruments employed for simulation training.  

 
Figure 1. Traditional vs. Computer Assisted System. 

The detection and recording of the users’ operation permit 
our system not only to measure a trainee’s progress in 
acquiring psychomotor skills and compare these data to 
normative databases, but also to evaluate instrument 
effectiveness in reducing error. Fig. 1 contrasts the CAST 
System with the traditional approach. In the CAST system, 
the surgeon acts upon the patient or simulator through 
instruments and receives visual and force feedback from the 
CAST both in the operating room and training settings. Our 
approach implements a “hybrid” system in which joint 
optimization of actuation, sensing, and computing is 
performed within a closed loop. 
 

 
Figure 2. CAST Architecture. 
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3. MAJOR ELEMENTS 
CAST’s overall architecture is shown in Figure 2. The two 
main components are the software and  hardware, forming a 
closed loop which generates  force feedback to the user. The 
interaction between the software and the actual physical 
system is done through a guidance module (OptGuide) and 
the US Digital USB4 central processing unit. The overall 
operation of CASTIII as well as all the building blocks of 
the two main components are described in the following 
subsections. 
 
3.1. OptAssessment 
 We performed a knowledge elicitation process to 
formulate expert judgment for the assessment of 
laparoscopic surgical skills. A scoring system based on 
fuzzy logic capable of distinguishing between four 
proficiency levels while providing students with a 
quantitative score was designed. Our design method was 
composed of the following steps: (1) defining a set of 
relevant performance metrics in the assessment of 
laparoscopic surgical skills; (2) eliciting and generating 
membership functions to model performance metrics; (3) 
eliciting a set of production rules to model experts’ 
judgment; and (4) defining a set of proficiency levels to 
categorize subjects. The implemented scoring system named 
OptAssessment can objectively quantify competency in MIS 
skills. 
 

3.1.1. Performance Metrics 
     In [36], we defined five relevant metrics for hand–eye 
coordination tasks which were validated by an experienced 
surgeon: time, movement economy ratio, movement 
direction profile, peak speed width and continuity of 
movement. 
Time: Refers to the total time taken by the trainee to 
perform the task. Movement economy ratio: This metric 
scales the movement track length. The movement economy 
ratio is obtained by dividing the optimal path for performing 
the complete task by the addition of the path drawn by the 
instrument’s tip while passing through the entire task’s 
targets (i.e., all the segments that comprised a task). 
Movement direction profile: quantifies the extent that the 
instrument deviates in moving from target A to target B.  

 
Figure 3.  Movement direction profile quantifies the extent that the 
laparoscopic instrument (dashed line) deviates from an optimal 
path (solid line) in moving from target A to target B. 

Peak speed width: This metric is obtained by dividing the 
speed wave’s peak amplitude by two and calculating the 
ratio of the resulting areas. The peak speed width parameter 
depends on the wave’s horizontal symmetry; waves closer 
to a trapezoidal shape reflect better movement control over 
the instrument than jitter shapes. Therefore, their Peak speed 
width value approaches one. 

 
Figure 4. Speed wave described by moving a laparoscopic 
instrument between two targets. Peak Speed Width is obtained by 
calculating the ratio between two areas (labeled A and B) that 
result from dividing the speed wave's peak amplitude by two. 

Continuity of movement: This metric is calculated by 
eliminating recursively the speed’s graph troughs to obtain a 
modified graph and then calculating the ratio of both areas 
under the curves original speed graph over modified speed 
graph. 

 
Figure 5. The area under the speed wave described by moving a 
laparoscopic instrument between two targets is shown on the left 
side while on the right side a smoother modified speed graphs 
exhibits a more desirable movement. 

3.1.2. Semantic Decomposition and Membership 
Function Generation 

     Each metric was decomposed into four fuzzy terms that 
characterize the performance of the given proficiency level 
as follows: 
-Strong Positive→Expert. -Moderate Positive→Proficient. 
-Weak Positive→Beginner. -Negative→Novice. 
 These fuzzy terms represent the input sets to our 
inference system. We generated membership functions 
consisting of straight segments i.e., triangular and 
trapezoidal, also known as polygonal membership functions. 
Our elicitation method provided us with the transitional 
points where two membership functions intersect at the 
height of 0.5. We used these points to calculate the rest of 
the critical points needed to construct polygonal 
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membership functions according to the following criteria: 
1- We chose a triangular function over a trapezoidal when 
adequate. 
2- We procured vertical symmetry on non-outer 
membership functions. 
3- We satisfied the condition of a partition of unity. 
 The CAST Scoring System is a five input, one output 
Mamdani fuzzy model with 20 rules developed with the 
Matlab Fuzzy Logic Toolbox 2. The inference process is 
performed automatically by MATLAB.  
 In [36], we describe an experiment with a total of 38 
trainees. Subjects were distributed in five groups according 
to their expertise in MIS, 17 non-medical students, 11 
medical students without previous laparoscopic surgery 
training, 5 medical students with some laparoscopic surgery 
training, 4 medical residents and 1 expert surgeon. 
A hand-eye coordination task was performed 8 times by 
each subject. In total 304 samples were used in this study. 
Subjects were asked to use only their dominant hand (left or 
right) to perform each of eight trials. For each subject, four 
trials (odd trials) were used in the system’s knowledge base 
while the other four (even trials) were used for testing 
purposes. 
 

 
Figure 6. Average score plot. Identification numbers were 
assigned to subjects according to their MIS experience. 

3.2. The Optimal Motion Planning Method: OptMIS 
 The optimal motion planning method called optMIS 
generates shortest, collision-free trajectories for 
laparoscopic instrument movements in the rigid block world 
used for hand-eye coordination tasks. The method consists 
of two sequential stages: 
1.  Shortest path planning aimed at generating the path 
between start and target configurations of a laparoscopic 
instrument.  
2.  Time-optimal trajectory planning used to specify a 
time law on shortest paths in order to prevent collisions 
between instruments. 
 

3.2.1. Shortest Path Planning 
     At the first stage, the workspace is represented as a mesh 
of tetrahedrons based on using the proposed Delaunay 
tetrahedralization algorithm [1]. In particular, the algorithm 
decomposes the obstacle space (i.e. concave hull) into the 
union of simplicial complexes (i.e. tetrahedrons). Each 
simplicial complex is defined as a finite collection of indices 
and ordered tuples of vertices. Then, a simplicial complex of 
the free space is obtained by decomposing the overall 
workspace into a mesh of tetrahedrons and subtracting the 
obstacle space from it. In contrast to the methods of alpha 
shapes [2][3], which require defining global or local 
threshold alpha, the proposed approach provides more 
flexibility in modeling complex obstacle spaces and is 
independent of additional parameters. 
 Once the workspace is decomposed, Dijkstra’s algorithm 
[4] is applied to find the shortest continuous channel of 
tetrahedrons between start and target configurations. Since 
Dijkstra's algorithm works on graphs, vertices of a graph are 
represented as centroids of tetrahedrons that correspond to 
the free space. At each iteration, Dijkstra's algorithm picks 
the unvisited vertex (centroid) with the lowest-distance, 
calculates the distance through it to each unvisited neighbor, 
and updates the neighbor’s distance if smaller. This 
algorithm always provides the shortest feasible channel 
without the need to solve more time-consuming k-shortest 
paths problem [5]. 
 Finally, the shortest curves are constructed through the 
data points of the shortest continuous channel. An 
enumerative combinatorics technique is used to evaluate all 
combinations of the data points and find the one that gives 
the minimal length of the curve. The cubic spline 
methodology [6] is utilized to fit third-order polynomials 
between the data points providing that the curve obtained is 
continuous and smooth (i.e., zig-zag” movements of 
laparoscopic instruments are prevented). The obtained 
curves are then used to interpolate the positions of 
instruments within the range of targets as represented in 
Figure 7. 

 
Figure 7. 3D Representation of Planned Path. 
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3.2.2. Time-Optimal Trajectory Planning 
     At the second stage of the OptMIS method, an elitist 
genetic algorithm is applied to find the periods of time when 
the data points of the shortest curves should be reached in 
order to avoid collisions between laparoscopic instruments. 
To achieve this goal, the configurations at which 
laparoscopic instruments intersect are defined first. Second, 
a time value is assigned to each intersection configuration in 
order to prevent collisions between the instruments. 
Final optimal trajectories are displayed on a display monitor 
to provide continuous visual guidance for optimal 
navigation of laparoscopic instruments. 
 
3.3. OptGuide 
 The main role of the OptGuide is to provide haptic 
guidance to a novice trainee [7]. Whenever the instrument 
tip deviates from the optimal trajectory generated by 
OptMIS, OptGuide applies force to guide the user in the 
proper direction. The OptGuide uses the optimal path as a 
reference input and the actual tip position as a measurement 
output. Both the reference position and the actual tip 
position are updated every sampling period. The reference 
position is calculated by the reference generator module 
based on the actual tip position and the optimal path. Also, 
the actual tip position is captured by the encoder unit. 
 

3.3.1. Initial PD Implementation 
     The initial control scheme for all the motors is a PD 
controller [7]. This low level controller is encapsulated in 
the OptGuide class. The controller also ensures that no one 
axis dominates by using type-2 Axis Synchronization [14]. 
This technique consists in adding a fed trough term to adjust 
the gain of each axis based on a coupled-error term 
described in Equation 1 and Equation 2. The result is a 
synchronized gain described in Equation 3 that will guide 
the laparoscopic tool to the desired position in the 3D 
workspace while following a straight line trajectory. 
 

 
Equation 1. Coupled Error Term. 

 
Equation 2. Position Error Vector. 

 
Equation 3. Haptic Guidance Control Equation. 

As a result, the Computer Assisted Surgical Trainer is able 
to guide the trainee along a trajectory using haptic feedback 
with the intention of helping them learn specific surgical 
tasks and rapidly enhance their laparoscopic skills. 
 

3.3.2. Fuzzy Logic Implementation 

 
Figure 8. Overall Block Diagram of OptGuide. 

     OptGuide now uses a Fuzzy Logic Controller (FLC) as a 
main controller. The overall block diagram of OptGuide is 
shown in Figure 8. FLC consists of a fuzzifier, a fuzzy rule 
base, a defuzzifier, and a fuzzy inference engine [8]. The 
inputs of FLC are position error ( )(ke ) between the 
reference position and the estimated position and the 
derivative of the position error ( )(keΔ ). The output of FLC 
is a set value ( )(ky ), used to control a motor [9]. The 
fuzzifier is implemented by using membership functions. 
 The triangular and the trapezoid membership functions 
are used to express the inputs of the system. The singleton 
membership functions are used to express the output of the 
system. Figure 9 illustrates the input and the output 
membership functions. Five fuzzy sets are used for the 
position error and three fuzzy sets are used for the derivative 
of error. We determined these sets and their parameters as 
well as singleton output sets empirically.  
 Once the inputs are fuzzified, the fuzzy logic rules are 
designed to represent the control algorithm. IF-THEN 
statement is used to build the fuzzy rule base. We defined 
fifteen rules for OptGuide and these are shown in Table 1.  

  
Figure 9. The Membership Functions of FLC. 
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Table 1. IF-THEN Rules for OptGuide. 

 
 
The product inference engine is used to combine the fuzzy 
IF-THEN rules. 
 Finally, the defuzzifier produces a non-fuzzy control 
output value based on the fuzzy inference engine. The 
center average method was chosen for the defuzzifier 
because of computational simplicity. This defuzzifier 
method is shown in the equation below. 

 

Equation 4. Defuzzifier Equation. 

There are three FLCs for yaw, pitch, and insertion axes in 
OptGuide.  Each axis has different physical characteristics. 
Therefore, we used different parameters of memberships 
function for each degree of freedom to make the system 
stable and to consider the different characteristics of each 
axis.   
3.4. OptViz 

3.4.1. Motivation: 
     The OptViz module was developed to provide better 
hand eye coordination and depth perception. The operating 
environment is kept similar to standard box trainers, but 
advanced computer graphics are added to enhance visual 
user experience.  

3.4.2. Overview: 
     OptViz is responsible for visualizing the surgical training 
scenario and its optimal path. “Live” data from the camera 
are merged with virtual objects such as the optimal path and 
instrument tip location etc., which is rendered on the screen. 
This module works in two phases: 
1. Camera Calibration to generate optimal path file. 
2. Rendering and visualization of the optimal path. 
The software architecture is illustrated in Figure 10 
followed by a description of the steps involved. 

 
Figure 10. Architechture of OptViz. 

3.4.3. Camera Calibration: 
     Camera calibration is the process of finding intrinsic and 
extrinsic parameters of a camera, thus enabling one to 
obtain the camera matrix [10]. The camera matrix denoted 
by M, finds where a point (x,y,z) in the real world will 
appear on the image. This matrix is made up of the intrinsic 
and extrinsic parameters. The extrinsic parameters of a 
camera include the position and orientation of the camera to 
a known frame. The intrinsic parameters are more specific 
to the camera in use and include focal length, ratio of the 
pixel size, principal point and the angle between axes of the 
image plane [10]. The assumption is that the camera 
observes a set of features including points or lines with 
known positions in a fixed world coordinate system. The 
CAST workspace is used as the calibration rig. 
The steps to calibrate the camera are:  
1. View the calibration object 
2. Identify points of interests (edges, lines etc.) 
3. Obtain camera matrix by minimizing error 
 The camera matrix computation is performed by 
considering the eigenvectors corresponding to minimum 
eigenvalues [10]. When OptViz is fed by the output files 
generated by OptMIS, it will generate the position of those 
coordinates in the camera image. This module provides the 
optimal path file in terms of image world coordinates as the 
output, which is further used in the visualization/augmented 
reality overlay stage. 
 

3.4.4. Visualization 
1. The optimal path generated using the previous step is 
visualized in the CASTIII development environment. In 
order to make the visualization more effective, the following 
visual cues have been used. Points on the optimal path are 
rendered as circles, with radii proportional to their 
normalized Z coordinate values in a range of 2 to 25. 
2. A new camera frame is acquired every 50ms. A 
separate software renderer is used for camera rendering to 
segregate the CASTIII functionality. 
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3. Optimal Path is visualized as a function of the 
percentage of the task completed. This means that as the 
user progresses, he can visually see the points he has 
touched as they turn from grey to green.  
4. The instrument tip position is represented as a blue 
circle, which turns green when the trainee navigates on the 
path. This is an indicator to show that the trainee is moving 
correctly. 
5. Crosshairs on the top corners of the window represent 
the position of the instrument tip in relation to the closest 
point on the optimal path. The spheres within the crosshair 
become smaller if the user moves further along the depth 
plane, and larger if he moves closer. 
These visual cues illustrated in Figure 11 tend to provide 
assistance to the trainee as he navigates on the optimal path 
to complete the training task. 
 

 
Figure 11. Augmented Reality Using Visual Cues. 

4. TECHNICAL REALIZATION 
4.1. General Description 
 The hardware for CAST consists of two fixtures, one 
for the left hand and one for the right hand, both 
symmetrically identical and equipped with electronics, 
sensors and motors for haptic guidance and instrument tip 
position tracking.  
The mechanical platform used in CAST is an aluminum 
fixture composed of a gimbal with two attachments where 
standard laparoscopic instruments can be mounted. As in 
laparoscopic surgery, the gimbal allows four degrees of 
freedom: yaw, pitch, insertion and roll, all centered around 
one single entry point which corresponds to the incision. 
The advantage of this design is that it is polyvalent; 
installing new laparoscopic tools can easily be done, 
permitting a vast variety of applications. 
 

 
Figure 12. 3D Mechanical Design. 

The entire system is cable driven. It provides low backlash, 
low stretch, high flexibility power transmission, with 
smooth, no step motion. Each joint controls one cable with 
pulleys that will drive the corresponding motor and encoder. 
Figure 12 and Figure 13 illustrate the 3D mechanical design 
and the physical system respectively. 
 

 
Figure 13. Physical Right Fixture. 

4.1.1. Position Determination 
     Euler angles [11] are a conventional method to determine 
gimbal position. CAST III uses a similar model by 
measuring the yaw, pitch, insertion, and roll. Euler angles θ 
and ϕ describe yaw and pitch, respectively. Insertion 
determines how deep an instrument moves from the entry 
point; this is essentially scaling a unit vector where θ and ϕ 
provide the direction. Roll determines the tip orientation. 
CAST III uses Cartesian coordinates for its instrument tip 
position. The tip position is defined by a 3-dimensional 
vector composed of: the pitch, the yaw and the insertion 
value. The roll defines the orientation of the tip. The 
equations to determine the pitch, the yaw and the orientation 
from the joint position are given in Equation 5, Equation 6 
and Equation 7. 
 

 
Equation 5 and Equation 6. Pitch and Yaw Position. 
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Equation 7. Orientation of the Laparoscopic Tool. 

Using the center of the gimbal as a local frame of reference, 
we can then compute the Cartesian coordinates of the tip of 
the laparoscopic tool using Equation 8. 
 

 
Equation 8. Cartesian Coordinates of the End Effector. 

Incremental optical encoders measure the four gimbal 
values. Each optical encoder is attached to a rotating shaft 
which connects back to its specific gimbal via several 
pulleys and a cable. These pulleys rotate their specific 
optical encoders giving a scaled value of the gimbal 
position. 
Each shaft has a mount for motors. These provide haptic 
guidance to the user. Four motors are necessary to provide 
haptic guidance for each left and right fixture. These motors 
are attached to the yaw, pitch, roll and insertion axes. 
 
4.2. Hardware Overview 

4.2.1. The Motors 
     The motors selected for haptic are the Maxon RE35 for 
the yaw, insertion and orientation and DCX35L for the pitch 
axis. We use a more powerful motor with a low ratio of 4.3 
for the pitch axis as we need more torque to be able to 
compensate for the gravity and the weight of the 
laparoscopic tool being used. The use of a high ratio 
gearbox with the RE35 motor was impractical as it would 
have increased the friction on the pitch axis, resulting in 
unsmooth movement from the user perspective. 
 

4.2.2. Data Acquisition 
     The USB4 [12] module by US Digital, is the central 
processing unit used to process encoder wheel positions and 
actuate motors. It connects via USB to a PC, which runs the 
CAST III software. The encoders used are the E3-2048-188-
NDDB from US Digital. Each encoder has 2048 counts per 
revolution [13]. In the current configuration, we use the 4x 
quadrature mode resulting in a resolution of 8192counts per 
revolution. 
The servo-amplifier used to control the motors are ADS50/5 
and ESCON50/5 from Maxon Motors. They amplify the 
signal coming from the USB4 module into a power signal 
(-48V to +48V) to drive the motors. 
 

5. CONCLUSION 
 This paper has presented an overview of a design 
and implementation effort to build a low cost, yet 
sophisticated and “smart” surgical trainer to support 
laparoscopy education. Key features that distinguish our 
design are: a) the set of models that are the foundation for 
sensing and tracking (motion, touch accuracy, etc.) and 
detection algorithms. b) a set of complex metrics that allow 
the trainees to review their performance, and c) knowledge-
based reasoning as well as real-time instrument guidance 
techniques. The system prototype is currently in place. In 
order to verify the utility of our platform, an extensive 
evaluation experiment must be designed. We will design a 
series of tests in which we will enroll medical students, 
residents, surgical fellows, and experienced physicians. In 
addition to the metrics defined in [36] and section 3.1.1. we 
will use  parameters such as age, visual acuity, years of 
experience, etc., for in between groups comparisons. These 
studies will be carried out to assess the efficacy of 
computer-based vs. conventional training.  
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