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ABSTRACT 

A generative approach to constructing system specifi- 
cations is discussed. This process is intended to sup- 
port design of hierarchical, multicomponent systems. 
In previous work, a systems design methodology 
called Knowledge-Based Simulation Design (KBSD) 
was developed. KBSD focuses on the use of model- 
ing and simulation techniques to  build and evaluate 
models of the system being designed. To represent 
families of design components, a knowledge represen- 
tation scheme called s y s t e m  entzty structure (SES) is 
used. Various modeling formalisms may be used for 
system specifications in the methodology. Thus, an 
efficient, generative procedure is needed for construct- 
ing specifications for systems represented by an SES. 
It is shown how system specifications can be managed 
using a canonical SES representation. 

1 INTRODUCTION 

Systems theory is a scientific discipline whose primary 
concern is t o  provide problem solving methods and 
tools. The theory owes its utility to the fact that real 
systems can obey the same “system” laws and show 
similar patterns of behavior although they are physi- 
cally very different. This potential isomorphy makes 
it possible to  employ common representations to treat 
different real systems in a uniform manner (Pichler 
1975). Although systems theory has been the subject 
of intensive studies for a number of years, its problem 
solving methods have often been ill-understood and 
ignored by researchers, practicing engineers, and sys- 
tem designers. With the advent of powerful hardware 
platforms and software development and application 
tools which implement many of the theory-based con- 
cepts, we are observing a renewed interest in the field 
(Pichler and Schwaertzel 1992). 

This paper discusses the systems theory-based sup- 
port for design of engineering systems. The distin- 

guishing issue in designing such syst,ems is how to  
endow them with t,he knowledge required to perform 
their missions. Conceptua.1 frameworks for intelligent 
system design (Antsaklis and Passino 1992, Albus 
1992) recognize the crit,ical role of models t o  struc- 
ture knowledge represent,at,ion and utilization in such 
systems. Intelligent system design requires a method- 
ology for task decomposition, assignment of models 
to subtasks and t,he int.egrat,ion of models into exe- 
cution hierarchies matching the task decompositions. 
Such models can be expressed in various formalisms. 
However, if the great variety of formalisms is t o  be 
marshalled for systems design in this manner, the 
designer must be able to ga.in access to them in an 
organized way. 

Computer simulat,ion offers a means to  develop 
and test systems in compa.rison to real testbed envi- 
ronments (Rozenblit and Zeigler 1990, Zeigler 1990). 
To support such design, an ideal simulation environ- 
ment would enable the designer to experiment with 
a variety of fornialisnis and models expressed within 
them. This requires that a design environment ac- 
commodate knowledge representation and manage- 
ment schemes as well as foriiia.lisms capable of captur- 
ing inhomogeneous behaviors of various system com- 
ponents. 

2 SYSTEMS THEORN - REVIEW OF 
BASIC TENETS 

Although a generally accept,ed definition of “system” 
does not exist, we adopt the following: A dynamical  
s y s t e m  is any formal construct which provides gen- 
eral modeling concepts for various kinds of disciplines 
(Pichler 1975, Zeigler 1976, Wymore 1976). We dis- 
tinguish such a niatheniat,ical object, from any reality 
that it may represent, using t,he t,erin real s y s t e m  for 
the latter. 

A real system can be represented at  varying lev- 
els of abstraction. According to the abstraction level, 
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the system manifests itself in different ways and we 
use different terms to speak about it. By system be- 
havior we denote the way the system appears on its 
boundary, i.e., how it reacts to  inputs by producing 
outputs. The interior of a system is described by 
the system state and the system dynamic. The state 
represents the conditioin the system is in at a partic- 
ular time and the system dynamic governs the way 
this state changes over time. When the state is rep- 
resented by one or moire variables we speak of state 
varzables. The dynamic of the system can be deter- 
mined by a state transition function which depends 
on the input and the state itself. How the state and 
current input appear as output is determined by the 
output function. 

When we identify several elements corresponding 
to parts of the real world, we speak of system ele- 
ments and the state of each of the elements is repre- 
sented by the system element state. The interdepen- 
dencies of these elements contributing to the system 
dynamic is called the system structure. When we go 
further and represent parts of the system by systems 
themselves and their interdependencies by coupling 
these parts, we speak oil system componenis and sys- 
tem couplzngs. Such a system is called multacompo- 
nent system or coupled system. (In Section 4 we pro- 
vide formal definitions that reflect the above atomic 
and coupled system characterizations.) 

2.1 Hierarchy of System Specifications 

The term model is viewed here as a specificatmion 
for a system. In general, the term system refers to 
a description (often mathematical) which captures 
some of the essential features concerning the system 
or problem being modelled. Since there are many 
characteristics of real systems, there are several con- 
cepts of the system and thus it is useful to organize 
the specifications into a coherent whole. In this way 
we arrive a t  a stratification of system specifications 
that starts with intuitive black box concepts at the 
lower levels and adds more and more constructs for 
the description of system’s internal structure as the 
levels increase. Klir’s epistemological classification of 
systems description of one such example (Klir 1984, 
1985). 

Zeigler (1976) provides a hierarchy of system spec- 
ifications with morphism concepts that enable com- 
parisons between systems specified at any level of ab- 
straction. The hierarchy is defined as follows: 

1. System Specification IORO. This type of descrip- 
tion is an Input/Ou.tput observation relation. It 
is a classical example of a black box. 

2. System Specaficatzon IOFO. For each input func- 
tion of a given IORO there exists exactly one 
output function. This specification is called an 
1/0 function observation. 

3. System Specification S (often referred to as an 
1 / 0  system). In addition to  input and out- 
put sets, a set of states and state-transformation 
mechanisms have to be defined in this specifica- 
t ion. 

4. Structured System Specificafzon. The specifica- 
tion at this level is the same as the one at level 3 
except that each set and function is structured. 

5. System Specaficatzon IVET (Coupled System). 
NET denotes a network of system specifications 
consisting of a family of systems and a coupling 
mechanism. This specification is the basis for a 
hierarchical form of model construction. 

The above stratification is independent of any par- 
ticular modeling formalism. In other words, any for- 
malism may be employed to specify a system at any 
level. Systems theory affords an integrative view of 
the diversity of formalisms. Indeed, it regards formal- 
zsm as a modeling language used to define (actually 
select) a subset of systems. Once a subset is iden- 
tified, a formalism need express only those features 
that distinguish a particular system from others in 
the same subset (Zeigler 1984) In this sense, a sys- 
tem formalism can be regarded as a short-hand means 
of system specificat#ion. 

Basic system fornialisnis are dzfferentzal epuatzon 
system specifications (DESS), discrete time system 
specifications (DTSS), and discrete event system 
specifications (DEW).  The levels of system descrip- 
tions and the system formalisms build a crossprod- 
uct relation where every combination of system for- 
malism and system level represents a possible mod- 
eling concept. The formalisms impose appropriate 
constraints on the time base, input, output, and 
state sets, and input, output, and state trajectories. 
Such constraints circumscribe the systems that can 
be members of the subset specified by a formalism. 

A good review of major modeling formalisms (dif- 
ferential equations, discret<e time systems, and dis- 
crete event specification) and their associated trans- 
lation mappings into system specifications are given 
in (Zeigler 1984 and Praehofer 1991). 

3 SYSTEMS DESIGN CONCEPTS 

Researches and practitioners coihnually seek new 
and better design methods. It has been shown that 



606 Rozenblit and Zeigler 

design processes are essentially computable (Coyne 
1990). Computer-aided design (CAD) became pos- 
sible for problems in which computational processes 
were well-defined. First, emphasis was placed on nu- 
merzcal type of computation, The advent of symbolic 
computing, AI, expert systems and knowledge-based 
systems technologies made it possible for designers to 
reason with knowledge - thus the term knowledge- 
based deszgn. 

3.1 Knowledge-Based Simulation Design 
Methodology 

The system design approach proposed by Rozenblit 
(Rozenblit and Zeigler 1988, 1990, Rozenblit and 
Huang 1991) termed Knowledge-Based Simulation 
Design (KBSD), focuses on the use of modeling and 
simulation techniques to build and evalmte models of 
the system being designed. It treats the design pro- 
cess as a series of act,ivities that comprise specificat,ion 
of design levels in a hierarchical ma.nner (decomposi- 
tion), classification of system components int.0 dif- 
ferent variants (specialization), selection of compo- 
nents from specializations and decompositions, devel- 
opment of design models, experimentation and eval- 
uation by simulation, and choice of design solutions. 

The design process begins with developing a repre- 
sentation of design components and their variants. A 
knowledge representation scheme, called system en- 
tity structure (SES) is used to capture the follow- 
ing three relationships among design elements: d e -  
composition, taxonomy, and coupling. Decomposition 
knowledge means that the structure has schemes for 
representing the manner in which an object (design 
element) is decomposed into components. Taxonomic 
knowledge is a representation for the kinds of vari- 
ants that are possible for an object, i.e., how it ca.n 
be categorized and subclassified. The synt,hesis (cou- 
pling) constraint,s impose a manner in which compo- 
nents identified in decompositions can be connect,ed 
together. The selection constraints limit choices of 
variants of objects determined by the taxonomic re- 
lations. 

Beyond this, procedural knowledge is available to 
select and synthesize the system's components identi- 
fied in the chosen representation scheme. This selec- 
tion and sy;ithesis process is called pruning (Rozenblit 
and Buang 1991). Pruning results in a recommenda- 
tion for a model composition tree, i.e., a set of hier- 
archically arranged design components whose models 
may reside in a design library. 

Performance of alternative design solutions is stud- 
ied by associating system specifications (in the form 
of models) with the components of composition trees. 

Simulations produce dynamic performance data. 

3.2 The System Entity Structure 

As a step toward a unifying knowledge representation 
scheme for design support, we have combined the de- 
composition, taxonomic, and coupling relationships 
in the system entity structure (Zeigler 1984, Rozen- 
blit and Zeigler 1988). In the SES, t8he representation 
concerns the adniissible varimts of components in de- 
compositions and tlhe further specia.lizat.ions of such 
variants. The interaction of decomposition, coupling 
and taxonomic relations in an SES affords a compact 
specification of a family of models for a given domain. 
In a system ent,ity st,ruct,ure, e n f i f i e s  refer to con- 
ceptual components of realit,y for which models may 
reside in a library (model base). Associated with en- 
t.ities are slot,s for att,ribut,e represent,at,ion. An entity 
may have several aspects, each denoting a decomposi- 
t,ion, and therefore having severa.1 ent,it,ies. An entity 
may also have several specia1i:af ioiis, each represent- 
ing a classification of possible variants of the entity. 

The construction of, and operat,ioiis on a system 
entity structure are governed by a set, of axioms, i.e., 
uniformity, strict hierarchy, nlternnting mode, inher- 
itance, valid siblings, and a t tached  variables (Zeigler 
1984). The axioms furnish a unifying set of rules for 
developing and nianipulat,iiig ent,it,y structures. 

The system entity struct,ure organizes possibilities 
for a variety of system deconipositioiis and, conse- 
quently, a variety of model const,ruct,ious. Its gener- 
ative capability facilit,at,es convenient definition and 
representation of models and their att'ributes at mul- 
tiple levels of aggregation and abdraction. More 
complete discussions of the system entity structure 
and its associat>ed structure t,ransformations are pre- 
sented in (Zeigler 1984, Rozenblit. and Zeigler 1988, 
1990, Rozenblit, and Huang 1991). 

Typically, the SES is employed to specify families 
of design simulation models, generated by pruning a 
mast,er SES, for a given application domain. Here, we 
employ SES concepts to provide the knowledge rep- 
resentation struct,ure needed to manage system spec- 
ificat,ion fornialisnis. First, we provide formal defini- 

These two definitions are the basis for deriving sys- 
tem specifications in various foriiialisins (for a set of 
illustrative examples see (Praehofer 1991)). 

tions of a system at the atomic arid coupled levels. 

4 FORMAL SYSTEM DEFINITIONS 

A system (at level 3 of the syst,ein specifications hi- 
erarchy) is a st,ructure: 

S =< T, X, R, Q ,  IT, 5, X > 
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where: 
T is the time base, 
X is the input value set, 
G? is the input segment set, 
Q is the internal state set, 
Y is the output set, 
6: Q x s1 + Q 
A: Q + Y 

is the state transition function, 
is the output function. 

The input segments of the system S have to be 
closed with respect to concatenation. In addition, 5 
must have the semigroup property, i.e., for all w , ~ ’  E 
R and for all q E Q the following equation must hold: 

The input, state, output sets, and the output func- 
tion constitute the static structure of the system. The 
time base, input segment set, and the state transi- 
tion function are referred to  as the system’s dynamic 
structure. 

A Coupling of Systems, i.e., system network, mul- 
ticomponent model, is a structure (Zeigler 1984): 

5 ( q ,  w * U’) = 5 ( 5 ( q ,  U ) ,  U’)  

where: 

for each a E D : 
D is a set of components names, 

Sa is a system, component a ,  
I ,  is a set, the set of influencers of a ,  
2, is a function, tthe interface mapping of U, 

subject to  the constraints: 

This specification designates a set of components 
< D ,  {Sa} > and a coupling scheme < {la}, {ZQ} >. 

System formalism can be built based on the above 
generic specifications. To facilitate the construction 
and management of formalisms, we set up a canon- 
ical system entity structure. This SES contains the 
requisite elements of the formal system’s descriptions. 

5 SES REPRESISNTATION FOR SYSTEM 
SPECIFICATION FORMALISMS 

An SES representation to facilitate management of 
system specification formalisms is shown in Figure 
1. 

The root entity of this SES, called the canonical 
SES, represents a system specification S - either an 
atomic or a multicomponent one. The constituents of 

S are sets and functions. Sets can be classified into 
Input, Output, Time, and State as well as sets of 
Components or Other, modeler defined objects (e.g., 
an initial state in a finite state machine specification). 
Each set is characterized by the type of its elements, 
e.g., Reals, Integers, etc. In addition, by selecting the 
System Specification variant from the Set entity, we 
can include a set of system specifications as elements 
of the system specification S.  This recursive repre- 
sentation affords the construction of formalisms for 
multicomponent systems. (Note that we must relax 
the strict hierarchy SES axiom as in Cho (1993) in 
order to facilitate such a process.) 

The functions are: Transition, Output, and Seg- 
ment, Coupling (I/O Translation), or Other (i.e., 
modeler defined functions, for example, a rate of 
change, or time advance function). Each function 
has an attribute type which characterizes its prop- 
erties, e.g., step, piecewise continuous, piecewise dif- 
ferentiable. 

In system design, the canonical SES of system spec- 
ifications is used in conjunction with an SES for an 
application domain. Pruning the application SES 
generates a composition tree for the system model 
specification. The model composition tree is a tree 
whose leaf nodes are system specifications. These 
are atomic components which are coupled in a hi- 
erarchical manner. In the next section, we show how 
the atomic and coupled level specifications can con- 
structed based on the composition tree and canonical 
SES representations. 

2 depicts a composition 
tree of a two component system. Assume, that the 
two subsystems S1 and S2 are connected in series as 
shown in Figure 3. 

The resultant is the syst8eni S whose formal speci- 
fication should now be derived. Let us illustrate this 
process at both the atomic and the coupled system 
level. 

As an example, Figure 

5.1 Atomic System Specification 

To generate a formal specification for the atomic 
components SI and S2, design constraints and re- 
quirements as well as physical characteristics of the 
model’s counterpart (i.e., real system) are analyzed. 
This is done in order to determine appropriate types 
of sets and functions needed to characterize the dy- 
namic behavior of the components under considera- 
tion. 

Assume that both subsystems exhibit an inherently 
discrete behavior. The modeler may prune the canon- 
ical SES so that the DEVS formalism is selected for 
Formalism-type. Since DEVS is a formalism that will 
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SYSTEM SPECIFICATION -name 

r-+---I 
Constituents Level Specialization Formalism Specialization 

l h  r-4-l-l 

/I 

SETS FUNCTIONS ATOMIC MULTI- DESS DEW DEW& DTSS 
I COMPONENT DESS 

-type of 
Ill * 

SET elements 

set specialization 

TIME INPUT OUTPUT STATE COMPO- SYSTEM OTHER 
NENTS SPECIFICATION 

1'1 -function type 
FUNCTION 

II 
function specialization 

k 
* TRANSITION OUTPUT SEGMENT COUPLING OTHER 

segment spec. 
II (U0 TRANSLATION 

I"UT STATE OUTPUT 
TRAJECTORY 

Figure 1: Canonical SES of System Specification Elements 
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S 
I 
I 

s1 s2 

Figure 2: Simple Composition Tree 

I s  I 

Figure 3: System S as a Series Coupling of Subsys- 
tems S1 and S2 

be known to the system, its constituent slots will be 
automatically retrieved leaving only their values to  
be supplied by the modeler. Such a selection might 
be presented in the form of a frame data structure as 
follows: 

Pruned Canonical SES for  an Aiomic Specification 
(DE VS) 

FRAME Si 
System Specification Type: Atomic 

Constituents: Sets, Functions 
Sets: 

Time: 

Input: X 
Type of Elements: Reals 

Type of Elements: Discrete Events 

Type of Elements: Reals 

Type of Elements: 

output :  Y 

State: S 

Nonnegative Integers 
Components: Null 
System Specification: Null 
Other: Null 

Transition: 
Functions: 

Internal: 64: S 4 S 
External: beG: Q x X -3 S 

where Q is given by: 
Q 3 {(si,e) 1 s E S,O 5 e 5 ta(s)} 

output: A: S + Y  
Other: Time advance function - 

ta :  S *  .Rt- 
Coupling (Input-to-Output Translation): 

None 
Segment: None 

Choosing a DEVS atomic model for the component 
Sz, a Frame Sz is developed in a manner similar to 
that of Frame SI. We now proceed to  illustrate how 
to construct a coupled level (network) system speci- 
fication. 

5.2 Coupled System Specification 

The specification of the system S can be obtained by 
coupling the specifications of its components. Since 
the DEVS formalism is closed under coupling, the 
modeler may prune the canonical SES to select the 
DEVS formalism for the multicomponent level spe- 
cialization. 

Pruned Canonical SES for a Multicomponent Specifi- 
cation (DEVS) 

FRAME S 
System Specification Type: Multicomponent Discrete 

Event Network 

Sets: 
Constituents: Sets, Functions 

Components: 
D - component names {Si, S2) 
I - influencees: {Si : {}, S2 : {Si}} 

Frame SI 
Frame S2 

Coupling: (I/O) Translation): 

System Specifications: 

Functions: 

2 1 2  : Yl --+ xz 
defined as the identity mapping 

Select: 2O -+ D 
defined by linear order < 1 , 2  > 

Other: 

Note that in environments such as DEVS-Scheme 
(Zeigler 1990) and STIMS (Pichler and Schwaertzel 
1992), the slots in the frames can be filled in a man- 
ner that is user-oriented, yet very close to  their “pure” 
mathematical forms. Note also that constraints (e.g., 
no direct feedbacks in a DEVS network) must be 
added to the SES to ensure the compatibility of com- 
ponent formalisms with the coupled system formalism 
at the next higher level . 

6 OBJECT ORIENTED IMPLEMENTA- 
TION OF THE CANONICAL SES 

The implementation of the canonical SES can 
be supported by the object-oriented programming 
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paradigm. In a realization of systems theory instru- 
mented design framework, we must represent the fol- 
lowing: 

0 the system formalisms, 

0 the constituents of aformalism, viz., the sets and 

0 the formalism specialization hierarchy, 

0 the constraints and restrictions defined for the 

functions of the formalism, 

formalism and its constituents, 

0 the dynamic characteristics of the formalisms, 
viz., its simulation algorithm in a multiformal- 
ism framework, and 

0 the operations defined for the formalisms. 

In (Zeigler et al. 1993), we discuss the canonical 
SES implementation principles in detail. Here, we 
summarize the basic tenets of our approach. 

Mapping the system formalisms and models to  an 
object-oriented is accomplished as follows: the for- 
malisms can be represented by class definitions; the 
models of the different formalisms are realized by in- 
stances of the particular formalism classes. 

The constituents of the models are defined by slot 
(also called instance variable) definitions. Operations 
on these slots in the different formalism classes can 
be unified by the generic function concept of CLOS 
(Keene 1989). 

To represent the specialization relationship of the 
different formalisms, the object oriented paradigm of- 
fers the concept of class hierarchy with multiple in- 
heritance. However, due to  the diversity of the for- 
malisms and their great variety of interrelations, such 
a representation proves to  be difficult. Mittelmann 
and Praehofer (1991) propose a knowledge represen- 
tation scheme where the constituents of system for- 
malisms are implemented by abstract classes whereas 
the actual formalisms are defined through dynamic 
class definitions multiply inheriting from the appro- 
priate constituent classes. They also provide an algo- 
rithm to set up an inheritance hierarchy which mini- 
mizes the duplication of slots and methods in a com- 

ject oriented implementation. 
Methods can also be used to  implement the con- 

straints defined on the constituents of system for- 
malisms. We outline this in detail in (Zeigler et al. 
1993). 

plex specialization hierarchy, an objective of any ob- 

7 C L O S I N G  R E M A R K S  

We have discussed the utility of adopting a for- 
mal knowledge representation scheme for organizing 

and managing generic classes of systems formalisms 
within a design framework. Especially when applied 
to intelligent system design, the number of formalisms 
being proposed by researchers is growing tremen- 
dously. Our approach is intended to  make such for- 
malisms attractive to researchers, practicing design- 
ers, and systems engineers by providing concepts and 
tools to manage and integrate them. 
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