
Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

REPRESENTING AND CONSTRUCTING SYSTEM SPECIFICATIONS USING THE
SYSTEM ENTITY STRUCTURE CONCEPTS

Jerzy W. Rozenblit
Bernard P. Zeigler

Dept. of Electrical and Computer Engineering
The University of Arizona

Tucson, Arizona 85721

ABSTRACT

A generative approach to constructing system specifi-
cations is discussed. This process is intended to sup-
port design of hierarchical, multicomponent systems.
In previous work, a systems design methodology
called Knowledge-Based Simulation Design (KBSD)
was developed. KBSD focuses on the use of model-
ing and simulation techniques to build and evaluate
models of the system being designed. To represent
families of design components, a knowledge represen-
tation scheme called s y s t e m entzty structure (SES) is
used. Various modeling formalisms may be used for
system specifications in the methodology. Thus, an
efficient, generative procedure is needed for construct-
ing specifications for systems represented by an SES.
It is shown how system specifications can be managed
using a canonical SES representation.

1 INTRODUCTION

Systems theory is a scientific discipline whose primary
concern is t o provide problem solving methods and
tools. The theory owes its utility to the fact that real
systems can obey the same “system” laws and show
similar patterns of behavior although they are physi-
cally very different. This potential isomorphy makes
it possible to employ common representations to treat
different real systems in a uniform manner (Pichler
1975). Although systems theory has been the subject
of intensive studies for a number of years, its problem
solving methods have often been ill-understood and
ignored by researchers, practicing engineers, and sys-
tem designers. With the advent of powerful hardware
platforms and software development and application
tools which implement many of the theory-based con-
cepts, we are observing a renewed interest in the field
(Pichler and Schwaertzel 1992).

This paper discusses the systems theory-based sup-
port for design of engineering systems. The distin-

guishing issue in designing such syst,ems is how to
endow them with t,he knowledge required to perform
their missions. Conceptua.1 frameworks for intelligent
system design (Antsaklis and Passino 1992, Albus
1992) recognize the crit,ical role of models t o struc-
ture knowledge represent,at,ion and utilization in such
systems. Intelligent system design requires a method-
ology for task decomposition, assignment of models
to subtasks and t,he int.egrat,ion of models into exe-
cution hierarchies matching the task decompositions.
Such models can be expressed in various formalisms.
However, if the great variety of formalisms is t o be
marshalled for systems design in this manner, the
designer must be able to ga.in access to them in an
organized way.

Computer simulat,ion offers a means to develop
and test systems in compa.rison to real testbed envi-
ronments (Rozenblit and Zeigler 1990, Zeigler 1990).
To support such design, an ideal simulation environ-
ment would enable the designer to experiment with
a variety of fornialisnis and models expressed within
them. This requires that a design environment ac-
commodate knowledge representation and manage-
ment schemes as well as foriiia.lisms capable of captur-
ing inhomogeneous behaviors of various system com-
ponents.

2 SYSTEMS THEORN - REVIEW OF
BASIC TENETS

Although a generally accept,ed definition of “system”
does not exist, we adopt the following: A dynamical
s y s t e m is any formal construct which provides gen-
eral modeling concepts for various kinds of disciplines
(Pichler 1975, Zeigler 1976, Wymore 1976). We dis-
tinguish such a niatheniat,ical object, from any reality
that it may represent, using t,he t,erin real s y s t e m for
the latter.

A real system can be represented at varying lev-
els of abstraction. According to the abstraction level,

604

Representing and Constructing System Spec9cations 605

the system manifests itself in different ways and we
use different terms to speak about it. By system be-
havior we denote the way the system appears on its
boundary, i.e., how it reacts to inputs by producing
outputs. The interior of a system is described by
the system state and the system dynamic. The state
represents the conditioin the system is in at a partic-
ular time and the system dynamic governs the way
this state changes over time. When the state is rep-
resented by one or moire variables we speak of state
varzables. The dynamic of the system can be deter-
mined by a state transition function which depends
on the input and the state itself. How the state and
current input appear as output is determined by the
output function.

When we identify several elements corresponding
to parts of the real world, we speak of system ele-
ments and the state of each of the elements is repre-
sented by the system element state. The interdepen-
dencies of these elements contributing to the system
dynamic is called the system structure. When we go
further and represent parts of the system by systems
themselves and their interdependencies by coupling
these parts, we speak oil system componenis and sys-
tem couplzngs. Such a system is called multacompo-
nent system or coupled system. (In Section 4 we pro-
vide formal definitions that reflect the above atomic
and coupled system characterizations.)

2.1 Hierarchy of System Specifications

The term model is viewed here as a specificatmion
for a system. In general, the term system refers to
a description (often mathematical) which captures
some of the essential features concerning the system
or problem being modelled. Since there are many
characteristics of real systems, there are several con-
cepts of the system and thus it is useful to organize
the specifications into a coherent whole. In this way
we arrive a t a stratification of system specifications
that starts with intuitive black box concepts at the
lower levels and adds more and more constructs for
the description of system’s internal structure as the
levels increase. Klir’s epistemological classification of
systems description of one such example (Klir 1984,
1985).

Zeigler (1976) provides a hierarchy of system spec-
ifications with morphism concepts that enable com-
parisons between systems specified at any level of ab-
straction. The hierarchy is defined as follows:

1. System Specification IORO. This type of descrip-
tion is an Input/Ou.tput observation relation. It
is a classical example of a black box.

2. System Specaficatzon IOFO. For each input func-
tion of a given IORO there exists exactly one
output function. This specification is called an
1/0 function observation.

3. System Specification S (often referred to as an
1 / 0 system). In addition to input and out-
put sets, a set of states and state-transformation
mechanisms have to be defined in this specifica-
t ion.

4. Structured System Specificafzon. The specifica-
tion at this level is the same as the one at level 3
except that each set and function is structured.

5. System Specaficatzon IVET (Coupled System).
NET denotes a network of system specifications
consisting of a family of systems and a coupling
mechanism. This specification is the basis for a
hierarchical form of model construction.

The above stratification is independent of any par-
ticular modeling formalism. In other words, any for-
malism may be employed to specify a system at any
level. Systems theory affords an integrative view of
the diversity of formalisms. Indeed, it regards formal-
zsm as a modeling language used to define (actually
select) a subset of systems. Once a subset is iden-
tified, a formalism need express only those features
that distinguish a particular system from others in
the same subset (Zeigler 1984) In this sense, a sys-
tem formalism can be regarded as a short-hand means
of system specificat#ion.

Basic system fornialisnis are dzfferentzal epuatzon
system specifications (DESS), discrete time system
specifications (DTSS), and discrete event system
specifications (DEW). The levels of system descrip-
tions and the system formalisms build a crossprod-
uct relation where every combination of system for-
malism and system level represents a possible mod-
eling concept. The formalisms impose appropriate
constraints on the time base, input, output, and
state sets, and input, output, and state trajectories.
Such constraints circumscribe the systems that can
be members of the subset specified by a formalism.

A good review of major modeling formalisms (dif-
ferential equations, discret<e time systems, and dis-
crete event specification) and their associated trans-
lation mappings into system specifications are given
in (Zeigler 1984 and Praehofer 1991).

3 SYSTEMS DESIGN CONCEPTS

Researches and practitioners coihnually seek new
and better design methods. It has been shown that

606 Rozenblit and Zeigler

design processes are essentially computable (Coyne
1990). Computer-aided design (CAD) became pos-
sible for problems in which computational processes
were well-defined. First, emphasis was placed on nu-
merzcal type of computation, The advent of symbolic
computing, AI, expert systems and knowledge-based
systems technologies made it possible for designers to
reason with knowledge - thus the term knowledge-
based deszgn.

3.1 Knowledge-Based Simulation Design
Methodology

The system design approach proposed by Rozenblit
(Rozenblit and Zeigler 1988, 1990, Rozenblit and
Huang 1991) termed Knowledge-Based Simulation
Design (KBSD), focuses on the use of modeling and
simulation techniques to build and evalmte models of
the system being designed. It treats the design pro-
cess as a series of act,ivities that comprise specificat,ion
of design levels in a hierarchical ma.nner (decomposi-
tion), classification of system components int.0 dif-
ferent variants (specialization), selection of compo-
nents from specializations and decompositions, devel-
opment of design models, experimentation and eval-
uation by simulation, and choice of design solutions.

The design process begins with developing a repre-
sentation of design components and their variants. A
knowledge representation scheme, called system en-
tity structure (SES) is used to capture the follow-
ing three relationships among design elements: d e -
composition, taxonomy, and coupling. Decomposition
knowledge means that the structure has schemes for
representing the manner in which an object (design
element) is decomposed into components. Taxonomic
knowledge is a representation for the kinds of vari-
ants that are possible for an object, i.e., how it ca.n
be categorized and subclassified. The synt,hesis (cou-
pling) constraint,s impose a manner in which compo-
nents identified in decompositions can be connect,ed
together. The selection constraints limit choices of
variants of objects determined by the taxonomic re-
lations.

Beyond this, procedural knowledge is available to
select and synthesize the system's components identi-
fied in the chosen representation scheme. This selec-
tion and sy;ithesis process is called pruning (Rozenblit
and Buang 1991). Pruning results in a recommenda-
tion for a model composition tree, i.e., a set of hier-
archically arranged design components whose models
may reside in a design library.

Performance of alternative design solutions is stud-
ied by associating system specifications (in the form
of models) with the components of composition trees.

Simulations produce dynamic performance data.

3.2 The System Entity Structure

As a step toward a unifying knowledge representation
scheme for design support, we have combined the de-
composition, taxonomic, and coupling relationships
in the system entity structure (Zeigler 1984, Rozen-
blit and Zeigler 1988). In the SES, t8he representation
concerns the adniissible varimts of components in de-
compositions and tlhe further specia.lizat.ions of such
variants. The interaction of decomposition, coupling
and taxonomic relations in an SES affords a compact
specification of a family of models for a given domain.
In a system ent,ity st,ruct,ure, e n f i f i e s refer to con-
ceptual components of realit,y for which models may
reside in a library (model base). Associated with en-
t.ities are slot,s for att,ribut,e represent,at,ion. An entity
may have several aspects, each denoting a decomposi-
t,ion, and therefore having severa.1 ent,it,ies. An entity
may also have several specia1i:af ioiis, each represent-
ing a classification of possible variants of the entity.

The construction of, and operat,ioiis on a system
entity structure are governed by a set, of axioms, i.e.,
uniformity, strict hierarchy, nlternnting mode, inher-
itance, valid siblings, and a t tached variables (Zeigler
1984). The axioms furnish a unifying set of rules for
developing and nianipulat,iiig ent,it,y structures.

The system entity struct,ure organizes possibilities
for a variety of system deconipositioiis and, conse-
quently, a variety of model const,ruct,ious. Its gener-
ative capability facilit,at,es convenient definition and
representation of models and their att'ributes at mul-
tiple levels of aggregation and abdraction. More
complete discussions of the system entity structure
and its associat>ed structure t,ransformations are pre-
sented in (Zeigler 1984, Rozenblit. and Zeigler 1988,
1990, Rozenblit, and Huang 1991).

Typically, the SES is employed to specify families
of design simulation models, generated by pruning a
mast,er SES, for a given application domain. Here, we
employ SES concepts to provide the knowledge rep-
resentation struct,ure needed to manage system spec-
ificat,ion fornialisnis. First, we provide formal defini-

These two definitions are the basis for deriving sys-
tem specifications in various foriiialisins (for a set of
illustrative examples see (Praehofer 1991)).

tions of a system at the atomic arid coupled levels.

4 FORMAL SYSTEM DEFINITIONS

A system (at level 3 of the syst,ein specifications hi-
erarchy) is a st,ructure:

S =< T, X, R, Q , IT, 5, X >

Representing and Constructing System Specifications 607

where:
T is the time base,
X is the input value set,
G? is the input segment set,
Q is the internal state set,
Y is the output set,
6: Q x s1 + Q
A: Q + Y

is the state transition function,
is the output function.

The input segments of the system S have to be
closed with respect to concatenation. In addition, 5
must have the semigroup property, i.e., for all w , ~ ’ E
R and for all q E Q the following equation must hold:

The input, state, output sets, and the output func-
tion constitute the static structure of the system. The
time base, input segment set, and the state transi-
tion function are referred to as the system’s dynamic
structure.

A Coupling of Systems, i.e., system network, mul-
ticomponent model, is a structure (Zeigler 1984):

5 (q , w * U’) = 5 (5 (q , U) , U’)

where:

for each a E D :
D is a set of components names,

Sa is a system, component a ,
I , is a set, the set of influencers of a ,
2, is a function, tthe interface mapping of U,

subject to the constraints:

This specification designates a set of components
< D , {Sa} > and a coupling scheme < {la}, {ZQ} >.

System formalism can be built based on the above
generic specifications. To facilitate the construction
and management of formalisms, we set up a canon-
ical system entity structure. This SES contains the
requisite elements of the formal system’s descriptions.

5 SES REPRESISNTATION FOR SYSTEM
SPECIFICATION FORMALISMS

An SES representation to facilitate management of
system specification formalisms is shown in Figure
1.

The root entity of this SES, called the canonical
SES, represents a system specification S - either an
atomic or a multicomponent one. The constituents of

S are sets and functions. Sets can be classified into
Input, Output, Time, and State as well as sets of
Components or Other, modeler defined objects (e.g.,
an initial state in a finite state machine specification).
Each set is characterized by the type of its elements,
e.g., Reals, Integers, etc. In addition, by selecting the
System Specification variant from the Set entity, we
can include a set of system specifications as elements
of the system specification S. This recursive repre-
sentation affords the construction of formalisms for
multicomponent systems. (Note that we must relax
the strict hierarchy SES axiom as in Cho (1993) in
order to facilitate such a process.)

The functions are: Transition, Output, and Seg-
ment, Coupling (I/O Translation), or Other (i.e.,
modeler defined functions, for example, a rate of
change, or time advance function). Each function
has an attribute type which characterizes its prop-
erties, e.g., step, piecewise continuous, piecewise dif-
ferentiable.

In system design, the canonical SES of system spec-
ifications is used in conjunction with an SES for an
application domain. Pruning the application SES
generates a composition tree for the system model
specification. The model composition tree is a tree
whose leaf nodes are system specifications. These
are atomic components which are coupled in a hi-
erarchical manner. In the next section, we show how
the atomic and coupled level specifications can con-
structed based on the composition tree and canonical
SES representations.

2 depicts a composition
tree of a two component system. Assume, that the
two subsystems S1 and S2 are connected in series as
shown in Figure 3.

The resultant is the syst8eni S whose formal speci-
fication should now be derived. Let us illustrate this
process at both the atomic and the coupled system
level.

As an example, Figure

5.1 Atomic System Specification

To generate a formal specification for the atomic
components SI and S2, design constraints and re-
quirements as well as physical characteristics of the
model’s counterpart (i.e., real system) are analyzed.
This is done in order to determine appropriate types
of sets and functions needed to characterize the dy-
namic behavior of the components under considera-
tion.

Assume that both subsystems exhibit an inherently
discrete behavior. The modeler may prune the canon-
ical SES so that the DEVS formalism is selected for
Formalism-type. Since DEVS is a formalism that will

608 Rozenblit and Zeigler

SYSTEM SPECIFICATION -name

r-+---I
Constituents Level Specialization Formalism Specialization

l h r-4-l-l

/I

SETS FUNCTIONS ATOMIC MULTI- DESS DEW DEW& DTSS
I COMPONENT DESS

-type of
Ill *

SET elements

set specialization

TIME INPUT OUTPUT STATE COMPO- SYSTEM OTHER
NENTS SPECIFICATION

1'1 -function type
FUNCTION

II
function specialization

k
* TRANSITION OUTPUT SEGMENT COUPLING OTHER

segment spec.
II (U0 TRANSLATION

I"UT STATE OUTPUT
TRAJECTORY

Figure 1: Canonical SES of System Specification Elements

Representing and Constructing System Specijkations 609

S
I
I

s1 s2

Figure 2: Simple Composition Tree

I s I

Figure 3: System S as a Series Coupling of Subsys-
tems S1 and S2

be known to the system, its constituent slots will be
automatically retrieved leaving only their values to
be supplied by the modeler. Such a selection might
be presented in the form of a frame data structure as
follows:

Pruned Canonical SES for an Aiomic Specification
(DE VS)

FRAME Si
System Specification Type: Atomic

Constituents: Sets, Functions
Sets:

Time:

Input: X
Type of Elements: Reals

Type of Elements: Discrete Events

Type of Elements: Reals

Type of Elements:

output : Y

State: S

Nonnegative Integers
Components: Null
System Specification: Null
Other: Null

Transition:
Functions:

Internal: 64: S 4 S
External: beG: Q x X -3 S

where Q is given by:
Q 3 {(si,e) 1 s E S,O 5 e 5 ta(s)}

output: A: S + Y
Other: Time advance function -

ta : S * .Rt-
Coupling (Input-to-Output Translation):

None
Segment: None

Choosing a DEVS atomic model for the component
Sz, a Frame Sz is developed in a manner similar to
that of Frame SI. We now proceed to illustrate how
to construct a coupled level (network) system speci-
fication.

5.2 Coupled System Specification

The specification of the system S can be obtained by
coupling the specifications of its components. Since
the DEVS formalism is closed under coupling, the
modeler may prune the canonical SES to select the
DEVS formalism for the multicomponent level spe-
cialization.

Pruned Canonical SES for a Multicomponent Specifi-
cation (DEVS)

FRAME S
System Specification Type: Multicomponent Discrete

Event Network

Sets:
Constituents: Sets, Functions

Components:
D - component names {Si, S2)
I - influencees: {Si : {}, S2 : {Si}}

Frame SI
Frame S2

Coupling: (I/O) Translation):

System Specifications:

Functions:

2 1 2 : Yl --+ xz
defined as the identity mapping

Select: 2O -+ D
defined by linear order < 1 , 2 >

Other:

Note that in environments such as DEVS-Scheme
(Zeigler 1990) and STIMS (Pichler and Schwaertzel
1992), the slots in the frames can be filled in a man-
ner that is user-oriented, yet very close to their “pure”
mathematical forms. Note also that constraints (e.g.,
no direct feedbacks in a DEVS network) must be
added to the SES to ensure the compatibility of com-
ponent formalisms with the coupled system formalism
at the next higher level .

6 OBJECT ORIENTED IMPLEMENTA-
TION OF THE CANONICAL SES

The implementation of the canonical SES can
be supported by the object-oriented programming

610 Rozenblit and Zeigler

paradigm. In a realization of systems theory instru-
mented design framework, we must represent the fol-
lowing:

0 the system formalisms,

0 the constituents of aformalism, viz., the sets and

0 the formalism specialization hierarchy,

0 the constraints and restrictions defined for the

functions of the formalism,

formalism and its constituents,

0 the dynamic characteristics of the formalisms,
viz., its simulation algorithm in a multiformal-
ism framework, and

0 the operations defined for the formalisms.

In (Zeigler et al. 1993), we discuss the canonical
SES implementation principles in detail. Here, we
summarize the basic tenets of our approach.

Mapping the system formalisms and models to an
object-oriented is accomplished as follows: the for-
malisms can be represented by class definitions; the
models of the different formalisms are realized by in-
stances of the particular formalism classes.

The constituents of the models are defined by slot
(also called instance variable) definitions. Operations
on these slots in the different formalism classes can
be unified by the generic function concept of CLOS
(Keene 1989).

To represent the specialization relationship of the
different formalisms, the object oriented paradigm of-
fers the concept of class hierarchy with multiple in-
heritance. However, due to the diversity of the for-
malisms and their great variety of interrelations, such
a representation proves to be difficult. Mittelmann
and Praehofer (1991) propose a knowledge represen-
tation scheme where the constituents of system for-
malisms are implemented by abstract classes whereas
the actual formalisms are defined through dynamic
class definitions multiply inheriting from the appro-
priate constituent classes. They also provide an algo-
rithm to set up an inheritance hierarchy which mini-
mizes the duplication of slots and methods in a com-

ject oriented implementation.
Methods can also be used to implement the con-

straints defined on the constituents of system for-
malisms. We outline this in detail in (Zeigler et al.
1993).

plex specialization hierarchy, an objective of any ob-

7 C L O S I N G R E M A R K S

We have discussed the utility of adopting a for-
mal knowledge representation scheme for organizing

and managing generic classes of systems formalisms
within a design framework. Especially when applied
to intelligent system design, the number of formalisms
being proposed by researchers is growing tremen-
dously. Our approach is intended to make such for-
malisms attractive to researchers, practicing design-
ers, and systems engineers by providing concepts and
tools to manage and integrate them.

R E F E R E N C E S

Albus, J.S. 1992. A Reference Model Architecture for
Intelligent Systems Design. In A n Introduction t o
Intelligent and Autonomous Control. eds. Antsak-
lis, P. J . and K. M. Passino. Kluwer Academic
Publishers.

Antsaklis, P.J., and K.M. Passino. 1992. Introduc-
tion to Intelligent Control Systems with High De-
grees of Autonomy. In An Introduction t o Intelli-
gent and Autonomous Control. eds. Antsaklis, P.
J. and K. M. Passino. Kluwer Academic Publish-
ers.

Cho, T . 1993. A Hierarchical, Modular Simulation
Environment for Flexible Manufacturing, PhD Dis-
sertation, Dept. of Electrical and Computer Engi-
neering, The University of Arizona, Tucson, Ari-
zona.

Coyne, R. D. et al. 1990. Knowledge-Based Design
Systems. Addison-Wesley.

Keene, S. E. 1989. Object-Oriented Programming in
Common LISP. Addison Wesley.

Klir, G. J . 1984. General Systems Framework for In-
ductive Modeling. In Simulation and Model-Based
Methodologies: an Integrative View, eds. Oren, T.I.
et al. Springer-Verlag. 69-90.

Klir, G. J . 1985. Architectures of System Problem
Solving. Plenum Press.

Mittelmann, R., and H. Praehofer. 1990. Design of
an Object Oriented Kernel System for Computer
Aided Systems Theory and Systems Theory Instru-
mented Modelling and Simulation. In Computer
Aided Systems Xheory - EUROCAST '89, eds.
F. Pichler and R. Moreno-Diaz, 76-85. Springer-
Verlag.

Pichler, F. 1975. Mathematische Systemtheorie.
Walter de Gruyter.

Pichler, F. 1984. Symbolic Manipulation of System
Models. In Simulation and Model-Based Method-
ologies: an Integrative View. eds. Oren, T.I. et.
al. Springer-Verlag. 217-234.

Pichler, F., and H. Schwaertzel. 1992. (Eds.)
CAST Methods in Modeling: Computer Assisted
Systems Theory for the Design of Intelligent Sys-
tems. Springer-Verlag.

Representing and Constructing System Specifications 61 1

Praehofer, H. 1991. Systems Theoretic Foundations
for Combined Discrete Continuous System Simu-
lation. PhD Dissertation, Department of Systems
Theory, University of Linz, Austria.

Rozenblit, J . W., and B.P. Zeigler. 1988. Design and
Modeling Concepts. In International Encyclope-
dia of Robotics, Applications and Automation, ed.
Dorf, R. John Wiley and Sons. 308-322.

Rozenblit, J . W., and l3.P. Zeigler. 1990. Knowledge-
Based Simulation Design Methodology: A Flexible
Test Architecture Application, Transactions o f the
Society for Computer Simulation, 7:3: 195-228.

Rozenblit, J . W., andl Y. M. Huang. 1991. Rule-
Based Generation of Model Structures in Mul-
tifacetted Modeling and System Design. ORSA
Journal on Computang. 3:4: 330-344.

Wymore, W. A. 1976. Systems Engineering Method-
ology for Interdisciplinary Teams, John Wiley and
Sons, New York.

Zeigler, B. P. 1976. Theory of Modelling and Simula-
tion, John Wiley and Sons, New York.

Zeigler, B. P. 1984. Multifaceted Modelling and Dis-
crete Event Simulation, Academic Press.

Zeigler, B. P. 1990. Object-Oriented Simulation with
Hierarchical, Modular Models. Academic Press.

Zeigler, B. P., H. Praehofer, and J . W. Rozen-
blit. 1993. Integrating Systems Formalisms: How
Object-Oriented Programming Supports Cast for
Intelligent Systems Design. Journal of Systems En-
gineering. (in press).

AUTHOR BIOGRAPHIES

JERZY ROZENBLIT is an Associate Professor of
Electrical and Computer Engineering at The Univer-
sity of Arizona. His research interests lie in the appli-
cation of artificial intelligence and simulation model-
ing to systems design. He is a member of IEEE, ACM, '
and SCS.

BERNARD ZEIGLER is a Professor of Electri-
cal and Computer Engineering at The University of
Arizona. He is the author of Theory of Modelling
and Simulation, Multifaceted Modelling and Discrete
Event Simulation, and Object-Oriented Simulation
with Hierarchical, Modular Models.

