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Abstract 

Rozenblit, J.W. and J. Hu, Integrated knowledge representation and management in simulation-based design 
generation, Mathematics and Computers in Simulation 34 (1992) 261-282. 

The rising complexity of systems has increased the difficulty in managing knowledge in computer-aided design 
tools. Conventional representation schemes such as production rules, frames, AND/OR trees or semantic 
networks do not provide sufficient power for managing complex design knowledge. An integrated knowledge 
representation and management scheme, termed Frames and Rules Associated System Entity Structure 
(FRASES), is presented for model-based system design applications. A design methodology supported by 
FRASES is discussed. The methodology combines simulation and artificial intelligence to aid in the design 
model development and performance evaluation processes. The proposed representation scheme is fundamen- 
tal to the methodology in that (a) it captures the structure of the system being designed, (b) by organizing 
complex design knowledge into a hierarchical and entity-based structure, it increases the efficiency of design 
inference, and (c) it reduces the cost and increases the reliability of a knowledge base. A comprehensive 
design example illustrating the proposed scheme is also presented. 

1. Knowledge-based system design: an overview 

Knowledge-based frameworks consider design as a technological activity in which knowledge 
about a specific domain is used to represent design artifacts, constraints and requirements. It is 
a process that seeks all relevant knowledge and combines it to produce a design solution. 
Design is often considered as a search in which a satisfactory design solution is produced from 
a number of alternatives [5,35]. The search proceeds in a design space whose elements are 
design objects (components) and attributes (parameters). 
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Design frameworks differ mainly in the underlying knowledge representation scheme and the 
search methods employed for solution generation. However, all the methodologies attempt to 
capture and enumerate alternative solutions in a design domain. Design knowledge should be 
organized in such ways that it can be manipulated effectively and efficiently. The system design 
approach proposed in [20,28,29] termed knowledge-based simulation design, focuses on the use 
of modeling and simulation techniques to build and evaluate models of the system being 
designed. It treats design as a series of activities that include the following phases: specification 
of design levels in a hierarchical manner (decomposition), classification of system components 
into different variants (specialization), selection of components from specializations and de- 
compositions, development of design models, experimentation and evaluation by simulation, 
and choice of design solutions. 

In the ensuing sections, phases of the methodology are briefly summarized. We then focus 
on the knowledge representation and management aspect of the discussed framework and show 
how the proposed representation scheme can effectively support the generation of design 
solutions. 

1.1. Design problem formulation 

As pointed out earlier, design is often considered as a search problem. In our approach, a 
target design model (a goal state) should be generated which best satisfies design constraints 
and requirements. Thus, the problem can be formulated as follows. Given a set of design 
objectives, constraints and requirements OCR, find a design model DM* such that: DM* = 
be.st{DMi I i = 1,. . . , n}, where each DM, is a design model that satisfies the set of constraints 
OCR (a set of objectives, constraints and requirements), and “best” is a function ranking and 
selecting the design alternatives DM. 

The knowledge-based simulation design methodology provides a set of methods for generat- 
ing a solution to the above problem. The solution process consists in constructing a set of 
alternative design models DM,s, simulating their behavior, and selecting the model DM* 
[21,24]. 

The design model construction process begins with developing a representation of design 
components and their variants. Thus a knowledge representation scheme is needed to capture 
the following three relationships: decomposition, taxonomy and coupling. Decomposition 
knowledge means that the structure has schemes for representing the manner in which an 
object is decomposed into components. Taxonomic knowledge is a representation for the kinds 
of variants that are possible for an object, i.e., how it can be categorized and subclassified. The 
synthesis (coupling) constraints impose a manner in which components identified in decomposi- 
tions can be connected together. The selection constraints limit choices of variants of objects 
determined by the taxonomic relations. 

Beyond this, procedural knowledge should be available to select and synthesize the system’s 
components identified in the chosen representation scheme. This selection and synthesis 
process is called pruning [25,26]. Pruning results in a recommendation for a model composition 
tree, i.e., the set of hierarchically arranged entities corresponding to model components. 

Performance of design models is evaluated through computer simulation. Alternative design 
models are evaluated with respect to experimental conditions (experimental frames [36]) that 
reflect design performance questions. Results are compared and traded off in the presence of 
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conflicting criteria. This results in a ranking of models and supports choices of alternatives best 
satisfying the set of design objectives. 

The first subproblem in generating a design solution is to find a set of design model 
structures (composition trees) that conform to static design constraints and requirements. (By 
static, we mean the constraints and requirements whose satisfaction can be accomplished prior 
to simulation of a design model’s behavior.) 

1.2. Rule-based model structure generation 

The rule-based generation of admissible model structures requires that a knowledge base 
that contains rules for selection and configuration of the systems’ components be specified. 
Production rules [33] are used to represent design objectives, constraints, user’s requirements 
and performance expectations. The generation of structure, called pruning, can be interpreted 
as a search directed by constraints through the search space consisting of design objects, their 
variants identified in taxonomic relationships and their decompositions. 

The following steps are required to provide the rules that guide pruning the space of design 
components given by a structured representation scheme: (1) for each taxonomic relationship 
specify a set of rules for selecting a design component (object>; (2) for a design object with 
several decompositions specify rules for generating a unique decomposition; (3) for each 
decomposition specify synthesis rules that ensure that the objects selected from specializations 
and aspects are configurable, i.e., the components they represent can be validly coupled. Each 
rule can be assigned a certainty factor indicating the rule’s degree of applicability. Rule-based 
pruning is an effective means of generating recommendations for composition trees that satisfy 
static design constraints [26]. 

1.3. Simulation and evaluation 

We separate the model description from a simulation experiment under which the model is 
observed. This facilitates much greater flexibility in design model ranking and relieves the 
models from the burden of collecting data about themselves. A set of circumstances under 
which a model is to be observed and experimented with is called an experimental frame. Zeigler 
[36] has shown that an experimental frame can be realized as a coupling of three components: a 
generator (supplying a model with an input segment reflecting the effects of the external 
environment upon a model), an acceptor (a device monitoring a simulation run) and a 
transducer (collecting and processing model output data). 

The data collected from alternative design model runs within respective experimental frames 
are compared in order to select the best design solution. Clearly, design performance measures 
may conflict with one another. Therefore, Multiple Criteria Decision Making (MCMD) meth- 
ods are used for ranking candidate designs. Some MCMD criteria and simple examples of 
design trade-offs are presented in [8]. 

To gather up the strands, we now summarize the design solution generation phases. 

1.4. Design generation phases revisited 

(1) We conceptualize decompositions and specializations of components of the system being 
designed using a structured knowledge representation scheme. 
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Pruning Alternative System’s 
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Fig. 1. Model-based system design. 

(2) We develop a rule base to be used in the pruning process. 
(3) We invoke the pruning engine to generate recommendations for candidate solutions to 

the design problem in the form of model composition trees. 
(4) We synthesize models from the composition trees obtained in phase (3). 
(5) To carry out a simulation experiment, we specify an experimental frame. 
(6) We eval ua e t simulation results and rank models with respect to the performance 

measures that express design objectives and requirements. MCMD criteria are used to define 
the “best” function which generates DM* = be.st{DMi I i = 1,. . . , n). 

Figure 1 illustrates these phases. 

2. Design knowledge representation 

In the last decade the technology of knowledge-based systems has been widely used in 
solving various engineering problems. The expected contributions of knowledge engineering to 
CAD/CAM are the integration of complex system’s components and the construction of an 
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efficient model for the design process [17]. To be successful in these efforts, design knowledge 
has to be organized properly so that it can be manipulated effectively and efficiently. Generally, 
performance of a knowledge-based system is determined by its knowledge management 
scheme. Unfortunately, the optimal knowledge management strategy is usually application-de- 
pendent. Up to now, there is no universal scheme that covers all the diverse design applica- 
tions. To assure the high quality of a knowledge-based system design process, more powerful 
management schemes are needed. 

When reviewing the common traits of design practice, one finds that structured schemes (i.e., 
hierarchy, modularity and regularity) are used to reduce the complexity of the design process 
[32]. The use of hierarchy involves dividing a system into subsystems and then repeating this 
operation on subsystems until the complexity of the subsystems is at a desired abstraction level. 
A modular design approach facilitates flexibility and future modifications. Modularity helps 
designers reduce the complexity of system models and clarify an approach to a problem. 
Regularity denotes employing a regular structure at all design levels to simplify the design 
process. In order to increase the efficiency of design processing and knowledge management, 
design knowledge must be organized in a way that reflects such common traits. 

Thus, to describe the structure of the system being designed and its topology, a structure is 
needed that embodies knowledge about decomposition, taxonomy, coupling and design at- 
tributes. As indicated in Section 1, decomposition knowledge means that the structure has 
schemes for representing the manner in which an object is decomposed into components. 
Taxonomy captures variants that are possible for an object, i.e., how it can be categorized and 
subclassified. Coupling information provides communication links and indicates how compo- 
nent models are synthesized to form the overall system’s model. Attributes characterize static 
properties and the dynamic behavior of a system. In addition to the declarative knowledge 
listed above, we need procedural knowledge that can be used to support the designer in 
carrying out the design process. Such knowledge includes rules for selecting alternative system 
components, procedures for evaluating performance of a design prototype, and methods for 
modifying and varying design parameters. 

Although different schemes such as production rules [15], f YarneS [14], semantic networks [19], 
AND/OR trees [16], predicate logic [4] and the system entity structure [36] have been introduced 
for knowledge representation and management, none of them provides enough expressive 
power when applied to system design individually. In the ensuing sections, we refine the system 
entity structure concept by integrating it with the frame and production rule specifications. This 
integration results in a hierarchical, entity-based knowledge management scheme called Frames 
and Rules Associated System Entity Structure (FRASES) [8,9]. We demonstrate how FRASES 
supports various design phases of our methodology. First, however, a summary of different 
representations is given. 

2.1. Frames 

Frames are primarily intended to handle declarative knowledge [33]. A frame is a general- 
ized property list which can be divided into discrete elements called “slots”. Each slot describes 
an attribute which may contain one or more facets such as “value”, “default” and/or 
“if-needed”. Facets can have many values. A value can be either a number, a symbol, a string 
or a procedure. Procedures that are activated automatically when a value is needed (i.e., 
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if-needed), when a value is placed (i.e., if-added) or when a value is removed (i.e., if-removed) 
are called demons. Although a frame is a convenient means for representing declarative 
knowledge, it does not provide efficient schemes for managing procedural knowledge. 

2.2. Production rules 

Production rules represent knowledge in two parts: condition and action. Each rule is written 
in an “IF-THEN” clause. The “IF” part states a situation or a premise and the “THEN” part 
states an action or a conclusion. A rule is triggered if current facts match the antecedent 
(condition) part of the rule. Conflict resolution strategies [33] are applied to select the rule to 
be fired when multiple rules are triggered in forward chaining reasoning. Once a rule is fired, 
its action part is carried out [16,33]. 

Although production rule-based systems support flexible inferencing on procedural knowl- 
edge, they do not provide explicit schemes for managing declarative knowledge related to 
system design architectures. During knowledge refinement, whenever a rule is modified, the 
entire rule base must be searched in order to find all related rules that need to be updated. 
This increases the cost of maintaining a knowledge base. 

2.3. The system entity structure 

As a step toward a complete knowledge representation scheme for design support we have 
combined the decomposition, taxonomic and coupling relationships in a knowledge representa- 
tion scheme called the System Entity Structure (SES) [36]. Knowledge representation is now 
generally accepted to be a key ingredient in designing artificial intelligence software. Previous 
work [20,23,27] identified the need for representing the structure and behavior of systems in a 
declarative scheme related to frame-theoretic and object-based formalisms [37,38]. The ele- 
ments represented are motivated, on the one hand, by systems theory [13,34] concepts of 
decomposition (i.e., how a system is hierarchically broken down into components) and coupling 
(i.e., how these components may be interconnected to reconstitute the original system). On the 
other hand, systems theory has not focused on taxonomic relations, as represented for example 
in frame-hierarchy knowledge representation schemes. In the SES scheme, such representation 
concerns the admissible variants of components in decompositions and the further specializa- 
tions of such variants. 

The interaction of decomposition, coupling and taxonomic relations in an SES affords a 
compact specification of a family of models for a given domain. In a system entity structure, 
entities refer to conceptual components of reality for which models may reside in a model base. 
Also associated with entities are slots for attribute knowledge representation. An entity may 
have several aspects, each denoting a decomposition, and therefore having several entities. An 
entity may also have several specializations, each representing a classification of possible 
variants of the entity. 

The construction of, and operations on a system entity structure are governed by the 
following axioms. 

(1) Uniformity: any two nodes with the same labels have identical attached variables and 
isomorphic subtrees. The uniformity axiom ensures compactness of representation; once a node 
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Fig. 2. System entity structure representation of RC-line. 

and its substructure and attributes have been specified, it need not be done again if a new node 
with the same label in a different path of the tree is created. 

(2) Strict hierarchy: no label appears more than once down any path of the tree. The strict 
hierarchy axiom ensures that no object can be decomposed into itself. 

(3) Alternating mode: each node has a mode which is either “entity”, “aspect” or “specializa- 
tion”; if the mode is entity, then the modes of its successors are aspect or specialization; if the 
mode is aspect or specialization, then its children are entities. The mode of the root is entity. 
The alternating mode axiom ensures consistency in successive decompositions and specializa- 
tion of entities. The root of an SES tree is always an entity. 

(4) Inheritance: every entity in a specialization inherits all the variables, aspects and 
specializations from the parent of the specialization. The inheritance axiom facilitates deriva- 
tion of alternate arrangements of entities in an SES tree. 

(5) Vulid siblings: no two sibling nodes have the same label. 
(6) Attached uuriubles: no two variables attached to the same item have the same name. 
The last two axioms prevent us from specifying duplicate names for entities in the same 

decomposition (specialization) and from duplicating the names of entities’ attached variables. 
The axioms furnish a unifying set of rules for developing and manipulating entity structures. 
For illustration, consider Fig. 2 that shows a system entity structure representation of a 

lumped RC-line model for a VLSI interconnection design. As shown in the figure, an RC-Line 
can be decomposed (denoted graphically as 1) into functional modules: Drivers /Receivers and 
RC-Segments. Two design alternatives (denoted by II), Repeaters and Cascaded-Inuerters, are 
used for the realization of Driuers /Receivers. Since the number of RC-Segments may vary with 
the selection of Drivers/Receivers, a multiple decomposition (denoted 111) is used for repre- 
senting entities whose number may vary in the system. 

The system entity structure organizes possibilities for a variety of system decompositions and, 
consequently, a variety of model constructions. Its generative capability facilitates convenient 
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definition and representation of models and their attributes at multiple levels of aggregation 
and abstraction. More complete discussions of the system entity structure and its associated 
structure transformations are presented in [20,28,36]. 

The SES represents the structural information about a system in a hierarchical and modular 
manner. However, it does not support the management of procedural knowledge. Thus, we 
propose to combine the system entity, frames and production rule representations into a single 
comprehensive scheme that can be effectively exploited in the design process. 

3. Frames and rules associated system entity structure (FRASES) 

FRASES combines the three aforementioned schemes. An underlying data structure of 
FRASES is the system entity tree. Each node of the SES tree has a frame attached to it that 
encompasses declarative and procedural knowledge in a design problem. Such a frame is called 
Entity Information Frame (EIF). An Entity Information Frame (EIF) integrates design knowl- 
edge by providing slots for representing design procedural knowledge. Thus, the SES layer 
assures that the decomposition, taxonomic and coupling relationships are properly specified 
while each EIF captures the following information about the node to which it is attached: 

EIF = (MD, AT, DS, SR, PR, LK), 

where MD is the name of the simulation model specified for the entity node; AT are attributes 
of the entity; DS is the design specification for the component represented by the entity; SR 
are the simulation requirements for the model of the entity; PR are production rules for design 
structure pruning and synthesis; LK are links (pointers) to other FRASES nodes. 

In our methodology, the behavior of a system component (represented by an entity and its 
EIF in the FRASES tree) is determined by a simulation model defined in the model base. To 
extract the model specification for simulation, a key (i.e., model name MD) is provided. As 
shown in Fig. 3, the Minimum-Size-Repeater (a leaf entity) has a corresponding model called 
MSR defined in the model base. Therefore, the MD slot of the EIF associated with Minimum- 
Size-Repeater is: (MD (name (value MSR))). 

The AT-slot contains attributes that characterize the static and dynamic properties of an 
associated object [22]. In general, attributes of an object can be categorized into three types: 
static variables, design parameters and performance indices. Static variables are constant 
attributes that should not be changed during the design process. Each static variable is usually 
initialized with a default value by a database query or by a user-provided function. Design 
parameters are variables related to behavioral characteristics of the associated object. Perfor- 
mance of the target system is determined by the combination of design parameters. To assure a 
valid design that meets all system requirements, each design parameter is associated with a 
quantitative function for boundary checking and primary estimation. Performance indices are 
variables used to evaluate the system performance. 

For illustration we describe the Minimum-Size-Repeater. We may provide information such 
as “node-type” (static variable), “input-capacitance” (design parameter), “output-resistance” 
(design parameter), “power-dissipation” (performance index) and “50%-delay” (performance 
index). To calculate the “power-dissipation” and “50%-delay”, quantitative functions called 
“MSR-power-fun” and “MSR-delay-fun” are used. The corresponding EIF representation of a 
Minimum-Size-Repeater is: 
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Fig. 3. FRASES representation of RC-line. 

(Minimum-Size-Repeater 

(MD (name (value MSR))) 

(AT (node-type entity) 

(input- capacitance 

(unit (default micro-farad)) 

(if-needed (data-query MSR input-capacitance))) 

(output-resistance 

(unit (default ohm)) 

(if-needed (data-query MSR output-resistance))) 

(power-dissipation 

(unit (default watt)> 

(if-needed MSR-power-fun)) 

(50%-delay 

(unit (default micro-second)) 

(if-needed MSR-delay-fun))) 
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The Design Specification (DS) slot accepts design specifications such as design objectives, 
system constraints and criteria preference that must be satisfied by the target system. Consider 
again the Minimum-Size-Repeater as an example. We may want to impose design constraints on 
“50%-delay” and “power-dissipation”. Then, a typical design specification for the Minimum- 
Size-Repeater is given in the following frame: 

CDS (constraints (<50%-delay O.l)(< power-dissipation I)> 

(objectives (minimize power -.dissipation 50%-delay)) 

(preference (rank 50%-delay power-dissipation)) 

1 

Design constraints imply requirements that must be satisfied by the resulting system. Each 
design constraint is expressed by the “relation”, the “index” and the “value”. Design objectives 
imply the design goal. Typical specification of design objectives are stated to maximize and/or 
minimize one or more performance indices. The specification of design objectives guides 
appropriate application of Multi-Criteria Decision Making (MCDM) [8,24]. 

Design preference conveys the designer’s preference over a set of performance indices. The 
preference scheme guides the system in selecting the best design model based on the desired 
MCDM method. Four types of preference schemes (i.e., unknown, complete, ranking and 
fuzzy) [8,24] are allowed to express the preference over criteria. Under the unknown prefer- 
ence, all design criteria are regarded as having equal importance. The complete preference 
scheme is used when the user is able to specify exact preference for each criterion. The ranking 
preference is used whenever partial preference information is available but is not comprehen- 
sive enough to give the exact preference values of the criteria. The fuzzy preference allows the 
user to define the preference range of criteria with the lower and upper bound. 

The Simulation Requirements (SRI slot defines experimental circumstances under which a 
design model is to be simulated such as input segments and control schemes. For example, if a 
unit step function is selected as input and the simulation is run for 5 time units, then the 
FRASES representation for the associated SR-slot takes the following form: 

(SR (arrival (value unit-step)) 

(control (run-time (value 5)))) 

The PR-slot contains production rules for pruning design alternatives and configuring design 
model structures at different levels of abstraction. Constraints derived from the architecture, 
technology and available resources are translated into production rules to assist in design 
reasoning. In FRASES, selection rules for pruning alternative components are defined in the 
PR slot of the Entity Information Frames of specialization nodes; synthesis rules for configur- 
ing design objects are defined in the EIFs of decomposition nodes. For instance, to determine 
the driving scheme for the RC-Line, the selection rule is defined for the specialization node 
rc-driving-scheme as follows: 

(rc-driving-scheme 

(AT (node-type (value specialization))) 

(PR (t-cd-rl: if (> line-resistance (* 7 MSR.on-resistance)) 

then (prune Cascaded-Inverters))) 

1 ;; ‘prune ’ means to remove 
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Synthesis rules are defined to indicate how component models are coupled together to form 
a larger model. For example, if a coupling function named “repeater-coupling-fun” is provided, 
we define a synthesis rule for the repeater-multi-dec as: 

(repeater-multi-dec 

(AT (node-type (value multi-decomposition))) 

(PR (rem-rl: if (=operation-phase coupling) 

then (repeater-coupting- fun Repeaters number))) 

The LK slot defines pointers in the FRASES tree. For example, the rc-driving-scheme has 
parent nodes RC-Drivers /Receivers and children nodes Repeaters and Cascaded-Inverters. This 
information is represented in the EIF as shown below: 

(t-c-driving-scheme 

(AT (node-type (value specialization))) 
. . . 

(LK (children Repeaters Cascaded-Inverters) 

(parent RC-Drivers/Receivers)) 

In general, the structure for each EIF slot is the following template: 

(MD)=(MD (name)) 

(AT)=( ((name) (value (atom))) (tuning (List)) 

(if-needed (List)) (boundary (List))) 

(DS)=( (constraints (List)) (preference (List)) 

(objectives (max [(name)]) (min [(name)]))) 

(SR)=( (arrival (List)) (control (List))) 

(PR)=( ((name) if (List) then (List))) 

(LK)=( (children (name)) (parents (name))) 

(name)=string 

(atom)=symbotlstring 1 number 

(tist)=functionltogic- expression 

By exploiting the reasoning flexibility provided by production rules, the efficiency in repre- 
senting declarative knowledge offered by frames, and the visibility and hierarchy supported by 
system entity structures, FRASES is a powerful and efficient scheme that supports modern 
system design. In the next section, we illustrate its application to a high-level design of VLSI 
interconnects. 

4. Example - VLSI interconnect design 

VLSI package modeling denotes the development of equivalent electrical circuits for 
describing the physical structure that makes up a given package. The overall modeling 
procedure for microelectronics package design begins with specifying the physical parameters 
of the mechanical structure. For example, a single interconnection has known line lengths (l), 
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widths (w) and thickness (t). Resistivity (p) of conductor materials, dielectric constant (~1 of 
insulator materials and mobility of carriers (E) are normally limited by the capability of the 
existing manufacturing process and materials. Once the parameters for the mechanical struc- 
ture are known, the package’s electrical design commences with a modeling procedure that 
converts the structure into an equivalent electrical circuit. The result is a linear network made 
up of resistances (R), inductances (L), and capacitance (C) [18,30,31]. 

Although transmission line analysis gives the correct answer irrespective of the rise time, the 
same result can be obtained with similar accuracy using lumped approximations when the rise 
time is five times larger than the time of flight delay. The lumped model calculations are much 
simpler than the transmission line analysis. Based on this observation, we may classify a VLSI 
interconnection into three lumped equivalent models: High-Capacitance-Line, RC-Line and 
Transmission-Line. Rules are associated with the specialization node (equivalent-model) to 

VLSI-Interconnection 

II 
equivalent-model 

Transmission 
Line 

High 
Capacitance 

Line 

RC-Line 

(VSLI-Interconnection 
(AT (node-type (value “ent”)) 

(line-length (if-needed ask) (unit cm)) 
(design-rule (if-needed ask) (unit micron)) 
(IC-technology (if-needed ask) (boundary “cmos nmos bipolar GaAs”)) 
(package-technology (if-needed ask) 

(boundary “WSI Ceramic-Hybrid Thin-Film Printed-Wiring-Board)) 
(conductor (if-needed ask) (boundary “Au Al Cu Ag”)) 
(line-capacitance (if-needed 

(/ (* (query dielectric dielectric-constant) 
line-width line-length) dielectric-thick)) (unit farad)) 

(time-of-flight-delay (if-needed 
(/ (* sqrt (query package-technology relative-dielectric-constant)) 

line-length) 30)) (unit nsec)) 
(transistor-on-resistance (value (query IC-technology on-resistance)) (unit ohm) ) 

. . . 
(LK (parent ““) (children equivalent-model)) . . ) 

(equivalent-model 
(AT (node-type (value “spec”))) 
(PR (eml: if (< signal-rise-time (* 3 time-of-flight-delay)) 

then (prune RC-Line High-Capacitance-Line)) 
(em2: if (> signal-rise-time (* 3 time-of-flight-delay)) 

then (prune Transmission-Line)) 
. . . . 

(LK (children High-Capacitance-Line RC-Line Transmission-Line) 
(parent VLSI-Interconnection)) . . . ) 

(RC-Line (AT (node-type (value “ent”)) . . . . 

Fig. 4. FRASES representation for equivalent models of VLSI interconnect. 
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guide a proper selection of equivalent models. To depict the geometry of an interconnection, 
parameters such as line-width, line-length, line-thickness are associated with a query function for 
acquiring physical information about the conductors. Similarly, a query function is associated 
with conductor-material, package-technology and IC-technology for acquiring processing infor- 
mation. All these user-provided parameters are contained in the Entity Information Frame 
(EIF) of VLSI-Interconnection. Note that the knowledge defined in the EIF of VLSI-lntercon- 
nection will be inherited by High-Capacitance-Line, RC-Line and Transmission-Line. 

To provide information for design constants (i.e., resistivity, magnetic permeability, relative 
permittivity and dielectric constant), we use associated database queries for data acquisition. 
After all related parameters are acquired, quantitative functions are used to estimate propaga- 
tion-speed, line-resistance, time-of-flight-delay and signal-rise-time. This results in the FRASES 
and its associated EIFs as shown in Fig. 4. Figure 5 shows more design detail, as described 
below. 

To further the design detail, the RC-Line is decomposed into RC-Segments and RC-Drivers 
/Receivers circuits. Since the number of RC-Segments depends on the realization of RC- 
Drivers /Receivers, synthesis constraints and coupling information about RC-Segments and 
RC-Drivers / Receivers must be defined in the EIF of rc-module-dec. There are two alternatives 

VLSI 
Interconnection 

II 
equivalent-model 

High R~_Line Transmission 
Capacitance 1 Line 

@c-module 
(AT (node-type (value “de?))) 
(PR (rcl if (select? Repeaters) 

then (set Repeatersnumber RC-Segments.number)) II 

(rc2 if (select? Cascaded-Inverters) n I l-l 
then (set RC-Segments.number 1)) 

(rc3 if (and (select? Repeaters) (equal? phase “coupling”)) 
then (link RC-Linein RC-Segments[ l].in) Line ’ rc-module 

(for (i=l; i <= Repeaters.number; i++) 
(link Repeaters.out[i] RC-Segments.in[i]) I ’ 1 

(if (< i Repearers.number) RC-Segments 

(link RC-Segments.out[i] Repeaters.in[i+l]))) III 

(link RC-Segments[RC-Segmenrs.number].out rc-multi-dec 

RC-Line.out))) III 
. . . RC-Segment 

(LK (parent RC-Line) 
(children RC-Segments RC-Driver/Receiver))) 

(Repeaters 
(AT (node-type (value “ent”)) 

(number (if-needed (sqrt 
(/ (* 0.4 RC-Line.line-resistance 

RC-Line.line-capacitance) 
(* 0.7 (query minimum-size-buffer input-capacitance) 

(query minimum-size-buffer output-resistance))))) 
(boundary (> number 2))) ) 
. . . 

(LK (parent rc-driving-scheme) 

(children repeater-multi-dec))) 

Driver Receiver R’i 
II 

rc-driving-scheme 

type 
II 

II 
I I 

Repeaters Cascaded 
III Inverters 

rep-multi-dec III 
III inv-multi-dec 

Repeater III 

II Inverter 

(rc-multi-dec 
(AT node-type (value “m-dec”))) 
(PR 

Optimal-Size 
Repeater 

Minimum-Size 
Repeater 

Fig. 5. FRASES representation for equivalent RC-line model of VLSI interconnect. 
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(Repeaters and Cascaded-Inverters) for the realization of RC-Drivers-Receivers. If the Repeaters 
is selected, the number of RC-Segments is equal to the number of Repeaters. On the other 
hand, if the Cascaded-lnverters is selected, the number of RC-Segments is equal to one. To 
assure the strict hierarchy of FRASES knowledge, this synthesis constraint is specified in the 
EIF of rc-module-dec. Rules for selecting the proper driving scheme(s) for drivers/receivers 
circuits are defined in the EIF of rc-driving-scheme. For example, the Repeaters is selected 
when the RC constant of the wire is seven times the minimum-size buffer. 

Both Minimum-Size-Repeater and Optimal-Repeater can be used to drive signals for an RC 
line. In order for the repeaters to reduce the overall delay, their number must be at least two. 
The optimal number of repeaters depends on the performance requirements. To properly 
describe the object whose number may vary with system requirements, a multiple decomposi- 
tion (triple bars) is used in FRASES. To determine the optimal number of repeaters, a 
quantitative routine is associated with the number attribute in the EIF of Repeaters. This 
number function is inherited by both specialized variants: Minimum-Size-Repeaters and Opti- 
mal-Repeaters. For optimal repeaters, an additional procedure for estimating the size increase 
factor is required. Coupling among individual repeaters is defined in the EIF of repeater-mult- 
dec. The above expansion of an RC-Line is illustrated in Fig. 5. 

A similar approach for decomposing the RC-Line is applied to High-Capacitance-Line and 
Transmission-Line. For example, driving methods such as Cascaded-Znverters, Precharge-to-VDD, 
Static-Sense-Amplifier, Clocked-Sense-Amplifier and Precharge- to- VDD / 2 can be used to re- 

VLSI 
Interconnection 

equivalent-model 

n-i-i-7 
High Transmission 

C-Driver/Receiver 

II 
c-driving-scheme 

rc-driving-scheme 

-ded Repeaters 
III Inverters 

repeater-multi-dec III 
III inverter 

Repeater multi-dec 

II III 
type Inverter 
II . . 

Clock-Sensed 
Amplifier IIum-Size Optimal-Size 

Repeater Repeater 

Fig. 6. FRASES tree of VLSI interconnect. 
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RC-Line 
equivalent-model 

I 
rc-module 

I 
I I 

RC-Segments 
III 

rc-multi-dec 

I 
Repeaters 

III 
III 

RC-Segment 

III 
repeater-multi-dec 

n n 
Optimal-Size Minimum-Size 

Repeater Repeater 

Fig. 7. FRASES tree generated after pruning. 

duce the propagation delay in a high-capacitance line. Rules for selecting appropriate driving 
circuits are derived and are attached to the specialization node called c-driving-scheme. For 
transmission lines, rules must determine the termination scheme using resistors, capacitors, 
diodes and transistors. The resulting FRASES tree is given in Fig. 6. The Appendix contains a 
detailed description of Entity Information Frames for the interconnect design. 

The application domain of the current FRASES structure can be expanded to assist in 
design modeling of multiple conductors bi adding design knowledge for coupled inductance, 
coupled capacitance and topologies of interconnection networks. More design details about 
electrical VLSI package modeling can be found in [1,3,6,7,12,18,30,31]. 

After the design knowledge is built into FRASES, design specifications are defined to drive 
design knowledge processing. Each entity node of the FRASES tree has its own design 
specification. This results in a hierarchical system design specification. For example, the 

RC-Line 
equivalent-model 

I 
rc-module 

rc-multi-dec 

Optimal-Size 
Repeaters 

III 
repeater-multi-dec 

III 
Optimal-Size 

Repeater 

RC-Line 
equivalent-model 

I 
rc-module 

rc-multi-dec 

Minihum-Size 
Reueaters 

repeatl!!multi dec 
III - 

Minimum-Size 

Model- 1 Model-2 

Fig. 8. Alternatives for RC-line design model structures. 



276 J. W. Rozenblit, J. Hu / Knowledge representation and management 

I 

Repeaters RC-Line 

Repeater- 1 Repeater-2 Repeater-3 

4 A & 
,I in ,I I, 

1, ii i, I 
1, 1, If 

,/ 1, Ii 
v out v ) 

SeFLent-1 SegEnt-2 SegEiZnt-3 

RC-Segments 

-out 

Optimal Repeater Minimum-Size Repeater RC-Segment 

I 1 I 1 I I 

Ro: output resistance Rint: line resistance k: number of repeaters (=3) 

Co: output capacitance Cint: line capacitance h: size factor 

Fig. 9. Synthesis of RC-line design models. 

designer may set performance constraints (e.g., 50% delay) for both VZSZ-interconnection and 
RC-Driuers /Receivers, which appear at different abstraction levels of the hierarchy. 

To derive admissible design models, pruning is conducted on the FRASES structure by 
interpreting the selection rules associated with all specialization nodes. The inferencing order 
among specialization nodes is determined by the selected search strategy (e.g., breadth-first or 
depth-first). If breadth-first search is selected, inferencing will be performed on the rules 
associated with the equivalent-model first. Suppose the rule inferencing on equivalent-model 
results in, both the Transmission-Line and High-Capacitance-Line being pruned out of the 
FRASES structure. Then, the inference engine proceeds and interprets the rules associated 
with the rc-driving-scheme in order to determine the appropriate drivers/receivers circuits. 

The FRASES tree shown in Fig. 7 has been generated by the inference process where 
Repeaters are selected for the realization of driver/receiver circuits. To derive the optimal 
number of Repeaters, a quantitative function associated with the number slot of Repeaters is 
invoked. The pruned FRASES can be transformed into two alternative design structures as 
shown in Fig. 8. By interpreting synthesis and coupling rules associated with decomposition 
nodes, two design model structures are synthesized (Fig. 9) in a hierarchical manner. Then, 
they be used in a circuit simulation program for performance evaluation. 
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5. Synopsis of FRASES’ characteristics 

We emphasize the unique characteristics of the proposed knowledge representation and 
management scheme. These features indicate that employing the scheme in engineering design 
affords several advantages. 
l Flexibility: The hierarchical and modular nature of FRASES enables the designer to 
overcome the complexity of representation in a divide-and-conquer manner. With FRASES, 
design knowledge is described from an abstract level to a more specific level that can be 
expressed by a mathematical model. At each design level, details of decomposition can be 
modified as the technology evolves and changes. Unlike other schemes that appear efficient in 
a specific problem domain, FRASES can be used in design of any system exhibiting a 
hierarchical and modular structure. 
l Efficiency: The inheritance and uniformity axioms highly reduce the size of a design 
knowledge base required for the same design application. At each inference cycle, only the 
rules associated with the focus node need be examined. Subtrees that do not meet system 
requirements are cut at an early pruning stage to reduce the search space. Thus, the 
inferencing time is reduced significantly. Via verifying axioms of FRASES, query/validation 
rules for acquiring essential design knowledge are generated automatically to facilitate the 
development of a knowledge base [lo]. 
l Manageability: FRASES reduces the complexity of a knowledge base. The uniformity axiom 
prevents multiple definitions of an object and assures the consistency of design knowledge. Due 
to the strict hierarchy of FRASES, related knowledge of an entity can be easily allocated by 
examining (a) the tree path from the entity to the root or (b) the subtree of the entity. This 
eliminates the need for searching the entire knowledge base, and thus facilitates the refinement 
of design knowledge. From the software point of view, the scheme encompasses all elements of 
an object-oriented model (i.e., encapsulation, abstraction, hierarchy and modularity [2] that 
assure the minimum software complexity and cost for future maintenance and expansion. 

6. Summary 

An efficient scheme called Frames and Rules Associated System Entity Structure (FRASES) 
that organizes complex design knowledge into a hierarchical, entity-, frames- and rule-based 
structure was presented. The scheme integrates knowledge and its management for model-based 
system design applications. FRASES facilitates complex design knowledge acquisition, repre- 
sentation, inference, and refinement. With it, the efficiency of design knowledge representation 
and management is highly improved. 

Our current efforts focus on the realization of the theory-based concepts in the form of an 
integrated knowledge-based system design and simulation environment. A prototype implemen- 
tation of FRASES and associated pruning procedures has been recently completed in Common 
Lisp [ll]. 
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Appendix - entity information frames for VLSI interconnect 

(VLSI-Interconnection 

(AT (node-type (value entity)) 
(line-width (if-needed ask) (unit (value micron>)) 
(line-length (if-needed ask) (unit (value cm))) 

(line-thick (if-needed ask) (unit (value micron))) 

(design-rule (if-needed ask) (unit (value micron))> 
(dielectric-thick (if-needed ask) (value (unit micron))) 

(dielectric (if-needed ask) 
(boundary polymide silicon-dioxide epoxy-glass alumina)) 

(IC-technology (if-needed ask) 

(boundary cmos nmos bipolar GaAs) ) 

(package-technology (if-needed ask) 
(boundary Wafer-Scale-Integration Ceramic-Hybrid 

Thin-Film-Hybrid Printed-Wiring-Board)) 

(conductor-material (if-needed ask) (boundary Au Al Cu Ag)) 
(line-capacitance (unit farad) (if-needed (/ (* 

(query dielectric dielectric-constant) 

line-width line-length) dielectric-thick)) ) 

(signal-rise-time (unit nsec) 

(if-needed (data-query IC-technology rise-time)) ) 

(time-of-flight-delay (if-needed (/ (* (sqrt 

(data-query package-technology 

relative-dielectric-constant)) 

line-length) 30)) (unit nsec)) 
(transistor-on-resistance 

(data-query IC-technology on-resistance) (unit ohm)) 

(LK (parent nil) (children equivalent-model)) ) 

(equivalent-model 

(AT (node-type (value specialization)) ) 
(PR (em-rl: if (< signal-rise-time (* 5 time-of-flight-delay)) 

then (prune RC-Line) and 

(prune High-Capacitance-Line) ) 

(em-r2: if (> signal-rise-time (* 5 time-of-flight-delay)) 

then (prune Transmission-Line) 

(em-r3: if (> line-resistance Transistor-On-Resistance) 

then (prune High-Capacitance-Line)) ) 

(LK (parent VLSI-Interconnection) 

(children High-Capacitance-Line 
X-Line Transmission-Line))) 
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(W-Line 

(AT (node-type (value entity)) 
(line-resistance (unit ohm) (if-needed 

(/ (* (data-query conductor-material resistivity) 
line-length) (* line-width line-thick))) ) 

(LK (parent equivalent-model) (children rc-module-dec))) 

(rc-module 

(AT (node-type (value decomposition))) 
(PR (rl: if (equal? FE-Driver-Receiver Repeaters) 

then (set! RC-Segments.number Repeaters.number)) 

(r2: if (equal? RC-Driver-Receiver Cascaded-Inverters) 

then (set! RC-Segments.number 1)) 
(r3: if (equal? operation-phase coupling) and 

(equal? RC-Driver-Receiver Repeaters) 

then (RC-Line.in -> Repeaters.in[ll) 
(for (i=l; i<=Repeaters.number; i++) 

(Repeaters.out[i] -> RC-Segments.in[il) 

if (i==Repeaters.number) 
(RC-Segments.out[i] -> RC-Line.out) 

else (RC-Segments.out[i] -> Repeaters.in[i+il) 1) 

(r2: if (equal? operation-phase coupling) and 
(equal? RC-Driver-Receiver Cascaded-Inverters) 

then (RC-Line.in -> RC-Segments.in) 

(RC-Segments.out -> Cascaded-Inverters.in) 

(Cascaded-Inverters.out -> RC-Line.out) 1)) 
(LK (parent RC-Line) (children RC-Segments RC-Driver-Receiver)) ) 

(I .c-multi-dec 

(AT (node-type (value multiple-decomposition))) 

(PR (rem-rl: 

if (equal? operation-phase coupling) 

then (for (i=l; i<= RC-Segments.number; i++) 

(RC-Segments.in[i] -> RC-Segment[i].in) 

(RC-Segments.out[i] -> RC-Segment[il.out) >I> 
(LK (parent RC-Segments) (children RC-Segment))) 

(rc-driving-scheme 

(AT (node-type (value "spec"))) 

(PR (red-rl: 
if (> line-resistance 

(* 7 (data-query minimum-size-buffer on-resistance))) 
then (prune Cascaded-Inverters))) 

(LK (parent RC-Driver-Receiver) 

(children Repeaters Cascaded-Inverters))) 



280 J.W. Rozenblit, J. Hu / Knowledge representation and management 

(Cascaded-Inverters 

(AT (node-type (value entity)) 
(number (if-needed 

(ln (/ (+ RC-Line.line-capacitance RC-Line.load-capacitance) 

(data-query minimum-size-buffer input-capacitance))))) 

(LK (parent c-driving-scheme) (children nil))) 

(Repeaters 

(AT (node-type (value entity)) 
(number 

(if-needed (sqrt 

(/ (* 0.4 RC-Line.line-resistance RC-Line.line-capacitance) 
(* 0.7 (data-query minimum-size-buffer input-capacitance) 

(data-query minimum-size-buffer output-resistance))))) 
(boundary (> 2)) )) 

(LK (parent rc-driving-scheme) (children repeater-multi-dec))) 

(repeater-multi-dec 

(AT (node-type (value multiple-decomposition))) 
(PR (rpm-rl: 

if (equal? operation-phase coupling) 
then (for (i=l; i<=Repeaters.number; i++) 

(Repeaters.in[il -> Repeater[i].in) 
(Repeaters.out[i] -> Repeater[i].out) )>) 

(LK (parent Repeaters) (children Repeater))) 

(inv-multi-dec 

(AT (node-type (value multiple-decomposition))) 
(PR (ivm-rl: 

if (equal? operation-phase coupling) 

then (Cascaded-Inverters.in -> Inverter[l].in) 

(for (i=l; icnumber-1; i++) 
(Inverter[il .out -> Inverter[i+ll.in)) 

(Inverter[i].out -> Cascaded-Inverters.out) )) 

(LK (parent Cascaded-Inverters) (children inverters))) 

(Repeater 

(AT (node-type (value entity)) 
(50X-delay (if-needed (* 2.5 (sqrt 

(* (data-query minimum-size-buffer 

(data-query minimum-size-buffer 
RC-Line.line-resistance 

RC-Line.line-capacitance)))) ) 

(LK (parent repeater-multi-dec) (children 

output-resistance) 

input-capacitance) 

repeater-type))) 

(Inverter 
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(MD (value inverter)) 

(AT (node-type (value entity)) 
(50X-delay (if-needed 

(+ (* 0.4 VLSI-Interconnection.line-resistance 
VLSI-Interconnection.line-capacitance) 

(* 0.7 VLSI-Interconnection.line-resistance 

VLSI-Interconnection.load-capacitance) 

(* 1.9 (data-query minimum-size-buffer output-resistance) 
(data-query minimum-size-buffer input-capacitance) 

(In (/ (+ VLSI-Interconnection.line-capacitance 
VLSI-Interconnection.load-capacitance) 

(data-query minimum-size-buffer input-capacitance)))))) 

(unit micro-set))) 

(LK (parent inv-multi-dec) (children nil))) 
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