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D DESIGN FOR AUTONOMY:
An Overview

JERZY W. ROZENBLIT
Department of Electrical and Computer Engineering,
University of Arizona, Tucson, Arizona 85721

This paper discusses desiderata for support of high-autonomy systems design. Knowledge­
based design techniques are presented. Requirements for high autonomy are defined, and a
design methodology for achieving them is described. The suggested techniques provide high­
level aids for developing architectures and integrating high-autonomy systems with environ­
ments in which they are developed. The design methodology presented here stems from a
multifaceted stimulation-modeling framework.

INTRODUCTION

Autonomy as a design goal can be defined as the ability of a system to
function independently, subject to its own laws and control principles. Whereas
achievement of full and complete autonomy in artificial systems still borders on
the realm of impossible, quick strides are being undertaken to achieve high
autonomy in engineering designs, as evidenced by recent research and develop­
ment of high-autonomy systems (Antsaklis et al., 1989; Erickson and Cheese­
man, 1986; Fishwick et aI., 1991; Luh and Zeigler, 1991; NASA 1985; Ro­
zenblit and Zeigler, 1991; Zeigler, this issue). Work in high autonomy stems, to
a large extent, from NASA's Space Station program and its Systems Autonomy
Demonstration Project (Erickson and Cheeseman, 1986; NASA, 1985). This
project focuses on research in artificial intelligence (AI), human factors, and
dynamic control systems in support of Space Station automation and robotics
technology (Erickson and Cheeseman, 1986; NASA, 1985). The design, con­
struction, and evaluation of an intelligent autonomous system shell was recog­
nized as an important goal of the systems autonomy research.

Although most AI and expert systems (ES) tools and methods have been
successfully applied to planning, scheduling, diagnosis, and control, the appli­
cations treat these functions as separate entities. A salient requirement in
highly autonomous system is that such, and similar, functions can be integrated
to support the operation of a complete system. Architectures that foster the
integration have been proposed by a number of authors (Antsaklis et aI., 1989;
Luh and Zeigler, 1991; Sardis, 1983; Zeigler and Chi, 1990). The common
basis for the proposed designs is automatic intelligent control. The "center of
mass" of this work concentrates around the design of intelligent autonomous
control systems; this trend is well justified as the control community has well­
defined, theory-based methods that support such designs. At the same time,
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2 J. W. Rozenblit

the need to incorporate modeling and high-level decision-making techniques
for reasoning under uncertainty in autonomous controllers is well recognized
(Antsaklis, et aI., 1989).

New approaches to design of high-autonomy systems have emerged that take
a distinct, simulation-modeling approach. While most of the new developments
are application oriented, they do provide building blocks that may eventually
evolve into a comprehensive methodology for autonomous systems design. This
special issue on Design for High Autonomy of Applied Artificial Intelligence
brings together articles that present the emerging new research. The article by
Tamburino and Rizki offers a technique termed performance-driven autonomous
design for development of pattern-recognition systems. They propose a closed­
loop system that consists of a pattern-recognition module and an automatic de­
sign subsystem. The space of design solutions is defined by the pattern­
recognition model. This model also serves as the basis for evaluating the
performance of a particular design. The design module combines various learn­
ing methods to generate a recognition system.

Smith and Goldberg use the production-rule formalism to develop a learning
classifier system (LCS) as an approach to reinforcement learning problems. The
LCS can be thought of as an automaton capable of varying its structure. Such
systems can improve our understanding of automatic adaptation and thus could
prove useful in design and control where high autonomy is required.

A constraint-based framework for achieving flexible autonomy in multiagent
systems is proposed by Evans et al. In this approach, a model of distributed
problem solving is developed in which coordination of agents-each having a
problem-solving capacity-is defined as a constraint-satisfaction planning prob­
lem. A simulation-modeling study of an automotive repair facility serves as an
experimental testbed.

An intelligent design-flow management technique developed by Bretsch­
neider and Lagger improves computer-aided design (CAD) systems by eliminat­
ing the need for highly trained CAD operators, reducing the design time and
cost as well as the number of design errors. The technique is based on modeling
the design flow using Petri net formalism and employing rule-based problem
solving. Although this work is intended mainly to make the CAD systems more
autonomous, its tenets can serve as guidelines for a general design methodology.

Zeigler, in this issue as well as in Zeigler (1990) and in Zeigler & Chi
(1990), formulates model-based concepts for high-autonomy systems. The key
paradigm in this approach is the ability of the architecture to support multifac­
eted modeling of systems. Partial models are employed to represent distinct
functions and objectives. Multifaceted-modeling methodology (Zeigler, 1984a)
is employed to manage the multiplicity of models, their representations, and
levels of abstractions and formalisms.

In this paper, we attempt to establish desiderata for high-autonomy system
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Design for Autonomy 3
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FIGURE 1. Intelligent autonomous architecture (adopted from Erickson and Cheeseman. 1986.
and Zeigler. this issue).

design methodology. We emphasize the importance of integrating an autonomous
architecture design with the design of the environment in which the architecture
is to be deployed. In the ensuing section, we briefly summarize the requirements
for high autonomy. Then, we discuss knowledge-based system design tech­
niques. The techniques provide high-level aids for developing architectures of
highly autonomous systems. The design methodology presented here stems from
the multifaceted simulation-modeling framework.

HIGH-AUTONOMY CONCEPTS

Architecture

The definition of intelligent autonomous system as given by Erickson and
Cheeseman (1986) stipulates the following behavior characteristics:

• The system must plan and replan to realize its goals.
• It must be able to execute its plans.
• It must monitor its environment.
• It must have cognitive capabilities.
• It must have diagnostic capabilities.

The behavior requirements determine a generic architecture for an autono­
mous system. This architecture is depicted in Fig. 1.

The flow of information and control in this architecture is defined as follows
(Erickson and Cheeseman, 1986). The system's objectives (tasks, requirements,
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4 J. W. Rozenblit

performance measures, and constraints) are specified through the Interface Unit.
The Planner defines a nominal plan to realize the system's objectives. The Simu­
lator predicts the effects of the proposed plan based on its world model. The
plan is interpreted by the Executor and carried out by way of the Effector unit.
Changes to the state of the real system are detected by the Perceptor unit. These
changes are observed by the Monitor, which compares them with the expected
state of the real system based upon the results from the simulation-modeling
process. If small adjustments are required, they can be directly passed on to the
Executor. Otherwise, the Monitor passes information about large anomalies to
the Diagnoser, which identifies the problem and sends a replaning request to the
Planner. Central to the architecture is the CAD Methods Bank module. This
module includes a system design methodology (the role of which we explain in
detail in our section on support of design for autonomy) as well as the model and
knowledge bases.

Antsaklis et at. (1989) refine the architecture by breaking up its functions
into

I.Management and organization level, which determines the overall sys­
tem's goals and supports interaction with the system's external environment
through the interface unit;

2. Coordination level, which supports decision making, planning, and
scheduling; it interfaces the management and execution levels;

3. Execution level, which carries out control actions determined at higher
levels through automatic controllers and actuators; it collects data about the real
world through sensors, monitors, and its perception system.

Furthermore, at each level there is a hierarchy of information flow that
includes data, information, and knowledge (Zeigler, this issue).

Zeigler encapsulates knowledge in the form of models that can be employed
at different levels of control in an autonomous system to support its objectives.
The resulting structure is termed model-based architecture. The key distinguish­
ing feature of Zeigler's approach is the use of partial models to deal with the
multiplicity of the system's objectives and functions. Endomorphic modeling
provides a promising framework to handle the complexity of autonomous sys­
tems design and simulation (Zeigler, 1990; Zeigler, this issue).

Degree of Autonomy

Achieving a certain degree of autonomy is an important requirement in
design of intelligent autonomous systems (Antsaklis et a!., 1989; Erickson and
Cheeseman, 1986). One way to define the degree of autonomy is to consider the
extent of a system's interaction with its environment through the interface unit.
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Design for Autonomy 5

The less the interaction (intervention of the human operator in the system's
operation), the higher the system's autonomy (Erickson and Cheeseman, 1986).
In its Telerobotics Project (Erickson and Cheeseman, 1986; NASA, 1985),
NASA defines the degree of autonomy in terms of the level of detail and abstrac­
tion that the human operator has to employ when assigning tasks, and the length
of time robots can function on their own without any intervention from their
operator. In the model-based architecture, Zeigler (this issue) defines progres­
sive levels of autonomy achievement as

• Levell: The system should have the ability to achieve its objectives.
• Level 2: The system should be able to adapt to major environmental changes.
• Level 3: The system should be able to develop its own objectives.

In the ensuing sections we examine how a design methodology can support
the development of systems capable of achieving high autonomy. When viewed
in a design context, the Real World System component of the architecture in Fig.
I is treated as a system being designed. Thus it is crucial that the approach we
take to design, build, and eventually deploy this system meet the requirements
for autonomy discussed heretofore.

Next, we discuss system design and describe a model-based framework
called knowledge-based simulation design methodology (Rozenblit, 1985; Ro­
zenblit and Zeigler, 1988, 1990). Then, we formulate postulates for applying
this framework to high-autonomy system design.

SYSTEM DESIGN

We adopt the following definition: "Design is a goal directed activity pro­
ducing a set of descriptions of an artifact that satisfy a set of given performance
requirements and constraints" (Coyne, 1990). Design theory and methodology
is an emerging area of research (Agogino et aI., 1989; Bretschneider and Lag­
ger, this issue, Coyne, 1990; Dixon et al., 1989; Maher et aI., 1989; Rozenblit,
1985; Rozenblit and Huang, 1991; Rozenblit and Zeigler, 1988). It supports
understanding of the design process and its automation in the form of computer­
aided design. A number of methodologies and design systems have been devel­
oped to aid the engineering design process in different domains. Although dif­
ferent systems use different models to represent design knowledge and different
systems work in different domains, some common features can be found and
comparisons can be made among them.

A commonly taken view in knowledge-based, computer-aided design sys­
tems is that design is a search process in which a satisfactory design solution is
produced from a number of alternatives (Coyne, 1990; Rozenblit, 1985; Ro­
zenblit and Zeigler, 1991), which come from knowledge of the relevant domain.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
A
r
i
z
o
n
a
]
 
A
t
:
 
2
3
:
4
9
 
1
1
 
J
u
n
e
 
2
0
1
1



6 J. W. Rozenblit

The search proceeds in a design space that includes all knowledge and design
decisions known so far. The design space can be expanded during the design
process, that is, new knowledge and design decisions can be added to the space
when the existing knowledge and available design decisions are not sufficient to
obtain the design solution. If a design solution can be achieved using only exist­
ing knowledge in the design space, the process is' then termed routine design
(Coyne, 1990; Maher et aI., 1989). In routine design, no new knowledge is
added to the design space, and the design space is not expanded. If a design
solution cannot be achieved using only the existing knowledge in the design
space, new knowledge must be added. This kind of design is called creative
design (Maher et aI., 1989). In creative design, new knowledge is added into the
design space, and thus the space is expanded. The new knowledge marks the
creativity of design. The design, which is a search process in the design space, is
guided by some principles. These principles are given by a design methodology.

An important feature of design methodologies is the representation method
used in different stages of the design process. Some methodologies use a unique
representation method throughout the whole design process, and some employ
several different representation methods. Another characteristic is the domain
independence. Some methodologies can be used only in a specific domain, while
others are domain independent. Engineering design problems are often quite
large and complex. The decomposition of the large, complex design problem
into subproblems is another characteristic of design methodologies.

We have been developing a generic design methodology that embodies the
specified characteristics (Rozenblit, 1985; Rozenblit and Huang, 1991; Ro­
zenblit and Zeigler, 1988, 199). Its description follows.

Knowledge-based Simulation Design Methodology

The system design approach proposed by Rozenblit (1985) and by Rozenblit
and Zeigler (1988, 1990), termed knowledge-based simulation design (KBSD),
focuses on the use of modeling and simulation techniques to build and evaluate
models of the system being designed. It treats the design process as a series of
activities that includes specification of design levels in a hierarchical manner
(decomposition), classification of system components into different variants
(specialization), selection of components from specializations and decomposi­
tions, development of design models, experimentation and evaluation via simu­
lation, and choice of design solutions.

The design model construction process begins with developing a representa­
tion of design components and their variants. To appropriately represent the
family of design configuration, we have proposed a representation scheme called
the system entity structure (SES) (Zeigler, 1984a, 1990). The scheme captures
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Design for Autonomy 7

the decomposition, taxonomic, and coupling relationships among objects (enti­
ties) of a design domain.

Procedural knowledge is available in the form of production rules. They can
be used to manipulate the elements in the design domain by appropriately select­
ing and synthesizing the domain's components. This selection and synthesis
process is called pruning (Rozenblit and Huang, 1991; Rozenblit and Zeigler,
1988, 1990). Pruning results in a recommendation for a model-composition tree,
that is, the set of hierarchically arranged entities corresponding to model compo­
nents. A composition tree is generated from the system entity structure by se­
lecting a unique entity for specializations and a unique aspect for an entity with
several decompositions.

The final step in the framework is the evaluation of alternative designs. This
is accomplished by simulation of models derived from the composition trees.
Discrete event system specification (DEYS) (Zeigler, 1984a, 1984b, 1990) is a
modeling formalism used for system specification in the methodology, providing
a formal representation of discrete event systems. The performance of design
models is evaluated through computer simulation, and alternative design models
are evaluated with respect to experimental frames (Rozenblit, 1991; Zeigler,
1984a) that reflect design-performance questions. Results are compared and
traded off in the presence of conflicting criteria. The consequence is a ranking of
models and the support of choices of alternatives best satisfying the set of design
objectives.

We now describe the SES representation, the pruning procedures for gener­
ating design configurations, and the simulation modeling layer of our design
framework.

Design Model Structure Representation

As a step toward a complete knowledge-representation scheme for design
support, we have combined the decomposition, taxonomic, and coupling rela­
tionships in a knowledge-representation scheme called the system entity struc­
ture (SES). Previous work (Rozenblit, 1985; Rozenblit and Huang, 1991; Ro­
zenblit and Zeigler, 1988; Zeigler, 1984a, 1990) identified the need for
representing the structure and behavior of systems in a declarative scheme re­
lated to frame-theoretic and object-based formalisms (Zeigler, 1990). The ele­
ments represented are motivated, on the one hand, by systems theory (Wymore,
1967; Zadeh and Desoer, 1963) concepts of decomposition (i.e., how system is
hierarchically broken down into components) and coupling (i.e., how these
components may be interconnected to reconstitute the original system). On the
other hand, systems theory has not focused on taxonomic relations, as repre­
sented, for example, in frame-hierarchy knowledge-representation schemes. In
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8 J, W, Rozenblit

the SES scheme, such representation concerns the admissible variants of compo­
nents in decompositions and the further specializations of such variants.

The interaction of decomposition, coupling, and taxonomic relations in an
SES affords a compact specification of a family of models for a given domain.
In an SES, entities are conceptual components of reality for which models may
reside in a model base. Also associated with entities are slots for attribute­
knowledge representation. An entity may have several aspects, each denoting a
decomposition and therefore having several entities. An entity may also have
several specializations, each representing a classification of possible variants of
the entity.

The SES organizes possibilities for a variety of system decompositions and,
consequently, a variety of model constructions. Its generative capability facili­
tates convenient definition and representation of models and their attributes at
multiple levels of aggregation and abstraction. More complete discussions of the
SES and its associated structure transformations are presented in Rozenblit
(1985), Rozenblit and Huang (1991), Rozenblit and Zeigler (1988, 1990), and
Zeigler (1990).

Rule-based SES Pruning

In the KBSD methodology, a model is synthesized from components stored
in the model base. A synthesis specification is the result of pruning a substruc­
ture from the SES. Pruning can be viewed as a knowledge-based search through
the space of candidate solutions to the design problem. Production rules are used
to represent the knowledge consisting of modeling objectives, coupling con­
straints, users' requirements, and performance expectations. The aim of pruning
is to recommend plausible model candidates for an optimal solution to the design
problem (with respect to the design requirements and constraints).

The following steps are required to provide the rules that guide pruning of
the SES: (1) for each specialization, specify a set of rules for selecting an entity;
(2) for an entity with several aspects, specify rules for selecting a unique aspect;
(3) for each aspect, specify rules that ensure that the entities selected from
specializations are configurable, that is, the components they represent can be
validly coupled. Thus we have two types of rules:

Selection Rule Set: Selection Rules are associated with entities that have children
(aspects or specializations). The rules determine which specialization or as­
pect should be selected.

Synthesis Rule Set: Synthesis rules are associated with aspects. The rules check
whether the aspect's entities are configurable with respect to the coupling
constraints.
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Design for Autonomy 9

Each rule can be assigned a certainty factor indicating the rule's degree of
applicability.

These rule sets constitute a knowledge base for the inference engine that
prunes an SES for a particular application domain. Pruning results in a recom­
mendation for a model-composition tree.

To support the model-construction process, we have available a set of soft­
ware tools that are currently being integrated on AI workstations and PC's. An
expert system shell, MODSYN (model synthesizer) (Rozenblit and Huang,
1991), was developed and implemented to generate model structures. MODSYN
uses selection and synthesis rules to generate a recommendation for a composi­
tion tree. A suitable simulation environment can, given a composition tree,
automatically generate a model ready to simulate.

Modeling and Simulation

DEYS-Scheme is a simulation environment that synthesizes executable sim­
ulation models from a composition-tree specification (Zeigler, 1984a, 1984b,
1990). It thus serves as the modeling and simulation layer underpinning the
KBSD methodology. The DEYS formalism introduced by Zeigler (1984a, 1990)
provides a means of specifying a mathematical object called a system. Basically,
a system has a time base, inputs, states, and outputs, as well as functions for
determining the next states and outputs when current states and inputs are given.
The insight provided by the DEYS formalism is in the simple way that it charac­
terizes how discrete event simulation languages specify discrete event system
parameters. DEYS-Scheme, an implementation of the DEYS formalism in
Scheme (a Lisp dialect), supports building models in a hierarchical, modular
manner. This is a systems-oriented approach not possible in popular commercial
simulation languages. More detail regarding the formalism and simulation envi­
ronment is available in Zeigler (1990).

Experimental Frame Specification

Rozenblit (1991) has developed a methodology for defining conditions under
which simulation models can be observed and experimented with. Such condi­
tions are formalized as experimental frames. that is, specifications of circum­
stances in which a model (or a real system) is observed and experimented with
(Rozenblit, 1991; Zeigler, 1984a, 1990). An experimental frame reflects model­
ing objectives since (1) it subjects a model to input stimuli (which represent
potential interventions into the model's operation); (2) it observes the model's
reactions to the input stimuli and collects the data about such reactions (output
data); and (3) it controls the experimentation by placing relevant constraints on
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10 J. W. Rozenblit

values of the designated model state variables and by monitoring these con­
straints.

Experimental frames are given concrete form. Employing the concepts of
automata theory and the DEVS formalism, Zeigler (l984a) defines a generator,
which produces the input segments sent to a model, an acceptor, a device that
continually tests the run-control segments for satisfaction of the given con­
straints, and a transducer, which collects the input/output data and computes the
summary mappings.

The experimental frame specification methodology defines two schemes for
carrying out simulation experiments with hierarchical, modular models: (I) the
centralized architecture is based on a global experimental frame that specifies
conditions for the entire model; (2) the distributed architecture facilitates attach­
ments of frame components to model simulators at different levels of the model
hierarchy.

Phases in the KBSD Methodology

The phases required to execute the KBSD methodology are:

I. Decompositions and specializations of components of the system being
designed are conceptualized using the SES. We utilize the SES base as a reposi­
tory of previous design-modeling experience. Thus, we may retrieve an entity
structure from this base that is applicable to the modeling domain at hand. Such
an entity structure is modified and enhanced with entities required in the new
project. Models associated with new atomic entities must be developed and
placed in the model base.

2. A rule base to be used in the pruning process is developed.
3. The pruning engine is invoked, generating recommendations for candi­

date solutions to the design problem in the form of model-composition trees.
4. The transformation procedures that synthesize design models from the

composition trees obtained in phase 3 are executed.
5. Relevant experimental frames that reflect design objectives are defined.
6. Simulation results are evaluated, and design models are ranked.

These phases may be iterated in a feedback process, as depicted in Fig. 2.
In next section, we explore how the KBSD methodology can support high­

autonomy systems design.

SUPPORT OF DESIGN FOR AUTONOMY

Central to the architecture of Fig. 1 is the module CAD Methods Bank,
which integrates the other components of the architecture. We propose that it
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Design for Autonomv 11

Specification of Design Objectives.
Constraints. and Requirements

I

I ~<, I

Design System Entity Structure
Design Entity Development
Structure and
Pruning Rule
Base

•
Rule Based Pruning - Generation
of Alternative Design Structures

!.
Design Model Specification

Design Model
Base

I + •
I Experimental Frame Specification

~ I

Experimental
Simulation - Design ModelFrame Base
Evaluation and Ranking

FIGURE 2. Knowledge-based simulation design framework.

contain a methodology capable of supporting design, development, deployment,
evaluation, redesign, and maintenance of an autonomous system. We stipulate
here that the real-world component (the real system) be designed concurrently
with the other fundamental modules of the architecture of Fig. 1. We believe that
taking this approach will reduce the complexity of the management, coordina­
tion, and execution layers of the architecture and will increase the degree of
autonomy of the complete design.

Consider, for example, design of flexible manufacturing systems. In recent
years, machining and assembly of products has moved toward a partial or com­
plete automation, which will require higher autonomy. Extensive efforts are
under way to improve the efficiency and cost effectiveness of manufacturing
systems (Kusiak, 1990; Lenz, 1989).
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12 J. W. Rozenblit

To produce an artifact or carry out a task (machining, assembly, testing,
etc.), a production plan is developed that organizes a set of technological opera­
tions into a sequence of actions leading to the final product (Jacak and Rozenblit,
1991a, 1991b; Kusiak, 1990; Rozenblit and Jacak, 1991). These actions, carried
out by robots and automated devices, take place inside a production plant whose
physical layout greatly influences the performance of the overall system. The
physical layout of components on the work scene is the basis for robot-motion
planning, along with the kinematic and dynamic characteristics of the robot
itself. In this perspective, spatial design is the key component in realizing a
production plan and in achieving high efficiency of the system's operation. The
layout should be designed by taking into account not only the physical con­
straints but also the assembly production sequence. Hence, the interplay of be­
havioral and structural constraints such as material flow among devices, opera­
tions' precedence relations, safety or ease of maintenance, etc., is essential in
arriving at an efficient design. We elaborate this point further in the section on
autonomous system synthesis.

We now proceed to examine how the tools and methods of the KBSD meth­
odology can support design for high autonomy.

Design-Space Structuring

We postulate that the SES must be used to represent knowledge about the
components of a design domain. The SES representation must include the Real
World/System and Autonomous Architecture entities depicted in Fig. 3.

The Autonomous Architecture has a decomposition that reflects the require­
ments previously defined in the section on system design. Thus, at the highest
level of abstraction, all the major components (i.e., Perceptor, Effector, Execu­
tor, etc.) must be identified in the SES. These components can be further decom­
posed and classified, resulting in a knowledge base of components that can be
used in domain-specific design. To illustrate this point, let us consider the Per­
ceptor module. As shown in Fig. 3, this module may have a wide range of
sensors, for example, temperature and pressure sensors, tactile sensors, range
detectors, television cameras, audio sensors. Similarly, the Effectors may in­
clude activating relays, servomotors, valve shutoffs, etc. Requirements and con­
straints for a specific design problem will determine which sensors and actuators
should be used in the system being designed. For example, high-precision tactile
sensors will not be recommended for applications in which objects operate in
extremely high temperatures. We shall return to the issue of component selection
shortly.

In addition to the structure representation of the Autonomous Architecture,
its operational aspects can be captured by an SES as well. Zeigler and Chi
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FIGURE 3. High-level SES of an autonomous system.

(1990) and Luh and Zeigler (1991) give several examples that illustrate SES­
based plan generation for a robot-managed chemical laboratory.

The Real World/System component and its design have not received ade­
quate attention in the literature that reviews autonomous systems. We stress
again that the Real World/System design process should be an inherent phase in
the development of a complete, autonomous system. We must have methods
available to establish how the environment in which the autonomous architecture
is to operate affects the design of this architecture. Conversely, the autonomy
requirements will also impinge on the Real World/System design. The entity
structure should be used to represent the Real World/System's design domain, its
components, their attributes, decompositions, and taxonomies. Recall Fig. 3,
where the Real World/System entity may be a flexible manufacturing system.
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14 J. W. Rozenblit

Such a system can have various functional types (synchronous, asynchronous, or
hybrid) and several different subsystems. Selection of specific components and
configuration of the final system will depend in great measure on the constraints
and requirements needed to achieve autonomy. We discuss this issue next.

Autonomous System Synthesis

In this phase, a design description (in terms of the system's structure and
topology) is generated. In our design framework, this is accomplished by rule­
based pruning (Rozenblit and Huang, 1991).

The definition of rules that will select and synthesize specific components of
the real system and the autonomous architecture layers poses a very difficult
task. The difficulty lies mainly in translating the autonomy requirements into
design constraints. The general desiderata (e.g., the system must plan to realize
its goals; it must monitor its environment; it must have diagnostic capabilities)
translate into selection of planners, monitors, diagnosers, etc. However, the
definition of what constitutes a high degree of autonomy is still imprecise. Thus,
the formulation of design constraints is largely dependent on what designers
perceive as desirable characteristics, and it is done on a case-by-case basis
(Erickson and Cheeseman, 1986). For example, many designers consider a mo­
bile robot to be more autonomous than a fixed one. When synthesizing a robot­
based automation system, the higher the autonomy required, the more likely it is
that the designers will select mobile robots.

The degree of control exerted by a designer (and eventually the operator)
over the autonomous system's environment is also an important factor. If this
degree of control is high, then the role of the autonomous system layer in the
overall design is to monitor and check to be sure that the operational objectives
are met. This represents level I autonomy, as defined in the section on degree of
autonomy. If the degree of control is low, then the autonomous architecture
needs high autonomy. For example, in the manufacturing-systems domain, the
level of autonomy required usually falls in between. Typically, diagnostics is a
difficult issue, and it is desirable that the problems be identified automatically.
However, once the failure and its reasons have been identified, repairs can be
performed by human operators.

The engineering-type constraints are easier to handle. For example, if
device-temperature measurement is required, we must select a temperature sen­
sor or if an assembly system is to operate in hazardous conditions (e.g., high
toxicity), only robot-managed workcells can be used.

To summarize, we believe that the crucial issues here are (I) establishment
of a tangible representation of degree of autonomy, (2) translation of this repre­
sentation into rules for selection and configuration of the autonomous architec­
ture and its environment, and (3) development of pruning mechanisms that will
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Design for Autonomy 15

enable us to interface planning of the execution sequence with planning of the
real system structural design. We have pointed out the importance of this prob­
lem in the context of manufacturing systems (layout design) (Jacak and Ro­
zenblit, 1991a, 1991b; Rozenblit and Jacak, 1991).

Modeling

The key supposition of our approach is the use of simulation models to
evaluate alternative design solutions. The SES/model-based framework pro­
posed by Zeigler (1990) is employed to generate models of the real system, to
generate families of planning alternatives, and to build a hierarchical event­
based control structure. We refer the reader to Zeigler's paper in this issue for
further details.

Execution and Performance Evaluation

In principle, an autonomous system could base its operation on a compre­
hensive model of its environment (and itself). However, to develop such a model
would be an intractable task. Instead, in the model-based architecture, partial
models of different levels of abstraction are employed. The partial models are
oriented toward specific objectives, and thus they need to be evaluated in respec­
tive experimental frames that reflect those objectives.

The experimental frame-specification methodology (Rozenblit, 1991) inte­
grates well with the model-based approach to high-autonomy systems. First, it
provides a systematic approach to defining a set of conditions under which an
autonomous system is to operate and to measuring the degree to which the
system is capable of performing certain actions. The system's ability to achieve
a prespecified objective can be tested within a frame that defines this objective.
The ability to adapt to major environmental changes can be measured by emulat­
ing the changes through an appropriate experimental frame. Testing the ability
of the system to develop its own objectives will involve not only the creation of
new models to support the new objectives but also the development of relevant
experimental frames that reflect those objectives.

Second, the distributed frame architecture (Rozenblit, 1991) supports flexi­
ble experimentation with multicomponent systems that may exhibit various de­
grees of distribution and coordination among their components. It is the level of
abstraction at which we wish to observe the behavior of the system that deter­
mines where we attach the frame components and how we define their functions.
Thus, the degree of autonomy of individual system components may be ob­
served in local frames that pertain to those components or within higher-level
frames that assess the coordination and cooperation among the components.
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16 J. W. Rozenblit

CONCLUSION: ACHIEVING AUTONOMY THROUGH DESIGN

To conclude, we assess the value of a general methodology to support design
of high-autonomy systems. We first revisit the design phases, assign design
responsibilities, and point to critical issues.

• Design-Space Structuring: Domain experts assist in the development of the
SES. This is a multidisciplinary effort, involving experts in application do­
main, AI, control, and modeling.
Problems: None are significant because most engineering applications are
well structured. A repository of knowledge from previous designs is almost
always available, and new designs are rarely entirely innovative.

• Autonomous System Synthesis: Domain experts translate constraints into prun­
ing rules.
Problems: The notion of autonomy is intangible; autonomy definition in terms
of performance indexes required by the design methodology is lacking; no
procedures exist for amalgamating execution plans into the structural system
design.

• Modeling: Simulation experts are responsible for establishing the model base.
Problem: It is difficult to establish adequate modeling abstractions.

• Performance Evaluation: Simulation experts are responsible for establishing
the adequate experimental frame base.
Problem: It is difficult to achieve simulation efficiency in real-time applica­
tions.

We believe that a general methodology such as KBSD unifies the activities
necessary to accomplish an autonomous system design. Several advantages of
using the methodology are apparent:

I. The SES and pruning algorithm facilitates rapid knowledge-based selec­
tion and configuration of components in the design domain. Structure reconfi­
guration, which may become necessary due to major changes in environment or
failures of equipment, can be enabled by repruning the SES underlying the
design at hand.

2. Designs are modeled and simulated prior to being deployed. This consid­
erably reduces the cost of system implementation and its potential redesign.

3. Endomorphic modeling facilitates operational management of the autono­
mous architecture, that is, planning, scheduling, diagnosis, and control.

4. Experimental frames are a means of collecting quantitative data about the
degree to which a system is capable of achieving autonomy.

5. The methodology can integrate design of an autonomous architecture
with the environment in which the architecture is to be deployed.
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Design for Autonomy 17

Implementing our methodology in a specific, autonomous system design
context will no doubt require a considerable effort, especially in integrating all
the design phases. Our current work focuses on computer-aided design of flexi­
ble manufacturing systems (Jacak and Rozenblit, 1991a, 1991b; Rozenblit and
Jacak, 1991).
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