
Cognitive Computing: Principles, Architectures, and Applications

Jerzy W. Rozenblit
Professor and Head

Dept. of Electrical and Computer Engineering
The University of Arizona

Tucson, Arizona 85721-0104, USA
Email: jr@ece.arizona.edu

KEYWORDS
Cognitive computing, agents, high autonomy systems,
simulation-based design

ABSTRACT

 This paper is a summary of the plenary presentation.
The objectives of the presentation are threefold: a) to
discuss conceptual foundations of cognitive computing,
b) to demonstrate their impact on intelligent systems
design, and c) to present a brief summary of relevant
project experiences. An introduction to knowledge-
based and cognitive systems, and the explanation of
their origins and principles are given. Then, an agent
metaphor is introduced as the basis for design of high
autonomy, cognitive architectures. Examples of projects
from both industry and research laboratories that
leverage from the above concepts are discussed. Some
recent work that focuses on decision making in complex,
information rich environments, multi-agent gaming
models, and implementation of symbolic representation
techniques in highly flexible, reusable, object-oriented
visualization systems is presented.

INTRODUCTION AND MOTIVATION

 Cognitive computing is an emerging approach that
builds upon a wealth of research and development work
in Artificial Intelligence (AI). It strives to provide
methods to construct and operate systems that “know
what they are doing” (Brachman 2002). From a
perspective of practicing modelers and systems
engineers, the primary motivation behind adopting
cognitive methods is to better support the design and
deployment of complex, intelligent systems.

 It is also the systems’ complexity that motivates us
strongly to develop new integration techniques that help
achieve high levels of autonomy and intelligence. As
modelers and designers, we are excellent at constructing
system modules and subcomponents. However, we
often falter at the integration of those components not
just in a structural, but also in a functional sense. For
several years now, the Defense Advanced Research
Projects Agency (DARPA) has been driving an effort to
build systems that are able to acquire and accumulate
knowledge, reason, learn, explain themselves, and be
aware of their own behavior (and be robust).

 Clearly, these are very highly sophisticated objectives
and, realistically, there is currently no artificial system
that can exhibit that kind of a complex, integrative
behavior.

 From an engineering perspective, computer-aided
support at the higher design level is urgently needed.
Whereas excellent support exists at lower design levels
— for instance, in circuit, or VLSI design — support
for integrating hardware and software components at
higher system levels is poor. Thus, our desire is to
develop adequate modeling tools that support the
development of complex heterogeneous systems, allow
for reuse of models and modules, and help us in rapid
prototyping.

 In the following sections, we examine how the
cognitive techniques could help us accomplish those
goals. We begin with a discussion of cognitive systems
and their underlying AI paradigms.

COGNITIVE SYSTEMS

 The origins of cognitive systems work lie in cognitive
science — a discipline that brings together researchers
from the fields of psychology, linguistics, philosophy,
computer science, and more recently, neurocomputing.
We perceive “cognitive computing” as an approach that
has emerged from, and attempts to subsume, the work
done in AI. Given the computational power that we
now have at our disposal, we are able to explore
complex cognitive issues paradigms and supplement the
often imprecise methods used in psychology by
rigorous modeling. We can implement a lot of theories
now in a computational mechanism that allows us to
solve these problems computationally, not just
necessarily analytically as has been tackled in the past.
We could thus say that that cognitive systems are
systems that understand, seek to understand how we
perceive, how we think, remember, learn, and form
models.

 If we take a “computational approach”, we can view
cognitive systems in an information-processing context.
More specifically, we might see them as a kind of input,
output, and transition systems. Such systems are well
described by an agent metaphor, i.e., a system that
perceives its environment, processes information, and
takes actions that affect the environment. The classical
definition of an agent stipulates that it be an entity

capable of information processing at various levels of
sophistication and able to affect the world in which it
operates (Russell and Norvig 1995). This general
metaphor is depicted in Figure 1.

An agent could be a robotic machine, a segment of
software, etc. Several examples are given in Table 1.
Agents are typically given specific goals and act in a
purposeful manner. The goals drive the behaviors and
allow us to generate metrics that assess how good these
behaviors are. For instance, in a medical diagnosis
system an agent would be perceiving symptoms,
findings, and data that are gathered through
interviewing the patient. The actions would be more

questions, perhaps a deeper type of investigative
technique, medical tests and treatments. The goal here
would be a successful treatment outcome, that is a
healthy patient with be a normal range of particular test
values. The systems shown in the table can all be called
agents. The question arises as to what degree of
cognitive sophistication they exhibit. While we do not
believe that computer programs or artificial systems
that “know what they are doing” exist, we could argue
that many systems do exhibit “knowledgeable
behaviors”. Thus the question that we want to answer is:
“How can we tell that intelligence has been achieved or
is being exhibited by an artificial system?

Figure 1: Agent Metaphor

Table 1 Examples of Agent Systems (adopted from “Artificial Intelligence: A Modern Approach”, S. Russell and P.
Norvig)

Agent Type Percepts Actions Goals Environment

Medical Diagnosis System Symptoms,
findings,
patient’s
answers

Questions,
tests,
treatments

Healthy patient,
minimize cost

Hospital, patient

Satellite image analysis
system

Pixels of
varying
intensity,
color

Categorization
of scene

Correct
categorization

Image processing
computers/satellites

Part picking robot Pixels of
varying
intensity

Pick parts and
sort into bins

Place parts in
correct bins

Manufacturing system

Reactor controller Temperature,
pressure
readings

Open, close
valves, adjust
pressure,
water temps.

Maximize safety,
power

Reactor

Attributes of Intelligence

 To determine if a machine is intelligent, classically
the Turing test is carried out in which the machine is
called “smart” if its performance cannot be
distinguished from that of a human performing a task.
The fallacy of this approach is that systems can be
programmed that mimic human behavior without
actually exhibiting any cognitive skills. (A good
example was the Eliza system that emulated behaviors
of a psychoanalyst by simply analyzing the syntax of
patients’ complaints (Weizenbaum 1966)).

 Perhaps a broader test for discerning intelligence
would be to ask what are the marks of intelligence. For
instance, we might consider the following as
representative attributes of intelligence.

 We clearly have perception — our desire here is to
build agents that are able to perceive. We perceive, we
are able to recognize, we are able to classify and
abstract certain common properties. We have mental
states, in other words, we are thinking about something.
We have certain beliefs and we could say that we
believe something is true or false. We do learn (and so
do animals). Here, we could argue that what clearly
distinguishes us from other living beings is the ability to
acquire knowledge, ability to improve that knowledge,
and the ability to use it to solve new problems; that is
something that machines do not do well.

 We use language to communicate and disseminate
knowledge in a purposeful way. And last but not least,
we create models and use them to predict consequences
of our actions and to explore our potential choices in an
almost limitless way.

 AI have so far achieved many of the above marks of
intelligence in an isolated form. However, integrating
those abilities in an artificial systems is a formidable
goal. Ultimately this should be the objective behind the
development of innovative cognitive computing
architectures that can accomplish not necessarily the
level of a created genius, but a level of a highly
cognizant intelligent entity.

Tools for Cognitive Systems Design

 A wealth of AI methods and tools exist to assist us in
the design of cognitive systems. In the presentation, we
will examine in detail a number of approaches. The
fundamental areas from which we draw in our practice
are state space-based search and problem solving,
knowledge representation (KR), rule-, and model-based
reasoning, genetic algorithms and co-evolution.

 In “the sciences of artificial” where most of the
engineering systems are conceived and constructed, the
state space approach is a rigorous method that allows us
to represent the underlying problems and to solve them

using efficient (often heuristic) methods. Many of the
computational problems we face lend themselves to the
following paradigm: the system that we build or analyze
can be in a finite number of states. Then, the task at
hand is to transition from an initial state to the goal state.
Thus, solving the problem is to find a trajectory or a
sequence of state transitions that would take the system
to the goal state(s). This is a powerful paradigm, deeply
rooted in the classical control and operations research
problems. Many of these problems exhibit
combinatorial and exponential behaviors with respect to
the number of inputs we work with. AI has been
extremely helpful in finding heuristic techniques that
allow us to solve search problems efficiently.

 Rule-, and model-based reasoning provide a
repository of methods that give us introspection into the
causes and effects when examining systems’ behaviors.
Traditionally, if-then productions (Russell and Norvig
1995) have been employed as a representational
mechanism for encoding condition-action (premise-
conclusion) pairs in expert and knowledge-based
systems. Model-based reasoning allows for a higher
level of cognition in which we built a repository of
models which represent world states. Using such
models (which have dynamic behaviors), we perform
various diagnostic, prediction, and control functions
(Zeigler 1984, Rozenblit 1992).

 We extensively use genetic algorithms (GAs) and co-
evolution (Peng et al. 2003, Suantak et al. 2001) as
optimization tools that quickly generate suboptimal
solutions when the numbers of solution possibilities are
very large. GAs mimic the process of natural evolution
where the fittest members of a population cross-over
their best “genes”, or adapt to environmental changes
by mutating some of their gene sequences. GAs are also
employed in learning – a process essential to building
the agent’s autonomy and its ability to improve how it
determines its actions (Russell and Norvig 1995).

 In our practical experience, we focus mainly on
employing these, and other techniques, to design highly
complex systems. Our design philosophy is firmly
grounded in the simulation modeling enterprise. The
following sections give an overview of our modeling
approach, summarize some practical experiences, and
propose a highly autonomous model-based system
architecture.

MODEL-BASED DESIGN

 In our previous work (Schulz et al. 1998, Rozenblit
2001), we have developed a process that uses stepwise
refinement of simulateable models and abstracts system
components at multiple levels of representation. In this
methodology, a set of requirements and constraints is
obtained for the system to be modeled. The system is
then described as an abstract model that is a

combination of its structural and associated behavioral
specifications.

 Given a set of design objectives, requirements and
constrains, we first build a simulateable model of the
system under design (SUD). Modeling entails the
specification of structure (object model) and behavior
(dynamics). Object modeling (i.e., model structuring)
typically leads to a specification of a structure instance.
This is commonly done in a graphical language such as
the Unified Modeling Language (UML), which has
become a de facto tool for object modeling. However,
rather than generating a single instance of an object
model, we advocate the development of a generative
object representation that underlies the entire family of
possible design configurations for a problem domain at
hand. Indeed, UML allows us to capture the multiplicity
of design views and taxonomies (specializations) of
components through its decomposition and
specialization relationships. An enormous variety of
decompositions and specializations in large scale
systems leads to a combinatorial explosion of design
choices. To harness this complexity, procedures are
needed that prune out instances of design which best fit
design objectives and requirements. Thus, we use
heuristic search methods that convert design
requirements into selection (for choices from among
alternatives offered by taxonomic relationships) and
synthesis (for aggregations from among decompositions)
into production rules. Then, we search design spaces
for best alternatives. The outcome of the search is a set
of sub-optimal instances of design object models
(Rozenblit and Huang 1991).

 The dynamics (behavior) of model components is
specified using various modeling formalisms such as
the discrete event system specification (DEVS) (Zeigler
1984), finite state machines, Petri nets, etc. The choice
of the specification formalism is based on the system’s
domain. Both the structural and behavioral
specifications constitute a virtual representation of the
system under design (SUD). This is a “design
blueprint” from which a system will be realized. Model
components remain implementation and realization (i.e.,
hardware or software) independent.

 We verify correctness of models through computer
simulation. A simulation test setup is called an
experimental frame (Zeigler 1984). It is associated with
the system’s model during simulation. A frame
specifies conditions under which the model of the
system is observed. Simulation is then executed
according to the run conditions prescribed by the frames.
At the end of the simulation process the “best”
(polyoptimal) virtual system prototype is obtained. The
design is then partitioned into hardware, software and
corresponding interfaces using a process that we call
model mapping (Schulz et al. 1998). We have applied

this framework to design a variety of highly
autonomous systems by combining the above
simulation modeling principles with the tenets of AI
and cognitive systems. Examples are given below.

Some Practical Experiences

Our laboratory conducts research in systems design and
analysis, engineering of complex systems, and software
engineering. Detailed principles for designing such
systems will be shown including a testing methodology
that ensures conformance to project’s requirements. In
the presentation we will show several instances of
complex systems. Examples will include a unified
sensing system model in which configuration,
management, and tracking algorithms are implemented
over a wireless, multi-sensor network (Vaidya et al.
2005), and a large scale object-oriented system for
decision making in complex, information rich situations
(such as military, peacekeeping, or disaster relief
operations).

 The purpose of this latter work is to provide
visualization capabilities to decision makers using
advanced computer technology that symbolically
abstracts the most important features of the information
space. The technology facilitates rapid creation of
tailored, low resolution, high semantic content
visualizations of complex operations. Recent extensions
(Peng et al. 2003) include a hybrid software/hardware
that builds on the symbolic, object-oriented
visualization software.

TOWARDS A COGNITIVE, HIGH AUTONOMY
ARCHITECTURE

 We postulate that simulation modeling could play the
key role in designing highly autonomous, cognitive
architectures. High autonomy, defined here as the
ability to function with little or no intervention from the
“operator”, is a mark of cognitive sophistication.

 The postulated architecture shown in Figure 2 consists
of three major elements: a) the executive layer that
comprises the planner and simulation, b) the
coordination layer that includes the diagnoser, model
base, monitor, and executor, and c) the execution layer
that acts upon the real world through the effector, and
collects observables through the perceptor.

 The planner’s function is to generate nominal action
plans, given a task or mission description and the world
states obtained from the models which reside in the
model base. The simulator provides model-based

Simulator

Planner

Diagnoser

Executor

Monitor Perceptor

Real
World

Effector

Model Base

Expectations

Actualities

Anomalies

Nominal Plan Commands

Observations

State Changes

Observables

Nominal Plan

Re-plan Order

World State

World State

State Updates

Figure 2: High Autonomy Cognitive Architecture

expectations that are compared with the actual
observables in the monitor. Any discrepancies are
reported to the diagnoser which, in turn, orders
replanning directives.

Increasing levels of autonomy could be defined as: a)
the ability of the system to achieve its objectives, b) the
ability to adapt to environmental changes, and c) the
ability to develop its own objectives. We believe that
the model-based approach allows for building such
functionality into the architecture presented above
(perhaps with the exception of item c.).

CLOSING REMARKS

The notion of cognitive systems and computing is not
new. Well established AI-based methods have existed
for several decades. However, to a large extent AI has
not delivered an integrative capability to build complex
systems that combine many of the intelligent features
found in isolation in simpler components. We postulate
that a simulation modeling approach to design of highly
intelligent, autonomous computing architectures is a
powerful tool in accomplishing this integration at both
structural and functional levels.

ACKNOWLEDGMENT

I am grateful to Ms. Rozanne Canizales and Mr.
Jeffrey Peng for their assistance in editing this
manuscript.

RERERENCES

Brachman, R.J. 2002. “Systems that know what they're
doing”. IEEE Intelligent Systems and Their

Applications, 17(6) 67 – 71.

Cunning, S.J. 2000. “Automating Test Generation for
Discrete Event Oriented Real-Time Embedded
Systems.” PhD Dissertation, The University of Arizona.

Peng, J., Rozenblit, J.W. and L. Suantak. 2003. “A
Hybrid Architecture for Visualization and Decision
Making in Battlespace Environments”, The Tenth IEEE
Conference on Engineering of Computer-Based Systems,
207-213.

Rozenblit, J.W., 1992. “Design for Autonomy: An
Overview”, Applied Artificial Intelligence, 6(1), 1-18.

Rozenblit, J.W. and Y.M. Huang. 1991. “Rule-Based
Generation of Model Structures in Multifacetted
Modeling and System Design,” ORSA Journal on
Computing, 3(4), 330-344.

Rozenblit, J.W. 2001. “Systems Design: A Simulation-
Based Modeling Framework.” In Discrete Event
Modeling and Simulation: A Tapestry of Systems and
AI-based Theories and Methodologies. (Eds. F. Cellier
and H. Sarjoughian), Springer Verlag, 107-127.

Russell, S. and P. Norvig. 1995. “Artificial Intelligence:
A Modern Approach”. Prentice-Hall.

Schulz, S., Rozenblit, J.W., Mrva, M. and K.
Buchenrieder. 1998. “Model-Based Codesign.” IEEE
Computer, 32(8), 60-68.

Suantak, L., Momen, F., Rozenblit, J.W., Barnes, M.
and T. Fichtl. 2001. “Intelligent Decision Support of
Support and Stability Operations (SASO) through
Symbolic Visualization.” In Proceedings of the 2001
IEEE International Conference on Systems, Man, and

Cybernetics, 2927-2931.

Vaidya, D and J. Peng, L. Yang, J. W. Rozenblit. 2005.
“A Framework for Sensor Management in Wireless and
Heterogeneous Sensor Network.” In Proc. of the 12th
IEEE International Conference and Workshops on the
Engineering of Computer-Based Systems (ECBS'05),
155-162.

Weizenbaum, J. 1966. “ELIZA--A Computer Program
For the Study of Natural Language Communication
Between Man and Machine.” CACM 9(1), 36-45.

Zeigler, B.P. 1984. “Multifacetted Modeling and
Discrete Event Simulation.” Academic Press, 1984.

BIOGRAPHY

JERZY W. ROZENBLIT is Professor and Head of the
Electrical and Computer Engineering at The University
of Arizona, Tucson. He holds the PhD and MS degrees
in Computer Science from Wayne State University,

Michigan and the MSc in Computer Engineering from
the Technical University of Wroclaw, Poland. His
research and teaching are in the areas of complex
systems design and simulation modeling. His research
in design has been supported by the National Science
Foundation, Siemens AG, Semiconductor Research
Corporation, McDonnell Douglas, and the US Army
Research Laboratories.

 Dr. Rozenblit serves as Associate Editor of ACM
Transactions on Modeling and Computer Simulation,
Associate Editor of IEEE Transactions on Systems,
Man and Cybernetics, and Executive Board Member of
IEEE Technical Committee on Engineering of
Computer Based Systems. He was Fulbright Senior
Scholar and Visiting Professor at the Institute of
Systems Science, Johannes Kepler University, Austria
and has held visiting professorship appointments at the
Technical University of Munich, Central Research
Laboratories of Siemens AG, and Infineon
Technologies AG, in Munich. His e-mail is
<jr@ece.arizona.edu>.

	c0: Proceedings 19th European Conference on Modelling and Simulation
Yuri Merkuryev, Richard Zobel, Eugène Kerckhoffs © ECMS, 2005
ISBN 1-84233-112-4 (Set) / ISBN 1-84233-113-2 (CD)

