
Simulation-Based Planning of Robot Tasks in Flexible Manufacturing

Sequence Planning
~ FMSCAD

Jerzy W. Rozenblit

I I I

Dept. of Electrical and Computer Engr.
The University of Arizona

Tucson, Arizona 85721, U.S.A.

Abstract
A framework is proposed for support of design, task
planning, and simulation of automated manufactur-
ing systems. The framework establishes a hierarchy
of method banks essential for improving the efficiency
and cost effectiveness of manufacturing processes. The
methods should support automatic generation of se-
quencing rules, design and configuration of the man-
ufacturing facility and equipment, synthesis of task
oriented robot programs, and generation and execu-
tion of simulation models of a manufacturing system.
In this paper, each layer is addressed and preliminary
results that apply simulation to interpret and test task
oriented robot programs are discussed.

1 Introduction
Recently, the use of programmable automation and
flexible automation has had significant impact on ma-
chining and assembly of products [l]. The economic
importance of manufacturing and robotics has led
to extensive efforts to improve the effectiveness of
robot-based process automation. More systematic ap-
proaches to design and planning of robot tasks are still
needed to further improve performance. Flexible man-
ufacturing systems (FMS)-treated here as both ma-
chining and assembly systems-possess a number of
unique features and characteristics which require that
their design and operation strategies be substantially
different from those used in conventional job shop and
transfer line facilities [2].

A flexible manufacturing system is a set of machines
connected by a flexible material handling facility (such
as a robot, a crane, or an automated guided vehicle)
and controlled by a computer [l]. Some of the distin-
guishing features of FMS are [l]:

High degree of automation of machines and ma-
terial handling systems.

Wi told Jacak

Institute of Technical Cybernetics
Technical University of Wroclaw

50-370 Wroclaw, Poland

I Device Selection and Layout I
Robot Program Synthesis

I

I Simulation Modeling I I
I t I

Figure 1: Architecture for FMS CAD

0 The layout of machines is strongly influenced by
the type of material handling system used and the
structure of the manufacturing process.

0 The design of the system influences its operation.

An integrated CAD framework for design of FMSs
should address the above issues. In this paper, we stip-
ulate an architecture for such a framework and discuss
its basic layers shown in Figure 1.

We begin by summarizing assembly sequence plan-
ning. Then, a design approach for selection and con-
figuration of manufacturing system’s components is
discussed. Next, synthesis of a task-oriented robot
program is presented. The synthesis process is sup-
ported by discrete event simulation models of the
robot’s world and interpretation and planning tech-
niques. The resulting amalgamation of simulation and
planning facilitates studies of alternatives realizations
of robot’s motion and thus supports the overall perfor-
mance evaluation of the manufacturing system. At the
conclusion, we justify the need for this amalgamation.

0-8186-2162-1/91/0000/0166$01 .OO 0 1991 IEEE
166

2 Assembly Sequence
Planning

Automatic synthesis of a program of robot’s actions
requires the integration of sensory and motor control
information with an internal representation of parts,
geometries, and relationships. We propose that the
robot program synthesis be realized by a hierarchical
system of task planning. The system consists of two
basic layers, i.e., the task planning layer and task level-
programming layer.

Task level planning is based on the description of
the product and the operations of the machining pro-
cess, a description of the system and its resources such
as devices, robots, fixtures or sensors, and a specifica-
tion of a precedence relation over the set of operations.
The task-level plan describes the decomposition of the
machining task into the sequence of elementary opera-
tions of robots and devices, the assignment of machin-
ing subtasks to system resources and a model for the
coordination and scheduling of system resources [3, 41.

The basic problem at the task planning level is the
derivation of an ordered sequence of robot’s actions
that can be used to perform a machining or an assem-
bly task. To solve it, a graph representation can be
used. Sanderson et.al. [4] define a framework in which
AND/OR graphs represent all possible sequences of
assembly plans. A decomposition of the machining
task corresponds to a cut set of this graph. Feasible
decompositions, with respect to precedence relation of
assembly operations, are used to create an AND/OR
graph that represents all valid operation sequences.
The path with minimal deadlock cases is searched. To
eliminate deadlock cases, the execution-preconditions
for each operation are created. The action plan for an
assembly task determines the robot’s program of oper-
ations needed to service the process. Such a program
is a sequence of instructions (motion, grasp and sen-
sors instructions) expressed in a task-oriented robot
programming language.

Detailed descriptions of assembly sequence planning
based on the AND/OR graph representation are given
by Homem de Mello, Sanderson, and Zhang [3, 41 who
strongly advocate the integration of the assembly plan-
ning with task-level programming. We discuss simula-
tion support of task programming in Section 4. Prior
to that, we define a layer for support of selection and
configuration of devices in a manufacturing facility.

3 System Design-Device
Select ion and Layout

Design of a manufacturing facility capable of carrying
out an assembly sequence plan is an integral phase of
the proposed framework [l]. Resources, i.e., machines,
robots, material handling devices, and computer hard-
ware must be integrated in a manner most conducive
to the realization of the plan. In this section, we ex-
amine how a general system design methodology can
aid in this integration process.

The system design approach proposed by Rozenblit
[5, 61 termed Knowledge-Based Simulation Design, fo-
cuses on the use of modeling and simulation techniques
to build and evaluate models of the system being de-
signed. It treats the design process as a series of ac-
tivities that include specification of design levels in a
hierarchical manner (decomposition) , classification of
system components into different variants (specializa-
tion), selection of components from specializations and
decompositions, development of design models, exper-
imentation and evaluation by simulation, and choice
of design solutions.

Design begins with developing a representation of
system components and their variants. We have pro-
posed a representation scheme called the system entity
structure (SES) [6,7] that captures the following three
design relationships: decomposition, taxonomy, and
coupling. Decomposition knowledge means that the
structure has schemes for representing the manner in
which an object is decomposed into components. Tax-
onomic knowledge is a representation for the kinds of
variants that are possible for an object, i.e., how it can
be categorized and subclassified. The synthesis (cou-
pling) constraints impose a manner in which compo-
nents identified in decompositions can be connected
together. The selection constraints limit choices of
variants of objects determined by the taxonomic rela-
tions.

Beyond this, procedural knowledge is available in
the form of production rules [8]. They are used to ma-
nipulate the elements in the design domain by select-
ing and synthesizing the domain’s components. This
selection and synthesis process is called pruning [9].
Pruning results in a recommendation for a model com-
position tree, i.e., the set of hierarchically arranged en-
tities corresponding to system’s components. A com-
position tree is generated from the system entity struc-
ture by selecting a unique entity for specializations and
a unique aspect for an entity with several decomposi-
tions.

The final step in the framework is the evaluation
of alternative designs. This is accomplished by simu-

167

lation of models derived from the composition trees.
Discrete Event System Specification (DEVS) [7] is
used as a modeling formalism used for system spec-
ification in the methodology. DEVS provides a formal
representation of discrete event systems. (We define
DEVS in Section 4.1)

In the what follows, we demonstrate how this
methodology applies to the FMS CAD framework dis-
cussed here.

3.1 Device Selection and Configura-
tion

The system entity is a structured representation of a
flexible manufacturing facility. To configure a specific
system’s layout (i.e., collection of devices and their
arrangement) for a given product and assembly plan,
pruning is invoked. For illustration, consider the fol-
lowing problem (adopted from Rozenblit and Zeigler
[lo]): Flexible testing of printed circuit boards (PCB)
involves several types of devices that may be config-
ured in several ways depending on the type of board
and test plan (here, our interpretation of a test plan is
semantically equivalent to that of a machining plan).
Figure 2 depicts a generic entity structure represen-
tation of the facility called Automatic Test Facility
(ATF). The components of ATF include test cells,
transport devices, production stores, and auxiliary fa-
cilities. A test cell can be an in-circuit tester or a
functional tester. A transport device can be a con-
veyer, a crane, or an automatic guided vehicle (agv).
A production store can be a post assembly dock, a
scrap store, or a stock store. A burn-in, an inspection
cell, and a repair workstation are auxiliary facilities.

Flexible testing consists in generating a configura-
tion of components selected from the set of the ATF’s
entities for a specific type of PCB. For example, in
order to test a bare-board (board with circuit connec-
tions fetched on it but without any attached devices),
only an inspection facility that checks for shorts and
opens may be sufficient. On the other hand, another
type of board may be tested using all of the ATF’s
components.

Some fundamental criteria for selecting various
kinds of components are given. In-circuit testers re-
quire access to all circuit nodes on the board and is+
lation of devices under test. A special fixture called
bed-of-nails is also mandatory in order to perform an
in-circuit test. In-circuit tests do not detect timing de-
fects whereas the functional tests do. The latter tests
require an edge connector. A burn-in auxiliary facility
is used to operate a board dynamically at an elevated
temperature. Such a facility is usually followed by in-

Figure 2: System Entity Structure of ATF

spection of the board.
Given the above description, a rule base is defined

that is used to prune different configurations of the
ATF. The problem is defined as follows: “Given a set
of parameters, test design attributes, prune a set of
workstations from which ATF will be composed.”

Sample selection and synthesis rules used to gen-
erate alternative configurations of the ATF are given
below. The complete knowledge base is presented in

Example of Selection Rules
if access to all circuit nodes on the Unit Under Test
(UUT) is available and

P O I .

devices under test can be isolated and
bed-of-nails fixture available for the PCB and
timing defects detection is not required

then select ICT tester

if access to all circuit nodes on the U U T is available
and

devices under test can be isolated and
bed-of-nails fixture available for the PCB and
timing defects detection is required and
edge connector is available

selected testers are: ICT and FUNCT
then

Example of Synthesis Rule
if selected testers are: ICT and FUNCT and

then
there are no auxiliary facilities

168

Simulation Layer

Discrete Event

Ge0me.t.ric
Model of
Workcell.

4 Models of

matics and
Dynamics

Robot Motion

Pima Robot Kine-

Intapretation and Planning Laya

Post
Assembly
Dock

J

InCircuit Functional
Testa -+

+ -b

L

Figure 3: Sample Layout of ATF

testers are: ICT cascaded with FUNCT and
there are no Auxiliary Facilities and
the transport system is Crane
there is a Post Assembly Dock production store
there is a Stock production store

Pruning in our design methodology is supported by an
expert system shell [lo]. A sample result for the ATF
model is depicted in Figure 3. This model was gener-
ated in a consultation session in which no dynamical
testing at elevated temperature was necessary nor was
the on-site repair critical to the test procedure. Given
an assembly plan and manufacturing system to carry
it out, the program of robot’s actions must now be
synthesized.

4 Robot Program Synthesis
and Simulation

The action plan for a manufacturing process deter-
mines the robot’s program of actions in servicing the
process. The program is usually a sequence of instruc-
tions expressed in a task-oriented robot programming
language (TORPL) [ll, 121. The implementation of
the task-level plan is carried out using a task-level
programming approach in which detailed paths and
trajectories, gross and fine motion, grasping and sens-
ing is specified. Variant interpretations of the instruc-
tions result in different realizations of robot actions.
To create and verify all valid interpretations of mo-
tion program a two-level system has been proposed
[13]. The first level is the motion planner for each in-
dividual robot action. It creates variants of collision-
free time-trajectories of a manipulator that are used
to perform the individual robot action. Such a planner
uses robot-dependent planning techniques and discrete
system formalism (DEVS). The second level is the dis-
crete event simulator of the entire machining process.
It models robots and devices. The variants of motion
interpretation obtained from the motion planner are
tested by the simulator. The simulation carried out

Figure 4: Structure of Robot Task Simulation System

at the next level is used to select the most effective
variant for realizing the robot’s program. The layers
for program synthesis and simulation are:

0 Layer 1: The simulation layer that comprises: a) a
simulator of the technological process, b) a simu-
lator of the robot based on a discrete event model
of the manufacturing process.

0 Layer 2: The interpretation and planning layer for
each individual robot action. A geometric model
of the workcells is employed for plan generation.

The simulation layer (Layer 1) automatically syn-
thesizes a model of the technological process by ana-
lyzing the technological operations applied to details.
This results in a discrete event model specification
which serves as the basis for simulating the robot’s
actions. To simulate, the system must have the knowl-
edge of how individual actions are carried out in the
process. This knowledge must be available in order to
schedule the correct sequence of actions. (Recall that
each action has an associated set of commands of the
robot programming language.)

Layer 2 supports scheduling. It interprets and sim-
ulates the command based on a geometric model of
the robot and its workscene. The planning compo-
nent of this layer automatically formulates the robot’s
motion trajectory. It also provides time parameters
for the robot’s actions. These parameters are used in
the simulation carried out at Layer 1. The structure
of the proposed system is illustrated in Figure 4.

169

Figure 5: Graph Structure of Manufacturing Process

4.1 Basic Formal Concepts for Robot
and Manufacturing System Model-
ing

Currently, our analysis is restricted to sequential tech-
nological processes. Each machine (workcell) is as-
signed an operation to process a detail. An assembly
line consists of a series of workcells Mi li = 1, . . . , N .
In addition] there are two special workcells, the feeder
conveyer MF and the output conveyer MO. These
conveyers can serve as input/output devices for other
assembly lines. (For the sake of brevity, specifications
of the feeder and output conveyers are omitted in this
paper.) Each workcell has its own program for process-
ing a detail. The program determines the time neces-
sary to carry out the operation assigned to a workcell.
The operation is executed by a robot. The robot also
transports a detail among the workcells. We do not
provide any facilities for queuing details at the work-
cells. A diagram of the system under consideration is
shown in Figure 5.

Each vertex in the figure corresponds to a techne
logical device (workcell). The arcs represent possible
robot movements between workcells. An arc depicted
by a continuous line symbolizes the transport of a de-
tail between workcells. A dashed line represents a pos-
sible “empty” move of the robot servicing the line. An
empty move is necessary to transfer the robot to a
workcell requesting service.

To model the assembly line we employ the Discrete
Event System Specification (DEVS) formalism [7].

In DEVS one must specify basic models from which
larger ones are built, and how these models are con-
nected together in a hierarchical fashion. A basic
model, called an atomic DEVS is defined by the fol-
lowing structure:

where
X is a set, the external input event types
S is a set, the sequential states
Y is a set, the external output event types
hint is a function] the internal transition

specification

6,,t is a function, the external transition
specification
X is a function] the output function
t , is a function, the time advance func-

tion

(a) The total state set of the system spec-
ified by M is

(b) hint is a mapping from S to S:

(c) bett is a function:

(d) t , is a mapping from S to the non-

with the following constraints:

Q = {(SI e)ls E 5’1 0 5 e 5 ta(s)};

6int : s -+ s;
6,,t : Q x X --+ S;

negative reals with infinity:

(e) X is a mapping from S to Y:
t , : S -+ R,

X : S + Y .

An interpretation of the DEVS and full explication
of its semantics are in [7]. The second form of mod-
els, called a coupled model, tells how to couple sev-
eral component models together to form a new model.
This latter model can itself be employed as a compo-
nent in a larger coupled model, thus giving rise to the
hierarchical model construction.

4.2 Simulator Design
The robot’s actions in a system depicted in Figure
5 can be realized by elementary operations. Each
elementary operation has an associated set of in-
structions in the task-oriented robot programming
language (TORPL). The basic macro-instructions of
TORPL are: MOVE (EMPTY, HOLDING) T O po-
sition, PICKUP part AT position, PLACE part ON
position, WAIT FOR sensor input signal, START out-
put signal. Basic instructions can be combined into a
higher level macros such as the PICK-AND-PLACE
operation [14, 151:

MOVE EMPTY TO position A
PICKUP part AT position A
MOVE HOLDING part TO position B
PLACE part OB position B

The above instructions are used to synthesize the
robot’s action program. The synthesis process requires
introduction of conditional instructions that depend
on the states of each device Mi of the assembly line.
Thus, to define a simulator of the program, we model
conditions that enable program instructions. Each de-
vice M, has the following DEVS representation:

170

The state set of each Mi is defined as Si = { A , B , C}
where

0 A signifies that DEVICE IS NOT WORKING
AND IS FREE

0 B signifies that DEVICE IS NOT WORKING
AND IS NOT FREE

0 C signifies that DEVICE IS WORKING AND IS
NOT FREE

Assume that the i-th position denotes the location of
a machine a t which a detail is placed. The set of ex-
ternal events for Mi is defined by the commands of the
TORPL, namely:

{Xi = 21 i , z2 i120 I i = 1, ..., N }

where:
zli = PLACE part on i-th position
22i = PICKUP part at i-th position
20 = DO NOTHING

The internal transition function for each device i is
given as follows:
bfnt(A) = A

6:,,(C) = B
‘jnt(B) = B

The external transition function for each device i is
defined as:
af,,((A, e) , z l i) = C
a&t ((B ,e) , z 2 i) = A
a:,t((s, e) , 20) = s

.), .) = failure for all other states

The time advance functions for M, determine the
time needed to process a detail in the i-th device. They
are defined as follows: i f s = C, then ta i (s) = ri (the
tooling/assembly time for device i) , otherwise ta’(s) =
0.

The above specification defines a model of techno-
logical devices of the assembly line. The activation of
each device Mi is caused by an external event gener-
ated by the model of the robot. This model is realized
by a generator of an experimental frame component
[7] associated with the assembly line model. Since the
events generated by the robot depend on the states of
the workcells Mili = 1 , . . . , N I we define an acceptor
which observes the state of each workcell. The block
diagram of the entire simulation system is given in
Figure 6.

Rather than provide a detailed mathematical de-
scription of the experimental frame models here, we

Figure 6: Discrete Event Simulator of Manufacturing
System

describe their functionality. (The reader is referred to
[13] for a complete formal specification of the simula-
tor of Figure 6 .)

The acceptor is a DEVS that receives as input state
descriptions of each device Mi. It selects events which
invoke the robot to service a workcell. The acceptor
state set is a class of subsets of indexes of workcells
Mi. The state contains indexes of only those work-
cells which have completed processing of a detail and
from which the detail can be transported to another
workcell (i.e., there exists a free workcell). The states
of the acceptor also determine state components of the
frame generator that models the robot.

The robot’s model contains the state set SR =
Sa x POSITIONS x H S , where Sa is the state set
of the acceptor, POSITIONS is the set of positions of
the robot’s effector-end in the base-Cartesian space,
HS is the set of states of the effector, i.e., HS =
{EMPTY, HOLDING}. The robot’s state set is parti-
tioned into two subsets. The first subset corresponds
to the EMPTY state of the effector-end, the second to
the HOLDING state. The internal transition functions
are represented by the following sequences in TORPL:

HOVE EMPTY FROH k-position TO i-position
PICKUP part AT i-position

for the EMPTY state of the effector-end, and

HOVE HOLDING part FROH k-position
TO k+l position

PLACE part on k+i position
START signal for device k+l

for the HOLDING state of the effector-end.
The time advance functions determine: a) the sum

of the time of motion from the position k to i and the

171

time of the pickup operation, b) the sum of motion
time from the position k to the position k+1 and the
time of the place operation on the k+l-th device, for
EMPTY and HOLDING states, respectively.

The robot’s model also generates external events
(i.e., PICKUP, PLACE and START) for devices Mi,
which trigger their corresponding simulators. .

The model we have proposed facilitates convenient
generation of the robot’s program. In order to con-
struct the program, we translate the generator’s tran-
sition function into commands of the task-oriented
robot programming language: [13].

LOOP FOREVER (i = iJ...J Ii)
IF ((i - th input signal Eq

not working and not free) AND
(i+ i - th input signal Eq
not working and free))

MOVE EMPTY TO i - th position
PICKUP part AT i - th position
MOVE HOLDING part TO i+ i - th
PLACE part ON i+ i - th position
START i+l - th device

THEN

position

END LOOP

The proposed model of a workcell is used as the
basis for testing the program with a varying range of
motion parameters. The most important parameters
are the time it takes to complete an operation, ri, and
the time the robot takes to service a workcell. The
time r, depends on the type of device on which the i-
th operation is being processed. It is fixed but can be
changed by replacing the device. Similarly, the times
of PICK UP and PLACE operations are determined
by the type of detail and device on which the detail is
processed.

The times of robot’s inter-operational moves (trans-
fers), ri,j, depend on the geometry of the workscene
and the cost function of the robot motion. This cost
function determines the dynamics of motion along the
geometric trajectories.

The planner’s fundamental function is to synthesize
the robot’s motion trajectories. The trajectories real-
ize the MOVE instructions of the program. They also
determine the duration of the moves. These data must
be accessible in order to simulate the entire assembly
system. To generate the trajectories, Layer 2 of Fig-
ure 4 must have models of the robot and assembly line
available. It must also have initial and final positions
(coordinates) of each move given. The motion plan-
ning aspect of our approach is described in detail in
[13, 16, 171.

5 Summary and Conclusions

A comprehensive framework for design of an auto-
mated (e.g., manufacturing, diagnostic, testing, etc.)
system will require integration of several layers of sup-
port methods and tools. We have proposed an archi-
tecture that should facilitate:

automatic generation of different plans of se-
quencing operations (operations scheduling prob-
lem)

selection of devices (machines, material handling
systems, and robots) to carry out the operations

synthesis of programs for robots servicing the de-
vices

planning and interpretation of robots’ motion
programs in the generated geometrical model of
workscene with respect to various criteria

synthesis of the autonomous robotic system’s sim-
ulation

testing and verification of design variants based
on the interpreted programs of robots’ actions and
simulation modeling of the overall system archi-
tecture

The integration of all the above features is a com-
plex task, with each of the functions being a research
topic in itself. However, the need for simulation com-
ponent in FMS CAD is becoming increasingly obvious
due to a number of reasons: Most existing systems
facilitate only one mode of operation, i.e., the off-line
input of robot’s program and subsequent testing of
the program by graphic animation of robot’s motions
in a geometric model of the workscene. The systems
are capable of detecting collisions. However, they can-
not plan collision free motion. They do not facilitate
simulation of a workcell in order to evaluate its effi-
ciency. They cannot emulate a programming language
that would actively use a simulation model. Such lan-
guages do not exist yet. Our future work will focus on
the automatic generation of such a language.

We shall also develop methods to integrate the as-
sembly planning with device selection and layout. At
this point, the pruning rule base contains constrains
imposed by the assembly sequence, which imply a
certain topology of the manufacturing system. A
methodology for mapping assembly sequence plans
into the pruning knowledge base will be established.

172

Acknowledgments
The work of Jerzy Rozenblit has been supported in
part by Siemens Corporation, Corporate Research Di-
vision, Princeton, New Jersey. Witold Jacak was sup-
ported in part by the Polish Academy of Sciences. Ray
Huang's expertise of J~TEXW~S invaluable.

References
[l] A. Kusiak Intelligent Manufacturing Systems.

Prentice Hall. 1990

[2] J.E. Lenz. Flezible Manufacturing. Marcel
Dekker, Inc., 1989

[3] L.S. Homem De Mello and A. C. Sanderson.
AND/OR Graph Representation of Assembly
Plans. IEEE Trans. on Robotics and Automation,
6(2), 188-199, 1990.

[4] A.C. Sanderson, L.S. Homem De Mello and H.
Zhang. Assembly Sequence Planning. A I Maga-
zine, 11(1), Spring 1990

[5] J.W. Rozenblit. A Conceptual Basis for In-
tegrated, Model-Based System Design, Ph.D.
Dissertation, Department of Computer Science,
Wayne State University, Detroit, Michigan, 1985

[6] J.W. Rozenblit and B.P. Zeigler. Design and
Modelling Concepts, in: International Encyclo-
pedia of Robotics, Applications and Automation,
(ed. Dorf, R.) John Wiley and Sons, New York,
308-322, 1988

[7] B.P. Zeigler. Multifacetted Modelling and Discrete
Event Simulation, Academic Press, 1984

[8] N.J. Nilsson. Principles of Artificial Intelligence,
Tioga, Palo Alto, CA. 1980

[9] J.W. Rozenblit and Y. Huang. Constraint-Driven
Generation of Model Structures. Proc of 1987
Winter Simulation Conf. , Atlanta, GA. 604-611,
1987

[lo] J.W. Rozenblit and B.P. Zeigler. Knowledge-
Based Simulation Design Methodology: A Flex-
ible Test Architecture Example. SCS Transac-
tions, 7(3), 195-228, 1990

[l l] B. Farerjon. Object Level Programming of Indus-
trial Robots. IEEE Int. Conf. on Robotics and
Automation, 2, 1406-1411. 1986

[12] R. Speed. Off-line Programming of Industrial
Robots. Proc. of ISIR 87, 2110-2123, 1987.

[13] W. Jacak and J.W. Rozenblit. Automatic Sim-
ulation, Interpretation and Testing of a Task-
Oriented Robot Program for a Sequential Tech-
nological Process, Robotica (to appear) 1991.

[14] T. Lozano-Perez. Task-Level Planning of Pick-
and- Place Robot Motions. IEEE Trans. on Com-
puters 38(3), 21-29, 1989.

[15] R. Brooks. Planning Collision-Free Motions for
Pick-and-Place Operations. I d . J. of Robotics
Research 2(4), 19-44, 1983.

[16] W. Jacak. Strategies for Searching Collision-Free
Manipulator Motions: Automata Theory Ap-
proach. Robotica, 7 , 129-138, 1989.

[17] W. Jacak. Modeling and Simulationof Robot Mo-
tions. Lecture Notes in Computer Science, 410,
751-758, Springer Verlag, 1990.

173

