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ABSTRACT 

   This paper is a summary of the plenary presentation. 
The objectives of the presentation are threefold:  a) to 
discuss conceptual foundations of cognitive computing,  
b) to demonstrate their impact on intelligent systems 
design, and c) to present a brief summary of relevant 
project experiences. An introduction to knowledge-
based and cognitive systems, and the explanation of 
their origins and principles are given. Then, an agent 
metaphor is introduced as the basis for design of high 
autonomy, cognitive architectures. Examples of projects 
from both industry and research laboratories that 
leverage from the above concepts are discussed. Some 
recent work that focuses on decision making in complex, 
information rich environments, multi-agent gaming 
models, and implementation of symbolic representation 
techniques in highly flexible, reusable, object-oriented 
visualization systems is presented.  

INTRODUCTION AND MOTIVATION 

   Cognitive computing is an emerging approach that 
builds upon a wealth of research and development work 
in Artificial Intelligence (AI). It strives to provide 
methods to construct and operate systems that “know 
what they are doing” (Brachman 2002). From a 
perspective of practicing modelers and systems 
engineers, the primary motivation behind adopting 
cognitive methods is to better support the design and 
deployment of complex, intelligent systems.  

   It is also the systems’ complexity that motivates us 
strongly to develop new integration techniques that help 
achieve high levels of autonomy and intelligence.  As 
modelers and designers, we are excellent at constructing 
system modules and subcomponents. However, we 
often falter at the integration of those components not 
just in a structural, but also in a functional sense. For 
several years now, the Defense Advanced Research 
Projects Agency (DARPA) has been driving an effort to 
build systems that are able to acquire and accumulate 
knowledge, reason, learn, explain themselves, and be 
aware of their own behavior (and be robust).   

   Clearly, these are very highly sophisticated objectives 
and, realistically, there is currently no artificial system 
that can exhibit that kind of a complex, integrative 
behavior.   

   From an engineering perspective, computer-aided 
support at the higher design level is urgently needed. 
Whereas excellent support exists at lower design levels 
— for instance, in circuit, or VLSI design — support 
for integrating hardware and software components at 
higher system levels is poor. Thus, our desire is to 
develop adequate modeling tools that support the 
development of complex heterogeneous systems, allow 
for reuse of models and modules, and help us in rapid 
prototyping.  

   In the following sections, we examine how the 
cognitive techniques could help us accomplish those 
goals. We begin with a discussion of cognitive systems 
and their underlying AI paradigms.  

COGNITIVE SYSTEMS 

   The origins of cognitive systems work lie in cognitive 
science — a discipline that brings together researchers 
from the fields of psychology, linguistics, philosophy, 
computer science, and more recently, neurocomputing.  
We perceive “cognitive computing” as an approach that 
has emerged from, and attempts to subsume, the work 
done in AI.   Given the computational power that we 
now have at our disposal, we are able to explore 
complex cognitive issues paradigms and supplement the 
often imprecise methods used in psychology by 
rigorous modeling.  We can implement a lot of theories 
now in a computational mechanism that allows us to 
solve these problems computationally, not just 
necessarily analytically as has been tackled in the past. 
We could thus say that that cognitive systems are 
systems that understand, seek to understand how we 
perceive, how we think, remember, learn, and form 
models.   

   If we take a “computational approach”, we can view 
cognitive systems in an information-processing context. 
More specifically, we might see them as a kind of  input, 
output, and transition systems. Such systems are well 
described by an agent metaphor, i.e., a system that 
perceives its environment, processes information, and 
takes actions that affect the environment. The classical 
definition of an agent stipulates that it be an entity 



capable of information processing at various levels of
sophistication and able to affect the world in which it 
operates (Russell and Norvig 1995). This general
metaphor is depicted in Figure 1.

An agent could be a robotic machine, a segment of 
software, etc.  Several examples are given in Table 1.
Agents are typically given specific goals and act in a
purposeful manner. The goals drive the behaviors and
allow us to generate metrics that assess how good these
behaviors are. For instance, in a medical diagnosis 
system an agent would be perceiving symptoms,
findings, and data that are gathered through 
interviewing the patient. The actions would be more

questions, perhaps a deeper type of investigative
technique, medical tests and treatments. The goal here
would be a successful treatment outcome, that is a
healthy patient with be a normal range of particular test
values. The systems shown in the table can all be called
agents. The question arises as to what degree of
cognitive sophistication they exhibit.  While we do not
believe that computer programs or artificial systems
that “know what they are doing” exist, we could argue
that many systems do exhibit “knowledgeable
behaviors”. Thus the question that we want to answer is:
“How can we tell that intelligence has been achieved or
is being exhibited by an artificial system?

Figure 1: Agent Metaphor

Table 1 Examples of Agent Systems (adopted from “Artificial Intelligence: A Modern Approach”, S. Russell and P. 
Norvig)

Agent Type Percepts Actions Goals Environment

Medical Diagnosis System Symptoms,
findings,
patient’s
answers

Questions,
tests,
treatments

Healthy patient,
minimize cost 

Hospital, patient

Satellite image analysis
system

Pixels of 
varying
intensity,
color

Categorization
of scene 

Correct
categorization

Image processing
computers/satellites

Part picking robot Pixels of 
varying
intensity

Pick parts and
sort into bins

Place parts in 
correct bins

Manufacturing system

Reactor controller Temperature,
pressure
readings

Open, close
valves, adjust
pressure,
water temps.

Maximize safety, 
power

Reactor



Attributes of Intelligence 

   To determine if a machine is intelligent, classically  
the Turing test is carried out in which the machine is   
called “smart” if its performance cannot be 
distinguished from that of a human performing a task. 
The fallacy of this approach is that systems can be 
programmed that mimic human behavior without 
actually exhibiting any cognitive skills. (A good 
example was the Eliza system that emulated behaviors 
of a psychoanalyst by simply analyzing the  syntax of 
patients’ complaints (Weizenbaum 1966)).  

   Perhaps a broader test for discerning intelligence 
would be to ask what are the marks of intelligence.   For 
instance, we might consider the following as 
representative attributes of intelligence.  

   We clearly have perception — our desire here is to 
build agents that are able to perceive. We perceive, we 
are able to recognize, we are able to classify and  
abstract certain common properties.  We have mental 
states, in other words, we are thinking about something.  
We have certain beliefs and we could say that we 
believe something is true or false.  We do learn (and so 
do animals). Here, we could argue that what clearly 
distinguishes us from other living beings is the ability to 
acquire knowledge, ability to improve that knowledge, 
and the ability to use it to solve new problems; that is 
something that machines do not do well.    

   We use language to communicate and disseminate 
knowledge in a purposeful way.  And last but not least, 
we create models and use them to predict consequences 
of our actions and to explore our potential choices in an 
almost limitless way.   

   AI have so far achieved many of the above marks of 
intelligence in an isolated form. However, integrating 
those abilities in an artificial systems is a formidable 
goal. Ultimately this should be the objective behind the 
development of innovative cognitive computing 
architectures that can accomplish not necessarily the 
level of a created genius, but a level of a highly 
cognizant intelligent entity.  

Tools for Cognitive Systems Design 

   A wealth of AI methods and tools exist to assist us in 
the design of cognitive systems. In the presentation, we 
will examine in detail a number of approaches. The 
fundamental areas from which we draw in our practice 
are state space-based search and problem solving, 
knowledge representation (KR), rule-, and model-based 
reasoning, genetic algorithms and co-evolution.   

   In “the sciences of artificial” where most of the 
engineering systems are conceived and constructed, the 
state space approach is a rigorous method that allows us 
to represent the underlying problems and to solve them 

using efficient (often heuristic) methods. Many of the 
computational problems we face lend themselves to the 
following paradigm: the system that we build or analyze 
can be in a finite number of states. Then, the task at 
hand is to transition from an initial state to the goal state.  
Thus, solving the problem is to find a trajectory or a 
sequence of state transitions that would take the system 
to the goal state(s).  This is a powerful paradigm, deeply 
rooted in the classical control and operations research 
problems. Many of these problems exhibit 
combinatorial and exponential behaviors with respect to 
the number of inputs we work with.  AI has been 
extremely helpful in finding heuristic techniques that 
allow us to solve search problems efficiently.  

   Rule-, and model-based reasoning provide a 
repository of methods that give us introspection into the 
causes and effects when examining systems’ behaviors. 
Traditionally, if-then productions (Russell and Norvig 
1995) have been employed as a representational 
mechanism for encoding condition-action (premise-
conclusion) pairs in expert and knowledge-based 
systems. Model-based reasoning allows for a higher 
level of cognition in which we built a repository of 
models which represent world states. Using such 
models (which have dynamic behaviors), we perform 
various diagnostic, prediction, and control functions 
(Zeigler 1984, Rozenblit 1992). 

   We extensively use genetic algorithms (GAs) and co-
evolution (Peng et al. 2003, Suantak et al. 2001) as 
optimization tools that quickly generate suboptimal 
solutions when the numbers of solution possibilities are 
very large. GAs mimic the process of natural evolution 
where the fittest members of a population cross-over 
their best “genes”, or adapt to environmental changes 
by mutating some of their gene sequences. GAs are also 
employed in learning – a process essential to building 
the agent’s autonomy and its ability to improve how it 
determines its actions (Russell and Norvig 1995).  

    In our practical experience, we focus mainly on 
employing these, and other techniques, to design highly 
complex systems. Our design philosophy is firmly 
grounded in the simulation modeling enterprise. The 
following sections give an overview of our modeling 
approach, summarize some practical experiences, and 
propose a highly autonomous model-based system 
architecture.

MODEL-BASED DESIGN 

   In our previous work (Schulz et al. 1998, Rozenblit 
2001), we have developed a process that uses stepwise 
refinement of simulateable models and abstracts system 
components at multiple levels of representation.  In this 
methodology, a set of requirements and constraints is 
obtained for the system to be modeled.  The system is 
then described as an abstract model that is a 



combination of its structural and associated behavioral 
specifications.

   Given a set of design objectives, requirements and 
constrains, we first build a simulateable model of the 
system under design (SUD). Modeling entails the 
specification of structure (object model) and behavior 
(dynamics). Object modeling (i.e., model structuring) 
typically leads to a specification of a structure instance. 
This is commonly done in a graphical language such as 
the Unified Modeling Language (UML), which has 
become a de facto tool for object modeling. However, 
rather than generating a single instance of an object 
model, we advocate the development of a generative 
object representation that underlies the entire family of 
possible design configurations for a problem domain at 
hand. Indeed, UML allows us to capture the multiplicity 
of design views and taxonomies (specializations) of 
components through its decomposition and 
specialization relationships. An enormous variety of 
decompositions and specializations in large scale 
systems leads to a combinatorial explosion of design 
choices. To harness this complexity, procedures are 
needed that prune out instances of design which best fit 
design objectives and requirements. Thus, we use 
heuristic search methods that convert design 
requirements into selection (for choices from among 
alternatives offered by taxonomic relationships) and 
synthesis (for aggregations from among decompositions) 
into production rules.  Then, we search design spaces 
for best alternatives. The outcome of the search is a set 
of sub-optimal instances of design object models 
(Rozenblit and Huang 1991). 

   The dynamics (behavior) of model components is 
specified using various modeling formalisms such as 
the discrete event system specification (DEVS) (Zeigler 
1984), finite state machines, Petri nets, etc. The choice 
of the specification formalism is based on the system’s 
domain. Both the structural and behavioral 
specifications constitute a virtual representation of the 
system under design (SUD). This is a “design 
blueprint” from which a system will be realized. Model 
components remain implementation and realization (i.e., 
hardware or software) independent.  

   We verify correctness of models through computer 
simulation.  A simulation test setup is called an 
experimental frame (Zeigler 1984).  It is associated with 
the system’s model during simulation.  A frame 
specifies conditions under which the model of the 
system is observed.  Simulation is then executed 
according to the run conditions prescribed by the frames.  
At the end of the simulation process the “best” 
(polyoptimal) virtual system prototype is obtained.  The 
design is then partitioned into hardware, software and 
corresponding interfaces using a process that we call 
model mapping (Schulz et al. 1998). We have applied 

this framework to design a variety of highly 
autonomous systems by combining the above 
simulation modeling principles with the tenets of AI 
and cognitive systems.  Examples are given below.

Some Practical Experiences 

Our laboratory conducts research in systems design and 
analysis, engineering of complex systems, and software 
engineering.  Detailed principles for designing such 
systems will be shown including a testing methodology 
that ensures conformance to project’s requirements. In 
the presentation we will show several instances of 
complex systems. Examples will include a unified 
sensing system model in which configuration, 
management, and tracking algorithms are implemented 
over a wireless, multi-sensor network (Vaidya et al. 
2005), and a large scale object-oriented system for 
decision making in complex, information rich situations 
(such as military, peacekeeping, or disaster relief 
operations).  

   The purpose of this latter work is to provide 
visualization capabilities to decision makers using 
advanced computer technology that symbolically 
abstracts the most important features of the information 
space. The technology facilitates rapid creation of 
tailored, low resolution, high semantic content 
visualizations of complex operations. Recent extensions 
(Peng et al. 2003) include a hybrid software/hardware 
that builds on the symbolic, object-oriented 
visualization software.  

TOWARDS A COGNITIVE, HIGH AUTONOMY 
ARCHITECTURE 

   We postulate that simulation modeling could play the 
key role in designing highly autonomous, cognitive 
architectures. High autonomy, defined here as the 
ability to function with little or no intervention from the 
“operator”, is a mark of cognitive sophistication.   

   The postulated architecture shown in Figure 2 consists 
of three major elements: a) the executive layer that 
comprises the planner and simulation, b) the 
coordination layer that includes the diagnoser, model 
base, monitor, and executor, and c) the execution layer 
that acts upon the real world through the effector, and 
collects observables through the perceptor.  

   The planner’s function is to generate nominal action 
plans, given a task or mission description and the world 
states obtained from the models which reside in the 
model base. The simulator provides model-based  
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Figure 2: High Autonomy Cognitive Architecture

expectations that are compared with the actual 
observables in the monitor. Any discrepancies are
reported to the diagnoser which, in turn, orders
replanning directives.

Increasing levels of autonomy could be defined as: a)
the ability of the system to achieve its objectives, b) the
ability to adapt to environmental changes, and c) the
ability to develop its own objectives. We believe that
the model-based approach allows for building such
functionality into the architecture presented above
(perhaps with the exception of item c.).

CLOSING REMARKS

The notion of cognitive systems and computing is not
new. Well established AI-based methods have existed
for several decades. However, to a large extent AI has
not delivered an integrative capability to build complex
systems that combine many of the intelligent features
found in isolation in simpler components. We postulate
that a simulation modeling approach to design of highly
intelligent, autonomous computing architectures is a 
powerful tool in accomplishing this integration at both 
structural and functional levels.
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