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Abstract 
A framework is proposed for support of design, task 
planning, and simulation of automated manufactur- 
ing systems. The framework establishes a hierarchy 
of method banks essential for improving the efficiency 
and cost effectiveness of manufacturing processes. The 
methods should support automatic generation of se- 
quencing rules, design and configuration of the man- 
ufacturing facility and equipment, synthesis of task 
oriented robot programs, and generation and execu- 
tion of simulation models of a manufacturing system. 
In this paper, each layer is addressed and preliminary 
results that apply simulation to interpret and test task 
oriented robot programs are discussed. 

1 Introduction 
Recently, the use of programmable automation and 
flexible automation has had significant impact on ma- 
chining and assembly of products [l]. The economic 
importance of manufacturing and robotics has led 
to extensive efforts to improve the effectiveness of 
robot-based process automation. More systematic ap- 
proaches to design and planning of robot tasks are still 
needed to further improve performance. Flexible man- 
ufacturing systems (FMS)-treated here as both ma- 
chining and assembly systems-possess a number of 
unique features and characteristics which require that 
their design and operation strategies be substantially 
different from those used in conventional job shop and 
transfer line facilities [2]. 

A flexible manufacturing system is a set of machines 
connected by a flexible material handling facility (such 
as a robot, a crane, or an automated guided vehicle) 
and controlled by a computer [l]. Some of the distin- 
guishing features of FMS are [l]: 

High degree of automation of machines and ma- 
terial handling systems. 
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Figure 1: Architecture for FMS CAD 

0 The layout of machines is strongly influenced by 
the type of material handling system used and the 
structure of the manufacturing process. 

0 The design of the system influences its operation. 

An integrated CAD framework for design of FMSs 
should address the above issues. In this paper, we stip- 
ulate an architecture for such a framework and discuss 
its basic layers shown in Figure 1. 

We begin by summarizing assembly sequence plan- 
ning. Then, a design approach for selection and con- 
figuration of manufacturing system’s components is 
discussed. Next, synthesis of a task-oriented robot 
program is presented. The synthesis process is sup- 
ported by discrete event simulation models of the 
robot’s world and interpretation and planning tech- 
niques. The resulting amalgamation of simulation and 
planning facilitates studies of alternatives realizations 
of robot’s motion and thus supports the overall perfor- 
mance evaluation of the manufacturing system. At the 
conclusion, we justify the need for this amalgamation. 
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2 Assembly Sequence 
Planning 

Automatic synthesis of a program of robot’s actions 
requires the integration of sensory and motor control 
information with an internal representation of parts, 
geometries, and relationships. We propose that the 
robot program synthesis be realized by a hierarchical 
system of task planning. The system consists of two 
basic layers, i.e., the task planning layer and task level- 
programming layer. 

Task level planning is based on the description of 
the product and the operations of the machining pro- 
cess, a description of the system and its resources such 
as devices, robots, fixtures or sensors, and a specifica- 
tion of a precedence relation over the set of operations. 
The task-level plan describes the decomposition of the 
machining task into the sequence of elementary opera- 
tions of robots and devices, the assignment of machin- 
ing subtasks to system resources and a model for the 
coordination and scheduling of system resources [3, 41. 

The basic problem at the task planning level is the 
derivation of an ordered sequence of robot’s actions 
that can be used to perform a machining or an assem- 
bly task. To solve it, a graph representation can be 
used. Sanderson et.al. [4] define a framework in which 
AND/OR graphs represent all possible sequences of 
assembly plans. A decomposition of the machining 
task corresponds to a cut set of this graph. Feasible 
decompositions, with respect to precedence relation of 
assembly operations, are used to create an AND/OR 
graph that represents all valid operation sequences. 
The path with minimal deadlock cases is searched. To 
eliminate deadlock cases, the execution-preconditions 
for each operation are created. The action plan for an 
assembly task determines the robot’s program of oper- 
ations needed to service the process. Such a program 
is a sequence of instructions (motion, grasp and sen- 
sors instructions) expressed in a task-oriented robot 
programming language. 

Detailed descriptions of assembly sequence planning 
based on the AND/OR graph representation are given 
by Homem de Mello, Sanderson, and Zhang [3, 41 who 
strongly advocate the integration of the assembly plan- 
ning with task-level programming. We discuss simula- 
tion support of task programming in Section 4. Prior 
to that, we define a layer for support of selection and 
configuration of devices in a manufacturing facility. 

3 System Design-Device 
Select ion and Layout 

Design of a manufacturing facility capable of carrying 
out an assembly sequence plan is an integral phase of 
the proposed framework [l]. Resources, i.e., machines, 
robots, material handling devices, and computer hard- 
ware must be integrated in a manner most conducive 
to the realization of the plan. In this section, we ex- 
amine how a general system design methodology can 
aid in this integration process. 

The system design approach proposed by Rozenblit 
[5, 61 termed Knowledge-Based Simulation Design, fo- 
cuses on the use of modeling and simulation techniques 
to build and evaluate models of the system being de- 
signed. It treats the design process as a series of ac- 
tivities that include specification of design levels in a 
hierarchical manner (decomposition) , classification of 
system components into different variants (specializa- 
tion), selection of components from specializations and 
decompositions, development of design models, exper- 
imentation and evaluation by simulation, and choice 
of design solutions. 

Design begins with developing a representation of 
system components and their variants. We have pro- 
posed a representation scheme called the system entity 
structure (SES) [6,7] that captures the following three 
design relationships: decomposition, taxonomy, and 
coupling. Decomposition knowledge means that the 
structure has schemes for representing the manner in 
which an object is decomposed into components. Tax- 
onomic knowledge is a representation for the kinds of 
variants that are possible for an object, i.e., how it can 
be categorized and subclassified. The synthesis (cou- 
pling) constraints impose a manner in which compo- 
nents identified in decompositions can be connected 
together. The selection constraints limit choices of 
variants of objects determined by the taxonomic rela- 
tions. 

Beyond this, procedural knowledge is available in 
the form of production rules [8]. They are used to ma- 
nipulate the elements in the design domain by select- 
ing and synthesizing the domain’s components. This 
selection and synthesis process is called pruning [9]. 
Pruning results in a recommendation for a model com- 
position tree, i.e., the set of hierarchically arranged en- 
tities corresponding to system’s components. A com- 
position tree is generated from the system entity struc- 
ture by selecting a unique entity for specializations and 
a unique aspect for an entity with several decomposi- 
tions. 

The final step in the framework is the evaluation 
of alternative designs. This is accomplished by simu- 
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lation of models derived from the composition trees. 
Discrete Event System Specification (DEVS) [7] is 
used as a modeling formalism used for system spec- 
ification in the methodology. DEVS provides a formal 
representation of discrete event systems. (We define 
DEVS in Section 4.1) 

In the what follows, we demonstrate how this 
methodology applies to the FMS CAD framework dis- 
cussed here. 

3.1 Device Selection and Configura- 
tion 

The system entity is a structured representation of a 
flexible manufacturing facility. To configure a specific 
system’s layout (i.e., collection of devices and their 
arrangement) for a given product and assembly plan, 
pruning is invoked. For illustration, consider the fol- 
lowing problem (adopted from Rozenblit and Zeigler 
[lo]): Flexible testing of printed circuit boards (PCB) 
involves several types of devices that may be config- 
ured in several ways depending on the type of board 
and test plan (here, our interpretation of a test plan is 
semantically equivalent to that of a machining plan). 
Figure 2 depicts a generic entity structure represen- 
tation of the facility called Automatic Test Facility 
(ATF). The components of ATF include test cells, 
transport devices, production stores, and auxiliary fa- 
cilities. A test cell can be an in-circuit tester or a 
functional tester. A transport device can be a con- 
veyer, a crane, or an automatic guided vehicle (agv). 
A production store can be a post assembly dock, a 
scrap store, or a stock store. A burn-in, an inspection 
cell, and a repair workstation are auxiliary facilities. 

Flexible testing consists in generating a configura- 
tion of components selected from the set of the ATF’s 
entities for a specific type of PCB. For example, in 
order to test a bare-board (board with circuit connec- 
tions fetched on it but without any attached devices), 
only an inspection facility that checks for shorts and 
opens may be sufficient. On the other hand, another 
type of board may be tested using all of the ATF’s 
components. 

Some fundamental criteria for selecting various 
kinds of components are given. In-circuit testers re- 
quire access to all circuit nodes on the board and is+ 
lation of devices under test. A special fixture called 
bed-of-nails is also mandatory in order to perform an 
in-circuit test. In-circuit tests do not detect timing de- 
fects whereas the functional tests do. The latter tests 
require an edge connector. A burn-in auxiliary facility 
is used to operate a board dynamically at an elevated 
temperature. Such a facility is usually followed by in- 

Figure 2: System Entity Structure of ATF 

spection of the board. 
Given the above description, a rule base is defined 

that is used to prune different configurations of the 
ATF. The problem is defined as follows: “Given a set 
of parameters, test design attributes, prune a set of 
workstations from which ATF will be composed.” 

Sample selection and synthesis rules used to gen- 
erate alternative configurations of the ATF are given 
below. The complete knowledge base is presented in 

Example of Selection Rules 
if access to all circuit nodes on the Unit Under Test 
(UUT) is available and 

P O I .  

devices under test can be isolated and 
bed-of-nails fixture available for the PCB and 
timing defects detection is not required 

then select ICT tester 

if access to all circuit nodes on the U U T  is available 
and 

devices under test can be isolated and 
bed-of-nails fixture available for the PCB and 
timing defects detection is required and 
edge connector is available 

selected testers are: ICT and FUNCT 
then 

Example of Synthesis Rule 
if selected testers are: ICT and FUNCT and 

then 
there are no auxiliary facilities 
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Figure 3: Sample Layout of ATF 

testers are: ICT cascaded with FUNCT and 
there are no Auxiliary Facilities and 
the transport system is Crane 
there is a Post Assembly Dock production store 
there is a Stock production store 

Pruning in our design methodology is supported by an 
expert system shell [lo]. A sample result for the ATF 
model is depicted in Figure 3. This model was gener- 
ated in a consultation session in which no dynamical 
testing at elevated temperature was necessary nor was 
the on-site repair critical to the test procedure. Given 
an assembly plan and manufacturing system to carry 
it out, the program of robot’s actions must now be 
synthesized. 

4 Robot Program Synthesis 
and Simulation 

The action plan for a manufacturing process deter- 
mines the robot’s program of actions in servicing the 
process. The program is usually a sequence of instruc- 
tions expressed in a task-oriented robot programming 
language (TORPL) [ll, 121. The implementation of 
the task-level plan is carried out using a task-level 
programming approach in which detailed paths and 
trajectories, gross and fine motion, grasping and sens- 
ing is specified. Variant interpretations of the instruc- 
tions result in different realizations of robot actions. 
To create and verify all valid interpretations of mo- 
tion program a two-level system has been proposed 
[13]. The first level is the motion planner for each in- 
dividual robot action. It creates variants of collision- 
free time-trajectories of a manipulator that are used 
to perform the individual robot action. Such a planner 
uses robot-dependent planning techniques and discrete 
system formalism (DEVS). The second level is the dis- 
crete event simulator of the entire machining process. 
It models robots and devices. The variants of motion 
interpretation obtained from the motion planner are 
tested by the simulator. The simulation carried out 

Figure 4: Structure of Robot Task Simulation System 

at the next level is used to select the most effective 
variant for realizing the robot’s program. The layers 
for program synthesis and simulation are: 

0 Layer 1: The simulation layer that comprises: a) a 
simulator of the technological process, b) a simu- 
lator of the robot based on a discrete event model 
of the manufacturing process. 

0 Layer 2: The interpretation and planning layer for 
each individual robot action. A geometric model 
of the workcells is employed for plan generation. 

The simulation layer (Layer 1) automatically syn- 
thesizes a model of the technological process by ana- 
lyzing the technological operations applied to details. 
This results in a discrete event model specification 
which serves as the basis for simulating the robot’s 
actions. To simulate, the system must have the knowl- 
edge of how individual actions are carried out in the 
process. This knowledge must be available in order to 
schedule the correct sequence of actions. (Recall that 
each action has an associated set of commands of the 
robot programming language.) 

Layer 2 supports scheduling. It interprets and sim- 
ulates the command based on a geometric model of 
the robot and its workscene. The planning compo- 
nent of this layer automatically formulates the robot’s 
motion trajectory. It also provides time parameters 
for the robot’s actions. These parameters are used in 
the simulation carried out at Layer 1. The structure 
of the proposed system is illustrated in Figure 4. 
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Figure 5: Graph Structure of Manufacturing Process 

4.1 Basic Formal Concepts for Robot 
and Manufacturing System Model- 
ing 

Currently, our analysis is restricted to sequential tech- 
nological processes. Each machine (workcell) is as- 
signed an operation to process a detail. An assembly 
line consists of a series of workcells Mi li = 1, . . . , N .  
In addition] there are two special workcells, the feeder 
conveyer MF and the output conveyer MO. These 
conveyers can serve as input/output devices for other 
assembly lines. (For the sake of brevity, specifications 
of the feeder and output conveyers are omitted in this 
paper.) Each workcell has its own program for process- 
ing a detail. The program determines the time neces- 
sary to carry out the operation assigned to a workcell. 
The operation is executed by a robot. The robot also 
transports a detail among the workcells. We do not 
provide any facilities for queuing details at the work- 
cells. A diagram of the system under consideration is 
shown in Figure 5. 

Each vertex in the figure corresponds to a techne 
logical device (workcell). The arcs represent possible 
robot movements between workcells. An arc depicted 
by a continuous line symbolizes the transport of a de- 
tail between workcells. A dashed line represents a pos- 
sible “empty” move of the robot servicing the line. An 
empty move is necessary to transfer the robot to a 
workcell requesting service. 

To model the assembly line we employ the Discrete 
Event System Specification (DEVS) formalism [7]. 

In DEVS one must specify basic models from which 
larger ones are built, and how these models are con- 
nected together in a hierarchical fashion. A basic 
model, called an atomic DEVS is defined by the fol- 
lowing structure: 

where 
X is a set, the external input event types 
S is a set, the sequential states 
Y is a set, the external output event types 
hint is a function] the internal transition 

specification 

6,,t is a function, the external transition 
specification 
X is a function] the output function 
t ,  is a function, the time advance func- 

tion 

(a) The total state set of the system spec- 
ified by M is 

(b) hint is a mapping from S to S: 

(c) bett is a function: 

(d) t ,  is a mapping from S to the non- 

with the following constraints: 

Q = {(SI e)ls E 5’1 0 5 e 5 ta(s)}; 

6int : s -+ s; 
6,,t : Q x X --+ S;  

negative reals with infinity: 

(e) X is a mapping from S to Y: 
t ,  : S -+ R, 

X : S + Y .  

An interpretation of the DEVS and full explication 
of its semantics are in [7]. The second form of mod- 
els, called a coupled model, tells how to couple sev- 
eral component models together to form a new model. 
This latter model can itself be employed as a compo- 
nent in a larger coupled model, thus giving rise to the 
hierarchical model construction. 

4.2 Simulator Design 
The robot’s actions in a system depicted in Figure 
5 can be realized by elementary operations. Each 
elementary operation has an associated set of in- 
structions in the task-oriented robot programming 
language (TORPL). The basic macro-instructions of 
TORPL are: MOVE (EMPTY, HOLDING) T O  po- 
sition, PICKUP part AT position, PLACE part ON 
position, WAIT FOR sensor input signal, START out- 
put signal. Basic instructions can be combined into a 
higher level macros such as the PICK-AND-PLACE 
operation [14, 151: 

MOVE EMPTY TO position A 
PICKUP part AT position A 
MOVE HOLDING part TO position B 
PLACE part OB position B 

The above instructions are used to synthesize the 
robot’s action program. The synthesis process requires 
introduction of conditional instructions that depend 
on the states of each device Mi of the assembly line. 
Thus, to define a simulator of the program, we model 
conditions that enable program instructions. Each de- 
vice M, has the following DEVS representation: 
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The state set of each Mi is defined as Si = { A ,  B ,  C} 
where 

0 A signifies that DEVICE IS NOT WORKING 
AND IS FREE 

0 B signifies that DEVICE IS NOT WORKING 
AND IS NOT FREE 

0 C signifies that DEVICE IS WORKING AND IS 
NOT FREE 

Assume that the i-th position denotes the location of 
a machine a t  which a detail is placed. The set of ex- 
ternal events for Mi is defined by the commands of the 
TORPL, namely: 

{Xi = 21 i , z2 i120  I i =  1, ..., N }  

where: 
zli = PLACE part on i-th position 
22i = PICKUP part at i-th position 
20 = DO NOTHING 

The internal transition function for each device i is 
given as follows: 
bfnt(A) = A 

6:,,(C) = B 
‘jnt(B) = B 

The external transition function for each device i is 
defined as: 
af,,((A, e ) ,  z l i )  = C 
a&t ( (B ,e ) ,  z 2 i )  = A 
a:,t((s,  e ) ,  20) = s 

.), .) = failure for all other states 

The time advance functions for M, determine the 
time needed to process a detail in the i-th device. They 
are defined as follows: i f s  = C, then ta i (s )  = ri (the 
tooling/assembly time for device i ) ,  otherwise ta’(s) = 
0. 

The above specification defines a model of techno- 
logical devices of the assembly line. The activation of 
each device Mi is caused by an external event gener- 
ated by the model of the robot. This model is realized 
by a generator of an experimental frame component 
[7] associated with the assembly line model. Since the 
events generated by the robot depend on the states of 
the workcells Mili = 1 , .  . . , N I  we define an acceptor 
which observes the state of each workcell. The block 
diagram of the entire simulation system is given in 
Figure 6. 

Rather than provide a detailed mathematical de- 
scription of the experimental frame models here, we 

Figure 6:  Discrete Event Simulator of Manufacturing 
System 

describe their functionality. (The reader is referred to 
[13] for a complete formal specification of the simula- 
tor of Figure 6 . )  

The acceptor is a DEVS that receives as input state 
descriptions of each device Mi. It selects events which 
invoke the robot to service a workcell. The acceptor 
state set is a class of subsets of indexes of workcells 
Mi. The state contains indexes of only those work- 
cells which have completed processing of a detail and 
from which the detail can be transported to another 
workcell (i.e., there exists a free workcell). The states 
of the acceptor also determine state components of the 
frame generator that models the robot. 

The robot’s model contains the state set SR = 
Sa x POSITIONS x H S ,  where Sa is the state set 
of the acceptor, POSITIONS is the set of positions of 
the robot’s effector-end in the base-Cartesian space, 
HS is the set of states of the effector, i.e., HS = 
{EMPTY, HOLDING}. The robot’s state set is parti- 
tioned into two subsets. The first subset corresponds 
to the EMPTY state of the effector-end, the second to 
the HOLDING state. The internal transition functions 
are represented by the following sequences in TORPL: 

HOVE EMPTY FROH k-position TO i-position 
PICKUP part AT i-position 

for the EMPTY state of the effector-end, and 

HOVE HOLDING part FROH k-position 
TO k+l position 

PLACE part on k+i position 
START signal for device k+l 

for the HOLDING state of the effector-end. 
The time advance functions determine: a) the sum 

of the time of motion from the position k to i and the 
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time of the pickup operation, b) the sum of motion 
time from the position k to the position k+1 and the 
time of the place operation on the k+l-th device, for 
EMPTY and HOLDING states, respectively. 

The robot’s model also generates external events 
(i.e., PICKUP, PLACE and START) for devices Mi, 
which trigger their corresponding simulators. . 

The model we have proposed facilitates convenient 
generation of the robot’s program. In order to con- 
struct the program, we translate the generator’s tran- 
sition function into commands of the task-oriented 
robot programming language: [13]. 

LOOP FOREVER ( i =  iJ...J Ii) 
IF ( ( i - th  input signal Eq 

not working and not free) AND 
( i+ i - th  input signal Eq 
not working and free) )  

MOVE EMPTY TO i - th  position 
PICKUP part AT i - th  position 
MOVE HOLDING part TO i+ i - th  
PLACE part ON i+ i - th  position 
START i+l - th  device 

THEN 

position 

END LOOP 

The proposed model of a workcell is used as the 
basis for testing the program with a varying range of 
motion parameters. The most important parameters 
are the time it takes to complete an operation, ri, and 
the time the robot takes to service a workcell. The 
time r, depends on the type of device on which the i- 
th operation is being processed. It is fixed but can be 
changed by replacing the device. Similarly, the times 
of PICK UP and PLACE operations are determined 
by the type of detail and device on which the detail is 
processed. 

The times of robot’s inter-operational moves (trans- 
fers), ri,j, depend on the geometry of the workscene 
and the cost function of the robot motion. This cost 
function determines the dynamics of motion along the 
geometric trajectories. 

The planner’s fundamental function is to synthesize 
the robot’s motion trajectories. The trajectories real- 
ize the MOVE instructions of the program. They also 
determine the duration of the moves. These data must 
be accessible in order to simulate the entire assembly 
system. To generate the trajectories, Layer 2 of Fig- 
ure 4 must have models of the robot and assembly line 
available. It must also have initial and final positions 
(coordinates) of each move given. The motion plan- 
ning aspect of our approach is described in detail in 
[13, 16, 171. 

5 Summary and Conclusions 

A comprehensive framework for design of an auto- 
mated (e.g., manufacturing, diagnostic, testing, etc.) 
system will require integration of several layers of sup- 
port methods and tools. We have proposed an archi- 
tecture that should facilitate: 

automatic generation of different plans of se- 
quencing operations (operations scheduling prob- 
lem) 

selection of devices (machines, material handling 
systems, and robots) to carry out the operations 

synthesis of programs for robots servicing the de- 
vices 

planning and interpretation of robots’ motion 
programs in the generated geometrical model of 
workscene with respect to various criteria 

synthesis of the autonomous robotic system’s sim- 
ulation 

testing and verification of design variants based 
on the interpreted programs of robots’ actions and 
simulation modeling of the overall system archi- 
tecture 

The integration of all the above features is a com- 
plex task, with each of the functions being a research 
topic in itself. However, the need for simulation com- 
ponent in FMS CAD is becoming increasingly obvious 
due to a number of reasons: Most existing systems 
facilitate only one mode of operation, i.e., the off-line 
input of robot’s program and subsequent testing of 
the program by graphic animation of robot’s motions 
in a geometric model of the workscene. The systems 
are capable of detecting collisions. However, they can- 
not plan collision free motion. They do not facilitate 
simulation of a workcell in order to evaluate its effi- 
ciency. They cannot emulate a programming language 
that would actively use a simulation model. Such lan- 
guages do not exist yet. Our future work will focus on 
the automatic generation of such a language. 

We shall also develop methods to integrate the as- 
sembly planning with device selection and layout. At 
this point, the pruning rule base contains constrains 
imposed by the assembly sequence, which imply a 
certain topology of the manufacturing system. A 
methodology for mapping assembly sequence plans 
into the pruning knowledge base will be established. 
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