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Knowledge-based Design and Simulation
Environment (KBDSE): Foundational Concepts and
Implementation

JERZY W. ROZENBLIT,! JHYFANG HU,> TAG GON KIM?
and BERNARD P. ZEIGLER!

Department of Electrical and Computer Engineering, The University of Arizona, Tucson, Arizona,
2Department of Electrical Engineering, Tulane University, New Orleans, Louisiana, and
3Department of Electrical and Computer Engineering, University of Kansas, Lawrence, Kansas, USA

Research developments leading to implementation of an intelligent software environment supporting
system design and simulation are presented. Knowledge-based system design and multifaceted simulation
methodologies are a foundation for the system realization. The paper describes the major theoretical
concepts and processes employed to develop and simulate design models. The environment implementing
these concepts and methods consists of two basic components: one serves as a front end supporting the
model construction processes; the other is an object-oriented, discrete-event simulator supporting evalu-
ation of hierarchical, multi-component models. Current state of the system implementation and future

work are discussed.

Key words: modelling, simulation, system design

INTRODUCTION

of computational tools such as high performance work-
he rising complexity of designs, the design process remains
posed by cost, environmental impacts, safety

Despite great strides in development
stations intended to help to cope with t

error prone. Given the often severe constraints im
regulations, etc., it is a fact of life that designers are forced to make compromises that would not

be necessary in an ideal world. Simulation is increasingly recognized as a useful tool in assessing
the quality of sub-optimal design choices and arriving at acceptable trade-offs.

We have focused on developing and implementing a methodology of design in which design
models can be synthesized and tested using computer simulation. This framework, termed
knowledge-based system design and simulation,!~3 lends itself to realization in the form of an

integrated, intelligent design support environment. ‘ )
Our work complements recent trends in simulation modelling research which emphasize the

development of integrated software modelling support environments.*~’ Such environments are
envisioned as conglomerates of tools that will aid modellers in the model construction process and
simulation program generation. There are several notable features of the existing soft.warc pfoto-
types that distinguish them from conventional simulation tools. First, the new simulation environ-
ments are methodology-based, ie. their design is strongly influenced by a methodology that
underlies the model development process in a given environment. Second, state-of-thg—art softwa.re
technology is employed to implement theoretical concepts. Common software techn{quqs used in
designing the new simulation systems include object-oriented programming, grap_hlc§ mte.rfaces
with animation and automatic programming. We also observe emergence of artiﬁ.clal m?elhgence
(AI) applications that assist the modeller in model construction and validation, simulation man-

agement and analysis.>® ' . w
In the ensuing sections, we characterize the basic tenets of our design modelling approach. We

then describe the architecture of the software system and explain how si-mt.xlation model devclpp-
ment is supported by the environment. We conclude with a brief description of current applica-

tions and work in progress on extending the system.

MULTIFACETED MODELLING AND SYSTEM DESIGN

Multifaceted methodology denotes a modelling approach which ref:ognizes the existence. of
multiplicities of objectives and models in any simulation project. It provides formal representation
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schemes that support the modeller in organizing the model construction process, aggregating
partial models and specifying simulation experiments.® Modelling objectives drive three funda-
mental processes in the methodology: they facilitate the construction, retrieval and manipulation
of design entity structures,'® selection of model structures, and specification of experimental con-
ditions under which design models are evaluated by a simulation study.

The design entity structure is a knowledge representation scheme based on a tree-like graph
that encompasses the boundaries, decompositions and taxonomic relationships that have been
perceived for the system being modelled. An entity signifies a conceptual part of the system which
has been identified as a component in one or more decompositions. Each such decomposition is
called an aspect. Thus entities and aspects are thought of as components and decompositions,
respectively. In addition to decompositions, there are relations termed specializations. A special-
ization relation facilitates representation of variants for an entity. These are called specialized
entities and inherit properties of an entity to which they are related by the specialization relation.

Aspects can have coupling constraints attached to them. Coupling constraints restrict the way
in which components (represented by entities) identified in decompositions (represented by
aspects) can be joined together.

In addition to coupling constraints, there are selection constraints in the system entity structure.
Selection constraints are associated with specializations of an entity. They restrict the way in
which its subentities may replace it in the model construction process. Synthesis constraints
restrict ways in which entities selected from specializations may be configured to represent the
structure of the system being designed.!*'? Later, we describe the process that employs the pro-
duction rule formalism to support automatic selection of entities and synthesis of a design model
structure. We call this process rule-based driven design model structure generation.

Models can be expressed in special formalisms depending on the problem at hand. Typical
specifications include differential equations, finite state machine or discrete event. Each formal
model description specifies a system and selects a class of subsystems by placing constraints on the
possible static and dynamic structures it encompasses. A characterization of such constraints is
given by Murray and Sheppard.!® The model construction process involves the specification of
the static and dynamic structure. In our system, models are developed using discrete event system

specification (DEVS) formalism.” This formalism undetlies the construction of models in our
simulation environment—DEVS-SCHEME.

The DEVS formalism

The DEVS hierarchical, modular formalism, as implemented in DEVS-SCHEME, closely paral-
lels thg abstract set theoretic formulation developed by Zeigler (see Kim and Zeigler®). In such a
formalism, one must specify basic models from which larger ones are built, and how these models

are connected together in a hierarchical fashion. A basic model, called an atomic DEVS, is defined
by the following structure:®

M= <X,S,Y, 64, 0., 4t)

where X is a set (external input event types),
S is a set (sequential states),
Y is a set (external output event types),
Oint is a function (internal transition specification),
ey is a function (external transition specification),
4 is a function (output function) and
t, is a function (time advance function)

with the following constraints:
(i) the total state set of the system specified by M is
Q={e)lse S, 0<ex<ts)),
(ii) dy,, is a mapping from S to S:
Oin: S S,
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(iii) J.,, is a function:
et @ X X =5,
(iv) t, is a mapping from S to the non-negative reals with infinity,
t,: S— R and

(v) Ais a mapping fromSto Y:
A S—Y.

An interpretation of the DEVS and a full explication of the semantics of the DEVS are found in

Kim and Zeigler.®

The second form of models, called a coupled model, tells how to couple several component
models together to form a new model. This latter model can itself be employed as a component in
a larger coupled model, thus giving rise to the hierarchical construction. A coupled DEVS is

defined as a structure:’

DN = <D, Mi’ Ii’ Zu, SELECT>

where D is a set (component names), and for each i in D:

M, is a component and

1, is a set (influences of i),

and for each jin I;:
Z,; is a function, (i-to-j output translation) and

SELECT is a function (tie-breaking selector)

with the following constraints:
M, =<X;, Si Yoy 00, Ais tar)
1, is a subset of D, i is not in I
Zy Y- X
SELECT: subsets of D —» D

such that for any non-empty subset E, SELECT(E)isin E. o .
The formal model specification in multifaceted methodology consists 1n specifying the system

entity structure and attached variable types (called descriptive variables), prunix}g and then
specifying a discrete-event model for the components identified by thg pruned entity str'u.cturc.
Selection of input, output and state variables results in the model’s static structure. Pcﬁmtxon of
transition and output functions adds the dynamic components to the DEVS spccnﬁcatlon.'
Clearly, a formal set theoretical description of a large-scale system would be a tedious and
impractical process. In fact, this may well have been a reason .Wh).( theory-based approaches have
been shunned by simulation practitioners, and a primary motivation for the development of soft-

ware implementing the above formal modelling concepts.

SIMULATION MODEL DEVELOPMENT IN KBDSE

The basic organization of the software under development is given in Figure

fundamental modules in the system: _ . 4
(i) the module supporting entity structure programming and pruning (ESPP) an

(ii) the module supporting simulation and performance analysis (DEVS-SCHEME).
263
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Design Structure management §'—
® ESP-4
® ESP-Scheme
® ESP-Lisp
Design Pruning ® FRASES
® MODSYN —
® ESPP ‘ Model Synthesis I
® WOFIE
®Transform

W

®DEVS-Scheme
®Distributed Simulation
Architecture

Performance Modeling i"-

® Automatic Frame
Generator (AFG)

FiG. 1. Organizaiion of sofiware in KBDSE.

The modules are interfaced through the TRANSFORM procedures that automatically generate
simulation code. The code is generated by retrieving from the model base simulation modules

associated with the composition tree generated by the pruner. We now proceed to describe these
modules in more detail.

The entity structuring program and pruner (ESPP)

This program helps the modeller conceptualize and record the decompositions underlying a
model (or family of models) before, during and after development. To the extent that ESPP is used
before beginning model development, it is a tool for assisting in top-down model design. However,
when additions and changes are made as the development proceeds, ESPP serves as a recorder of
progress. At the end of the development phase, the record constitutes de facto documentation of
the system structure arrived at.

We have augmented the system entity structure into an integrated, entity-oriented knowledge
representation scheme, termed the frame and rule-associated system entity structure (FRASES).
FRASES is a scheme that combines concepts of the system entity structure, frame,'* and pro-
duction rules.!*'¢ By exploiting the reasoning flexibility provided by production rules, the effi-
ciency in representing declarative knowledge offered by frames, and the visibility and hierarchy
supported by the system entity structure, FRASES is a powerful and efficient scheme for manag-
ing domain knowledge supporting design model development.

Structure of FRASES

A typical example of FRASES for representing a LAN-
Figure 2. As shown in the figure, each entity of FRASES is
frame (EIF). Every occurrence of an entity has the same EIF
application, knowledge contained in the EIF is extracted an
for design reasoning,!7+!8 EIF is 4 structure:

based distributed system is shown in
associated with an entity information
and isomorphic substructure. During
d interpreted by the inference engine

(M, ATTs, DSF, ESF, CRS, CH)
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Processor

b
Distributed
(Processor
(M (Value P1)) System
(Atts |
(Satts (iports (value data-in)) function
(oports (value data-out))
(ype (value entity)) ... ) _
(Dpara (Clock-Rate (default 10)) Computing LAN
(Buffer (if-needed compute-size))) Modules
(Pix (thruput I module
(/ (counter data-out) (timer)))) ) Computing
(DSF Module
(constraints (value | LAN
module Segments

((> MIPS 10) (< cost 300)
(< power-consumption 0.5) M
(objectives (value ((max MIPS)
(min cost power-consumption) »

1l
LAN

Segment Comm.
Nodes

) Processor
(ESF emory

(AP (value (cond ((< events 100) - Comm.
(Poisson 10)) (t (normal 1)) ))) -devices Node
(EF (value (cond (t (list (symbol) ... ) FEIF]

(CH (Value nil)) )

FiG. 2. A LAN-based distributed system with FRASES. (a) Schematic representation and (b)
FRASES representation.

where M is the name of the associated model,
ATTs are attributes of M,
DSF is the design specification form,
ESF is the experiment specification form,
CRS are constraint rules for design model synthesis, and
CH are FRASES children of the focus node.

behavioural knowledge about objects is described by simulation

With FRASES representation,
ts the name of the entity and serves as a major key to

models stored in the model base. M represen

access its model.
ATTs are attributes used to characterize the associated object. Attributes of an entity are parti-
tioned into two groups, i.. static and dynamic. Static attributes are variables used to describe

properties of an object that do not change over time. Dynamic attributes are related to dynamic

behaviour of the models represented by entity objects.
fication of design objectives, constraints

The design specification form (DSF) accepts the speci -
and criteria weighting schemes. The contents of the DSF define the system requirements that must

be satisfied by the system to be designed. DSF information is used to guide the synthesis of desfgn
model structures. Each entity of FRASES has its own DSF. Once composition trees (or design
structures) are generated based on the knowledge provided in the CRS slot, users are requested to
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define the simulation experiment in the ESF. Finally, simulation is activated via automatic extrac-
tion and coupling of simulation models.

The experimental specification form (ESF) is applied to accept the specification of simulation
requirements such as an arrival process, event structure and simulation control scheme. The ESF
provides information to direct the automatic generation of experimental frames.!® An experimen-
tal frame specifies a limited set of circumstances under which a system is to be observed or sub-
jected to experimentation. Again, the ESF is placed together with entity nodes of a composition
tree (i.e. a decomposition tree with information about the coupling schemes among model
components).

Constraint rules for synthesis (CRS) contain heuristic rules for configuring design model struc-
tures. Formally, selection constraint rules for pruning alternatives are associated with special-
ization nodes, and constraint rules for synthesizing components are associated with aspect nodes.
Model development driven by production rules will be described in the next section.

Rule-based synthesis of model structures

The production rule formalism supports automatic selection of entities from taxonomic
relationships and synthesis of structures underlying the simulation models.

The process consists of defining selection and synthesis rules and associating them with entity
information frames of the design entity structure. The modeller invokes the inference engine
which, through a series of queries based on the constraint rules, allows him to consult on an
appropriate structure for the modelling problem at hand. The result is a recommendation for a
model composition tree.’ The composition tree is used by the DEVS-SCHEME environment to
retrieve models from the model base. The retrieved models are automatically linked in a hierarchi-
cal manner according to the coupling constraints.

The prototype pruning module was originally designed in PROLOG and called MODSYN
(model synthesizer).2° It was subsequently redesigned in COMMON LISP and incorporated in
the ESPP shell.2! The basic components of the pruner are the knowledge base and the inference
engine.

To prune the design structure, we generate the following rule sets:

(i) Selection rule set: each selection rule stands for a choice of an entity in a specialization.

(ii) Synthesis rule set: after selection rules have been applied to the entity structure, synthesis rules
ensure proper configuration of the selected entities. They also co-ordinate the actions of the
selection rules. Certainty factors are employed to indicate the applicability of the rules.

Selection rules are associated with the specialization nodes whereas the synthesis rules are
attached to the decomposition nodes of FRASES. Each rule set can be regarded as a module.
Therefore the entire rule base is constructed in a hierarchical manner imposed by the entity struc-
ture.

The production rule formalism is used to express modelling objectives, constraints and require-
ments in the form of selection and synthesis rules. Domain experts provide knowledge about

admissible chqices of design components and their combinations, design data regarding expected
performance given a particular component choice, etc.

Inference engine design

The inference engine uses the strategy of ‘generate and test’, ie. it takes the initial data from the
user and the hypothesis generated by the knowledge base to prune the search space tree. In other
words, the engine attempts to match the data with the information contained in the knowledge
base. If the data match, the engine ‘climbs up’ the tree, trying to prove the next hypothesis. We use
aspef:t .ord.cring in order to eliminate aspects not desirable in the model we are constructing, and
specialization-oriented Pruning to select unique entities for the model composition trees. A com-
plete description of the shell can be found in Rozenblit and Huang,2° The LISP realization of the
shell provides facilities for top-down as well as bottom-up pruning and selection of different search
control strategies. !

Itlnlike'other applications, engineering designs usually require components of a system to be
designed in a particular sequence. Essential components are always determined before other com-
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ponents can be designed. The design sequence may be altered by environmental factors, problem
domains or technical constraints. This requires a flexible search scheme to conduct the design
reasoning process in the right sequence. In order to capture the dynamics of a design sequence, a
weight-oriented FRASES inference engine (WOFIE) was proposed.!” By appropriately setting up
the priority of a specialization node, WOFIE is capable of emulating the design reasoning process
conducted by a human expert.

DEVS-SCHEME SIMULATION ENVIRONMENT

DEVS-SCHEME, 2227 a general purpose modelling and simulation environment, is an imple-
mentation of DEVS formalism in SCOOPS, the LISP-based, object-oriented superset of PC-
SCHEME. It runs on DOS-compatible PCs and the TI's Explorer LISP machine.
DEVS-SCHEME is implemented as a shell that sits upon SCHEME in such a way that all of the
underlying LISP-based and object-oriented programming language features are available to the
user. The result is a powerful basis for combining artificial intelligence and simulation techniques.
Since structure descriptions in DEVS-SCHEME are accessible to run-time modification, it pro-
vides a convenient basis for development of variant family and variable structure simulation
models. DEVS-SCHEME also serves as a medium for developing computer architectures for dis-
tributed simulation of hierarchical, modular discrete-event models.?8

In DEVS-SCHEME, component models called atomic models are specified using SCHEME's
semantics, which correspond closely to the formal definition of DEVS. The input and output sets
consist of pairs (port, value). Thus, x = (p, v) signals the receipt of a value v at an input port p. The
elements of DEVS formalism take the following form in the DEVS-SCHEME:

Internal transition function: (define (int s)...)
External transition function: (define (ext s e x)...)
Output function: (define (out s)...)

Time advance function: (define (ta 5)...)

where ... represents function body definitions expressed in SCHEME.
The atomic models may be coupled together to form a model at the ¢
DEVS-SCHEME is still under development. Recently, new features for testi

and model simplification have been incorporated in the shell 23:2:29

The class specialization hierarchy in DEVS-SCHEME is shown in Figure 3. All classes in

DEVS-SCHEME are subclasses of the universal class entities which provide tools for manipulat-

ing objects in these classes (these objects are hereafter called cntitics).. .Thc inherjtancc mcchamsbn:
ensures that such general facilities need only be deﬁne:d once. Entities of desired class rpﬁayn
constructed using a method mk-ent and destroyed using a 3nethoc.i de'stroy. I\_{ore speci b:a y}
mk-ent makes the entity and places it in a class variable list which 'mamtams the list pf members :d
the given class; destroy removes the entity from this list. Every entity has a name which is assign
tO )I\EI :)lcllr’::lls1 :;C; t;:::éessors, the main subclasses of entities, provide the basic constructs needed for

in turn, are specialized into more s ific cases, a process whic .
the l1llser E;nuilcfse up a specific model g:‘:c. Kernel-models, one subc!ass of coupled-rfwdels}; is :11 %:::]ct:
alized class whose subclasses provide powerful means of. defining complex, hu:(n:;rcl u:fa it
computer architectures formed by recursive compounding of componcx:jt ;n ct 1:: oco:pecial-
processing elements of such architectures. Class processors, on the other hand, have

izati : } i out the simulation of a
izations: simulators, co-ordinators and root-co-ordinators. These carry  pno

i r which follows the hierarchical abstract simulator concepts.
m(gintloa trl?: n:bcject-orientcd realization, subclasses of existing classes and Ixi'aew t.:laissc;?.n be
readily added to DEVS-SCHEME as required. As a.rcsult the DEVS-SCHEME enviro :

(i) supports modular, hierarchical model construction,
(ii) allows independent testing of components models,
267
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ENTITIES ~Ist
I l I ~name
ENTITY
I ~processor l ~parent
MODELS ~parent PR SORS ~devs-component
~inport ~time-of-last-event
~outport

. ~time-of-next-event
~cell-position

ATOMIC-MODELS COUPLED-MODELS SIMULATORS |

~§nd-vars ~children ROOT
~int-transfn ~receivers CO-ORDINATORS
-ext-trarnsfn ~influencees ~clock
~outputfn
~time-advancefn CO-ORDINATORS
~*-child
I ~wait-list
KERNEL-MODELS
DIGRAPH-MODELS ~init-cell
~composition-tree ~out-in-coup
~influence-digraph ~class
BROADCAST CONTROLLED
MODELS MODELS
~controller
HYPERCUBE-MODELS CELLULAR-MODELS
ot ~ext-coup
~;tlm(i?:g ~infl-origin
~structure

* Uppercase Letters: Classes
* Lowercase Letters: Class/Instance Variables

F1G. 3. Class hierarchy in DEVS-SCHEME

(i) separates models from experimental frames, and
(iv) supports distributed simulation.

Details of all classes in DEVS-SCHEME along with their instant/class variables and methods are
available 23-25

Rule-based model retrieval and transformation

A pruned entity structure can be synthesized into a simulation model by the operation trans-
form. As the algorithm visits each entity in the pruned entity structure, transform calls upon a
retrieval process that searches a model corresponding to the current entity. If one is found, it is
used and transformation of the entity subtree is aborted. The retrieval process proceeds by evalu-
ating rules, which consist of retrieval rules (pairs of condition and retrieval action) and conflict
resolution rules, by which a rule is selected if there is more than one which satisfies conditions.
Details of these rules are found in Zeigler.?°

A rule for searching a model that corresponds to the current entity says that it first looks for the
model in the working memory, then in the model base (MBASE) and finally, if the current entity is
is a leaf, in the entity structure base (ENBASE). Before searching the model, another rule checks
the name of the current entity. If the current entity has a base name and a non-trivial extension
(the extension starts with numbers or ‘&’), the base name is used as an entity name for the
retrieval process. As more than one rule is satisfied when evaluated, a conflict resolution rule fires
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only one rule. For example, if both Rule 1 and Rule 2 are satisfied, then Rule 1 is fired. We employ
context specificity, which means that the rule with a more specific condition than other rules is
fired, in order to resolve such a conflict.

If a pruned entity structure is found in the ENBASE in the searching process, a transform is
invoked and executed in a separate SCHEME environment so as not to interfere with the current
environment. Since the self-invocation can occur in a leaf entity only, such local transformation is

definitely recursive.

Hierarchical model construction in DEVS-SCHEME

The DEVS-SCHEME environment provides layers of objects and methods which may be used
to achieve more powerful features. The knowledge base framework shown in Figure 4 is intended
to be generative in nature, ie. it should be a compact representation scheme which can be
unfolded to generate the family of all possible models synthesizable from components in the model
base. The user, whether human or artificial, should be a goal-directed agent which can interrogate
the knowledge base and synthesize a model using pruning operations that ultimately reduce the

structure to a composition tree. o )
As shown in Figure 4, model objects expressed in DEVS-SCHEME must reside in working

memory in order to be simulated. Such an object can be reconstructed from disk file deﬁnitiqns by
direct evaluation (the only possibility for atomic-models) or by applying the.trfxnsform fungtlon to
a pruned entity structure in working memory. The pruned entity structure is in turn obtained by

— | KNOWLEDGE BASE [

MBASE

ENBASE

. pruned i models
entity entity defn
structure structure : files

’ A 4

- r
save-entstr save-entst retrieve save-state

load-entstr store

load-entstr resume-state

working models
- atomic models
- digraph models
- kernel models

pruned
entity
structure

entity
structure

inv-transtorm-—

make-entstr make-pair
set-current-item make-broadcast
add-item make-hypercube
make-cellular

.....

— | DEVS-SCHEME P

[ ESPSCHEME [ AIF

SCHEME-SCOOPS
FiG. 4. DEVS-SCHEME simulation environment.
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pruning an entity structure and selecting one possibility from the whole family spanned by the
structure. The pruned entity structure is transformed into a hierarchical simulation model by the
operation transform described in the previous section.

DESIGN PHASES OF KBDSE

KBDSE applies modelling and simulation concepts to unify engineering design activities and to
develop a methodology for systematic design model construction and evaluation.
Design models are derived by identifying multiple conflicting objectives and requirements of
systems. Therefore, design objectives play a fundamental role in guiding the synthesis of design
models and the specification of experimental circumstances.
Evaluation of design alternatives is accomplished by computer simulation. The experimental
frame concept® is used to specify a simulation study. Briefly, an experimental frame defines condi-
tions with which a design model can be observed and experimented with. Simulation results are
compared and traded off in preference to conflicting criteria. This results in a ranking of models
and supports choices of alternatives that best satisfy the design specification.
Evaluation of design alternatives involves the following stages:
(i) Selecting the problem domain by retrieving the desired entity structure (FRASES).
(i) Identifying system requirements (e.g. cost, performance, technology, resources, etc.) from the
design specification.

(i) Performing rule-based design reasoning to derive all possible alternative design models
(composition trees).

(iv) Specifying simulation circumstances for arrival process, event format and simulation con-
trols.

(v) Constructing experimental frames conforming to design objectives and simulation require-

ments.
(vi) Coupling the design model with experimental frames for simulation (i.e. transformation).
(vii) Analysing performance statistics and selecting the best design model by the application of
multi-criteria decision making methods.
(viii) Reporting the best design.
A schematic representation of this design process is outlined in Figure 5. With KBDSE, the

complex design process is handled intelligently and efficiently to reduce the overall design cycle
and cost.

Example

To help understand the whole process of the KBDSE design methodology, design of distributed
systems (Figure 6) will be used as an example.

Assume the design specification of the distributed system has been defined as follows:

(DSF (constraint (value (> thruput 0.098) (< cost 300)))
(objective (max (value thruput)) (min (value cost)))
(criteria-weighting (value (rank thruput cost)))

;; criteria preference: thruput > cost.

After the design specification is defined, the design pruning program is selected and activated to
derive all possible alternative design models. For example, if MODSYN is employed, the design
reasoning is performed in a backward-chaining manner. At each decision point, the user is asked
questions to provide information for selecting design alternatives. For example, to determine the
MTS-technology, the question about ‘the degree of interaction among computer modules’ will be
asked. If the user indicates that the interaction among computer modules is low and resource
sharing capability is desired, then the local area network (LAN) will be selected for MTS-

technology. This design reasoning process will continue until all specialization nodes are traversed.
Let us assume the following selections have been made:

medium-access-protocol: CSM A/CD
medium: optical-fibre

topology: bus, ring

access: direct-access, cache
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FIG. 5. Design phases of KBDSE.

n converted into two composition trees (Figure 8). Notice

The pruned FRASES (Figure 7) is the
minated by detecting the synthesis rule:

that two further composition trees are eli
IF LAN-segment.medium = optical-fibre then LAN.topology # bus.

After the composition trees are generated, users may define the simulation requirements with

ESF as follows:
(ESF (ap (value (cond (t (normal 20)))))
:: normal distribution with a mean 20

(ef (value (cond (t (list (symbol) (number 1.0)))))
;; event format: (Job-10.72)

(sc (value (cond ((>event 100) (stop))))

;; stop simulation after 100 events

generated automatically!” and coupled to the design model for
the value of transducer (i.e. thruput) is collected for the

Experimental frame is then
t and throughput for both design models are:

performance evaluation. After simulation,
best design selection. Assume the design cos

thruput cost

system-1 0.13 180
system-2 0.15 250

tive signs to the second set of parameters (i.c. mini-

After rating parameters and assigning nega
king (MCDM) model is constructed as follows:

mizing the cost), the multi-criteria decision ma

thruput cost
system-1 0.867 -0.72
-1.0

system-2 1.0
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FIG. 6. Distributed systems in FRASES.

Since the criteria preference is expressed by weak ranking,

method can be employed to solve the MCDM problem. The
computed as follows:

3! the extreme expected pay-off
partial average for each system is

thruput cost
system-1 0.867 0.0735
system-2 1.0 0.0

Finally, system-2 will be recommended (ie. 1.0 > 0.941).

CONCLUSIONS

We have presented a foundation and im
lation environment called KBDSE. We ha
a theoretical basis for developing the KB

plementation of the knowledge-based design and simu-
ve employed the multifaceted modelling methodology as
DSE. To realize the multifaceted modelling methodology,
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DEVS formalism and system .entity structuring formalism have been implemented in a LISP
env1ronment Such an implementation opens up a wealth of possibilities for investigating
methodology-based support of modelling and smulanon The symbolic manipulation and object-
oriented facilities of SCHEME ‘make it relatively easy to code complex structures and their associ-
ated operations. The env1ronment supports the development of discrete-event simulation models
in athierarchical, modular fashlon Many des1gn examples of-discrete-event simulation models—
such as multi-level computer archltectures commumcatxon networks and mult1 robotic systems—
have been successfully run and tested in the envxronment

REFERENCES

. J. W. ROZENBLIT and B P ZEIGLER (1985) Concepts for knowledge-based system desrgn environments. In Proceedings
of the 1985 Winter Simulation Conference, San Francisco, California.. g

.-O. BaLcl and R. E. NaNCE (1987) Simulation support: prototyping the automanon based paradigm. In Proceedings of
the 1987 Winter Simulation Conference, Atlanta, Georgia, December 1987, 495-502.";

. D. W. BALMER (1987) Modelling styles and their support in the CASM env1ronment In Proceedings of the 1987 Winter
Simulation Conference, Atlanta, Georgia, December 1987,478—485. ...-.

. D.W. BALMER and P. J. PauL (1986) CASM—the right environment for sxmulauon J. Opl Res. Soc. 37, 443-452.

. J. O. HENRIKSEN (1983) The mtegrated s1mulanon env1ronment s1mulanon software of the 1990s. Opns Res. 31, 1053~
1073.

. JHYFANG Hu, Y. HUANG and 1. W. ROZENBLIT (1989) FRASES~A knowledge representation scheme for engineering
design. In Advances in Al and Simulation (SCS simulation series) 20(4), 141-146.

. JHYFANG Hu (1989) Knowledge-based design support environment for design automation and performance evaluation.
PhD Thesis, University of Arizona, Tucson, Arizona. -

. Y. M. HuaNG (1987) Building an expert system shell for model synthes1s in loglc programming. MS Thesis, University
of Arizona, Tucson, Arizona.

. TAG GoN KiM and B. P ZEIGLER (1987) The DEVS formallsm hlerarchxcal modular system specification in an object
oriented framework In Proceedmgs of the 1987 Winter Simulation Conference, Atlanta, Georgia, December 1987, 559-
566." g

. TAG GON KM (1988) A knowledge-based environment for hlerarchxcal modellmg and sunulauon Technical Report
AIS-7(PhD Thesis), University of Arizona, Tucson, Arizona. -~

. TAG GoN KM and B. P. ZEIGLER (1989) The DEVS- SCHEME s1mulatlon and modelhng environment. In Knowledge
Based Simulation: Methodology and Applxcanon (PAUL A F1sHwWICK and chmm) B. Momrsm Eds), Springer Verlag
Inc, New York.” ™

. M. Minsky (1975) A framework for represennng knowledge In The PsychoIogy of Computer Vtsmn (P H WINSTON,
Ed.), 211-277, McGraw-Hill, New York. .

. K. J. MURRAY and S/ V. SHEPPARD (1987) Automatic model synthems usmg automatic programmmg and expert
systems techniques toward s1mulat10n modelmg In Proceedmgs of the 1987- Wmter Srmulatxon Conference, Atlanta,
Georgla, December 1987, 534543, <. <

. A. NEwEeLL and H. A. StMON (1972) Human Problem Solvmg, Prentnce-Hall Englewood Cliffs, New Jersey

- N. PAN (1989) A LISP-based shell for model structure generation‘in knowledge-based system design. MS Thesm .
University of Arizona, Tucson, Arizona. O

. J.»W. RozENBLIT (1985) A conceptual basis for mtegrated model based system design. PhD Thes1s, Wayne State'
Umverstty, Detroit, Michigan. - . N

. J. W-RozENBLIT and .Y. HUANG- (1987) Constraint-driven generanon of model structures In Proceedmgs of the 1987
Winter Simulation Canference, Atlanta, Georgia, December 1987, 604—611.% e

.’J. W. RozZENBUT and B.'P. ZEIGLER (1988) Design and modelling concepts In ncyclopedm of Robotxcs pp- 308 322

.. John Wiley, New York. - - .
.. J. W. RozeneLiT and B. P. ZEIGLER (1986) Entity-based structures for model and experimental frame construction. ln a

’ Modellmg and Simulation in Artificial Intelligence Era (M. S. ELzZAS et al., Eds), North-Holland, Amsterdam. e

.-J. W. RozENBLIT and Y."M. HUANG ( 1989) Rule-based generation of model structures in multifacetted modelling and :

system design. ORSA"J. Computing (submitted).

. J. W. ROZENBLIT and JHYFANG Hu (1989) Experimental frame generation in a knowledge-based system design and

" simulation environment. In Modelling and Simulation Methodology: Knowledge System Paradigms (M. S. ELzas, T. L

» OREN and B. P. ZEIGLER, Eds), pp. 451-466. North-Holland, Amsterdam. i

. I W, Rozensur, J. Hu and Y. HuaNG (1989) An integrated, entity-based knowledge representation scheme for system

. -design. In Proceedings of the 1989 NSF Engineering Design Research Conf. Ambherst, M A, 393-408.

,SUU:YMAN SEVINC '(1988) Automatic simplification of models in a luerarchxcal modular discrete event simulation
environment. PhD Thesis, University of Arizona, Tucson, Arizona. &

. B. P. ZEIGLER (1984a) Multifaceted Modelling and Discrete Event Szmulanon,‘Academxc Press, London.

.. B/P. ZEIGLER (1984b) System-theoretic representation of simulation models. I1E Trans. 16, 10-27.

.*B..P. ZEIGLER (1986) DEVS-SCHEME: a LISP-based environment for hierarchical, modular discrete event models.
“Technical Report AIS-2 CERL Laboratory, University of Arizona, Tucson, Arizona.

27. ?1;232(;301.“ (1987) Hierarchical, modular discrete-event models in an object-oriented environment. Simulation, 50,

- B. P. ZEIGLER, TAG GoN K1M, S. SEvING and G. ZHANG (1989) Implementing methodology-based tools in DEVS-

SCHEME. In Modelling and Simulation Methodology: Knowledge System Paradigms (M. S. ELzas, T. I. OReN and B.
P. ZeiGLEr, Eds), North-Holland, Amsterdam.

274




J. W. Rozenblit et al.—Knowledge-based Desigﬁ "a‘n'd" Simulation Environment

: 29. B. P. ZEIGLER (1990) Object-Oriented Simulation Wlth Hlerarchzcal Modular Models: Intelligent Agents and Endomorphic
. Systems. Academic Press, Boston.
30. A. L. CoNcepcioN and B. P. ZEIGLER (1988) DEVS formahsm A framework for hierarchical model development. IEEE
Trans. on Software Engineering, 14, 228-241. E
31. A. Osyczka (1984) Mulncrnerwn Optlmtzanon m Engmeermg Elhs Horwood Press Ltd, Chichester.

3

) 5 B i B

275




