
126 Computer

In
te

g
ra

te
d

E
n

g
in

e
e

ri
n

g

Our objective is to provide a forum for
sharing problems, experiences, and solu-
tions that can help establish bridges
among hardware engineers, software engi-
neers, systems engineers, and project man-
agers. To this end, we plan to present
articles encompassing a broad spectrum
of applications (both large and small) and
application domains. We will seek to pub-
licize innovative solutions and engineer-
ing methodologies that address

• complexity,
• model-based engineering (as exempli-

fied by hardware/software codesign),
and

• process management.

We believe these three areas are critical to
advancing the successful, integrated engi-
neering of computer-based systems.

COMPLEXITY
Complex systems design—formulated

as the process of translating requirements
into an actual product—belongs to the
class of computationally hard problems.
It is highly unlikely we will ever devise an
algorithm that can design a complex sys-
tem better than a human can. Whereas
subsets of the design process—layout,
routing, and interface checking, for exam-

C
omputer-based systems—systems
whose behavior is primarily com-
puter-controlled—are everywhere.
They run the gamut from low-
complexity, embedded cruise-

control units to the very complex avionics
systems. Yet these heterogeneous systems
have some characteristics in common:
They combine application-specific and
off-the-shelf software, hardware, and
interface elements, each of which can have
varying degrees of structural, functional,
and behavioral complexity.

Given the tendency of computer-based
systems to grow ever more complex, there
is a recognized need for new ways to man-
age that complexity.

Traditional engineering practice, which
has evolved through experience, is to
develop a system’s architecture, hardware,
and software as separate entities. But this
approach has led to cost and schedule over-
runs, as well as to systems that do not per-
form as intended. Today it is increasingly
important that a system’s hardware, soft-
ware, interfaces, and related functions be
developed synergistically—with an under-
standing that every system element will
influence other elements. It is this need for a
systematic, integrated engineering approach
that caused us to accept the challenge of
developing this department in Computer.

Toward
Synergistic

Engineering of
Computer Systems

Jerzy W. Rozenblit, University of Arizona
Sanjaya Kumar, Honeywell Technology Center

Editors: Jerzy W. Rozenblit, University of Arizona, ECE 320E,Tucson, AZ 85721; jr@ece.arizona.edu; and Sanjaya Kumar, Honeywell Technology
Center, MS MN65-2200, 3660 Technology Dr., Minneapolis, Minnesota 55418; skumar@htc.honeywell.com

ple—can be done by electronic design
automation tools, no design tool could
automatically create an entire avionics
system or a massively parallel computer.

System design and development is both
an art and science—it requires original solu-
tions, not fixed algorithms. Key to the
process are individual creativity and the
perception of customer needs. Thus we
should focus on the “human in the loop”
when addressing the complexity of both the
engineering process and its product.

Clearly, products are created by a
process. Yet process is often driven by
product—by a product’s underlying struc-
ture and functionality. This sometimes
ambiguous relationship between process
and product requires further research. We
must continue to explore knowledge-rep-
resentation and process-management tech-
niques.

The tripartite representation of systems
through object, functional, and behavioral
models is becoming a de facto standard in
the complex-systems design community.
Similar strides are being made to develop
reliable process-modeling techniques.

However, we still lack an operational
means of handling the combinatorial com-
plexity of the underlying design space and
its search processes. We may accomplish
this in the future with better modeling and
simulation-based techniques.

MODEL-BASED ENGINEERING
Current practice dictates the separation

of the hardware and software develop-
ment paths early in the design cycle, with
very little interaction between them until
system integration. Because integration
occurs late in the process, any problems
encountered are costly. For example, the
premature selection of unacceptably slow
processors may require that the software
attempt to correct the inadequacy.
Conversely, poor software performance
may necessitate the development of spe-
cial-purpose hardware.

System design and
development is both

an art and science—it
requires original solutions,

not fixed algorithms.

.

February 1997 127

such as chemical and civil engineering have
established engineering foundations and
principles. But even in these disciplines,
methodological problems and errors can
occur as processes and projects become
more complex. They may stem from
attempts to solve imprecisely stated prob-
lems or from improper or inadequate use
of existing technologies. Most often, how-
ever, they result from the lack of an under-
lying engineering process methodology
and personnel specifically trained to man-
age this process.

This problem is especially acute in the
engineering of complex computer-based
systems. Factors contributing to the com-
plexity of the engineering process are the
multitude of different principles, tech-
niques, methods, and tools employed by
designers and engineers, and the relent-
less introduction of new technologies
that must be harnessed to support the
management of such processes—for
example, high-speed computer networks,
standard data exchange formats, and
multimedia.

However, these new technologies can
facilitate a positive change in the work
style and team approaches, as demon-
strated by the new paradigms of collabo-
rative, distributed design techniques. We
will seek to show how new approaches can
harness the available technology to han-
dle the complexity of large-scale projects;
to better support concurrent, collabora-
tive, and distributed development of sys-
tems; and to automate or partly automate
routine engineering activities. We will go

beyond traditional approaches stemming
from the operations research and com-
puter science disciplines that represent,
plan, and optimize project engineering. We
will focus on a new paradigm, process
modeling, and examine how it can be
extended from the software domain to
integrated engineering.

We feel that process modeling

• adequately captures multiperson
design activities with a high degree of
cooperation, distribution, and coor-
dination of various tasks;

• reflects a computer-based systems
development process that is evolu-
tionary in nature; and

• provides a means to rapidly accom-
modate new design paradigms as new
technologies emerge.

In the next five columns, we will be look-
ing at these issues in greater detail. We
will seek representation from researchers

and practitioners from a broad spectrum
who possess the expertise needed to build
complex heterogeneous systems. We wel-
come your participation. ❖

Jerzy W. Rozenblit is an associate profes-
sor in the Department of Electrical and
Computer Engineering at the University
of Arizona.

Sanjaya Kumar is a senior research scien-
tist at the Honeywell Technology Center.

Hardware/software codesign attempts
to integrate the hardware and software
development paths, providing a more
synergistic approach to system design.
Using a codesign environment, engineers
can determine the best mixture of hard-
ware and software within a particular
system.

Ideally, an integrated codesign environ-
ment supports hardware/software evalua-
tion throughout the development process
using models with various levels of detail.
Appropriate abstractions are crucial.
Abstractions let us focus on aspects of
interest and thus manage complexity.
More detailed descriptions of critical por-
tions of the system let us assess risk. Using
models, we can analyze the consequences
of different design decisions within the sys-
tem as a whole, gradually refining the sys-
tem description into a hardware/software
implementation—an idea called model
continuity. Model continuity allows for
the continuous and incremental evaluation
of the system. Important issues include
determining the amount of detail required
within a model to obtain “reasonable”
results and supporting hardware/software
modeling at different levels of detail.

We advocate tools and techniques that
foster the integration of the hardware and
software perspectives. An important means
of achieving this integration is through uni-
fied representations. Unified representa-
tions can be used to model a system
independent of its implementation in hard-
ware or software, or to model both hard-
ware and software for combined
evaluation. A number of modeling repre-
sentations and formalisms have been pro-
posed in the literature and applied to
computer-based systems. They include
dataflow diagrams, finite state machines,
Petri nets, specialized algebras, and object-
oriented representations.

Our position is that these formal specifi-
cation techniques have limited utility with-
out a systematic modeling methodology to
guide their use. We will seek to present such
modeling methodologies in this depart-
ment, focusing on integrated design envi-
ronments that use unified representations.

PROCESS MANAGEMENT
It is very important to capture the engi-

neering process, its formalization, and its
management. Well-structured domains

For More Information
Blanchard, B., Engineering Organization and Management, Prentice Hall, Old Tappen,

N.J., 1976.
Chapman, W.L., J.W. Rozenblit, and T. Bahill, “Complexity of the System Design

Problem,” Proc. 1995 IEEE Symp. and Workshop Systems Engineering of
Computer Based Systems, CS Press, Los Alamitos, Calif., 1995, pp. 51-57.

Curtis, B., M. Kellner, and J. Over, “Process Modeling,” Comm. ACM, 35(9), 1992,
pp. 75-90.

Franke, D.W., and M.K. Purvis, “Hardware/Software Codesign: A Perspective,” Proc.
13th Int’l Conf. Software Eng., IEEE CS Press, Los Alamitos, Calif, 1991, pp. 344-352.

Kumar, S., et al., The Codesign of Embedded Systems: A Unified Hardware/Software
Representation, Kluwer Academic Publishers, Boston, 1996.

Rozenblit, J.W., and K. Buchenrieder, Codesign: Computer-Aided Software/ Hardware
Engineering, IEEE Press, Piscataway, N.J., 1994.

Wymore, W.A., Model-Based Systems Engineering, CRC Press, Boca Raton, Fla.,
1993.

.

