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A framework for aiding the construction of simulation models in system design problems is presented. The framework
employs concepts of artificial intelligence and simulation modeling. A knowledge representation scheme called system
entity structure expresses information about the structure of the system to be designed and its corresponding models. More
specifically, the entity structure represents objects and their attributes, decompositions, and taxonomies. A knowledge base
of production rules is defined for a given design domain and is incorporated in an expert system shell which recommends a
feasible configuration of design objects from the system entity structure, based on specific design objectives, constraints,
and requirements. This configuration is a basis for constructing a model of the system. The methodology for constructing
the system entity structure and its corresponding rule base is presented. A case study based on a high level robot design

problem is discussed to illustrate the conceptual framework.

Recent trends in simulation modeling research empha-
size the development of integrated software support envi-
ronments.>~¢122224 Such environments are envisioned as
conglomerates of tools that aid in the construction of
models and simulation programs. Several notable features
of the existing software prototypes distinguish them from
conventional simulation tools.

First, the new simulation environments are methodol-
ogy-based, i.e., their design is strongly influenced by a
methodology that underlies the model development pro-
cess in a given environment. Secondly, state-of-the-art
software technology is employed to implement theoretical
concepts. Common software techniques used in designing
the new simulation systems include object-oriented
programming, graphics interfaces with animation, and
automatic programming. Recently, Artificial Intelligence
(AI) methods have been used in model construction and
validation, as well as simulation management and
analysis.[5‘15'22’24]

This paper briefly discusses efforts in developing
integrated, advanced modeling environments. It presents
methods and tools to support the construction of system
models. Applying the Al-based production rule framework
to simulation model structuring, i.e, defining the structure
of a simulation model, may reduce the complexity of the
model development process in system design problems.
These methods are expected to contribute to both general
system design and simulation modeling research. In the
system design context, a representation scheme is pre-

sented that can capture and organize sets of components
(and relations among them) of the system being designed.
A method to select design components is given to ensure
that their arrangement (coupling) satisfies design con-
straints and criteria. This framework allows designers to
generate structures from which alternative models of a
design can be constructed and evaluated by a simulation
study.

Our results extend directly to general modeling re-
search. More specifically, they are applicable to large-scale
modeling problems that involve a multitude of system
components and various ways of decomposing and classi-
fying the components. The approach provides model man-
agement facilities for dealing with the complexity of such
problems. It complements some of the research efforts in
the model development methodology, briefly described in
the ensuing section.

1. Current Efforts in Design of Advanced Modeling
Environments

Balmer®® characterized modeling styles and their impact
on the design of the integrated software support environ-
ment (ISSE) in the CASM (Computer Aided Simulation
Modeling) context. The CASM environment is centered
around a simulation system consisting of modules of dec-
larations, functions, and procedures, and a program tem-
plate implemented in Pascal. This basic organization pro-
vides a structured framework for the development of
simulation models. Besides providing basic support in the
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form of file handling facilities, editors, and debuggers, the
system has a prototype program generator, graphical mod-
eling support, and an expert system interface.

The modeling process is based on the three phase
simulation approach.’) The system supports hierarchical
modeling by providing methods for description, editing
and retrieval of model specifications in a form reflecting
their hierarchical structure. Facilities are available for
comparison, analysis, and exploratory simulation of par-
tial models in large scale simulations of multi-component
systerns. Al support is provided through a natural lan-
guage interface and expert simulation control.

Guided by the paradigms of the Conical Methodol-
ogy,!'” Nance and Balci' have been developing a system
termed Simulation Model Development Environment
(SMDE). The goal of this effort is to provide a collection
of computer-based tools for automated support of model
development, to improve the model quality, and to in-
crease the effectiveness and productivity of modeling
teams. The architecture of SMDE consists of four layers:
hardware and operating system, kernel SMDE, minimal
SMDE, and SMDE:s supporting specific applications. De-
tailed descriptions of these components are given in [4].
Model development proceeds in a particular conceptual
framework (e.g., next event, activity scanning). Balci’s
recent work is concerned with applying the automation-
based paradigm'! to routinely translate the model’s formal
specification into executable code.

Another notable development in designing automa-
tic model synthesis systems is the work of Murray and
Sheppard"® who designed a Knowledge-Based Model
Construction (KBMC) system. KBMC’s definition com-
bines simulation modeling, automatic programming, and
expert systems. The system provides facilities for com-
plete model specification through an interactive knowledge
dialog (modeling knowledge acquisition). An executable
simulation model is derived based on modeling knowl-
edge, target language knowledge, and a set of construction
rules incorporated in KBMC’s knowledge base. The sys-
tem has been implemented in OPS83 and SIMAN.

The ensuing section demonstrates an approach to
building models derived from our work in system design
methodology termed Knowledge-Based Simulation Design
(KBSD).[21:23.25)

2. Model-Based System Design

A design methodology is an important basis for supporting
automation of the design process. Although design con-
cepts are pervasive in modern engineering, no single
framework is accepted as fundamental. The methodologies
offered by various design disciplines lack a uniform treat-
ment of the design process at various levels of abstraction.
Often, there is no underlying formal basis for design
representation and evaluation. Consequently, efforts to
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develop environments for support of design activities have
no theoretical backing, and the resulting systems are usu-
ally conglomerates of different, incompatible tools whose
coordination creates a substantial overhead in the design
process, -11:19.20.26,27]

A number of methodologies and design systems have
been developed to aid the engineering design process
in different domains.!'-*71%241 Knowledge-Based frame-
works consider design as an activity in which know-
ledge about a specific domain is used to represent design
artifacts, constraints, and requirements. Design is often
considered as a search process in which a satisfactory
design solution is produced from a number of
alternatives.'>!"?>l The search proceeds in a design
space whose elements are design objects (components) and
attributes (parameters).

Knowledge-Based Simulation Design uses modeling
and simulation techniques to build and evaluate models of
the system being designed. It treats the design process as a
series of activities that include specification of design
levels in a hierarchical manner (decomposition), classifica-
tion of system components into different variants (special-
ization), selection of components from specializations and
decompositions, development of design models, experi-
mentation and evaluation by simulation, and choice of
design solutions.

The design model construction process begins with
developing a representation of design components and
their variants. To appropriately represent the family of
design configurations, we have proposed a representation
scheme called the system entity structure (SES).*"! The
scheme captures the following three relationships: decom-
position, taxonomy, and coupling. Decomposition knowl-
edge means that the structure has schemes for representing
the manner in which an object is decomposed into compo-
nents. Taxonomic knowledge represents the possible vari-
ants for an object, i.e., how it can be categorized and
subclassified. Synthesis (coupling) constraints dictate the
manner in which components identified in decompositions
can be connected. Selection constraints limit choices of
variants of objects determined by the taxonomic relations.

Beyond this, procedural knowledge is available in the
form of production rules which manipulate the elements in
the design domain by appropriately selecting and synthe-
sizing the domain’s components. This selection and syn-
thesis process is called pruning. Pruning results in a
recommendation for a model composition tree, i.e., the
set of hierarchically arranged entities corresponding to
model components. A composition tree is generated from
the system entity structure by selecting a unique entity for
specializations and a unique aspect for an entity with
several decompositions.

The final step in the framework is the evaluation of
alternative designs. This is accomplished by simulation of
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models derived from the composition trees. Discrete Event
System Specification (DEVS)®'34 is used as a modeling
formalism for system specification in the methodology.
DEVS provides a formal representation of discrete event
systems. It is closed under coupling. This property facili-
tates the construction of hierarchical DEVS network speci-
fications.

Performance of design models is evaluated through
computer simulation in the DEVS-Scheme Environ-
ment. 3234 DEVS-Scheme is an object-oriented simulation
shell for modeling and design that facilitates construction
of families of models specified in the DEVS formalism.
Alternative design models are evaluated with respect to
design performance questions. Results are compared and
traded off in the presence of conflicting criteria. This
results in a ranking of models and supports choices of
alternatives best satisfying the set of design objectives.

This article focuses on one aspect of the knowledge-
based simulation design (KBSD) framework, namely, the
process that supports the development of design model
structures.

2.1. Formal Concepts for Model-Based Design

Our methodology for supporting the design process is
based on codifying appropriate decompositions, taxo-
nomic, and coupling relationships. In other words, knowl-
edge about the design domain is modeled by finding
pertinent decompositions of the domain, the possible vari-
ants that fit within these decompositions, and the con-
straints that restrict the ways in which components identi-
fied in decompositions can be coupled together. This
constitutes the declarative knowledge base. Beyond this,
production rules can be used to manipulate the elements in
the design domain by appropriately selecting and synthe-
sizing the domain’s components.

A formal object that meets the requirements stipu-
lated above is the system entity structure. A system
entity structure is a labeled tree. Nodes of the tree are
classified as entities, aspects, specializations, and mul-
tiple decompositions. Variables can be attached to nodes.
They are called attached variables. A high level view of
system entity structure for a robot design is shown in
Figure 1. Definitions and explanation of the system entity
structure components follow: (In describing the terms, we
refer to Figure 1 which depicts a high level view of the
entity structure representing possible, high level decompo-
sitions and specializations of a robot.)

Entity: a real world object which either can be
independently identified or postulated as a component of
some decomposition of a real world object. In the SES of
Figure 1, Robot is a root entity signifying the system to be
designed. Communication Subsystem is an entity identi-
fied as a component of a decomposition of Robot.

Aspect: one possible decomposition of an entity. The
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Figure 1. Robot system entity structure.

children of an aspect are again entities representing dis-
tinct components of the decomposition. A model can be
constructed by connecting together some or all of these
components. (The various aspects of an entity do not
necessarily represent disjoint decompositions. A new as-
pect can be constructed by selecting entities from existing
aspects as desired.) Subsystem Decomposition in Figure
1 is an aspect that defines the four entities Cognition,
Mechanical, Control, and Communication Subsystems.

Specialization: a mode (that is, a particular way) of
classifying an entity. It depicts the taxonomy of the system
being represented by SES. The use of specializations is a
powerful way of representing many different variations of
the same object. For example, the entity Robot is classi-
fied (double vertical line in the figure) into Intelligent and
Unintelligent Robot through the Intelligence Specializa-
tion and through the Motion Specialization categorizes
robots into Mobile and Fixed Robots.

Multiple decomposition: a special type of decompo-
sition (aspect) used to represent entities whose number in a
system may vary (denoted by triple vertical lines as in
Figure 1). For example, Mechanical Subsystem may have
0, 1, 2, or more Wheels.

Attached variable: an attribute of an object repre-
sented by the entity with which the variable is associated.
Thus, Control Subsystem may be characterized by its
accuracy, memory capacity, etc. (attached variables are
preceded with by a hyphen (-) in the figure).

The system entity structure satisfies a set of axioms
that guide its development. The axioms also govern how
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knowledge expressed by an SES is processed. The axioms
are:

1. Uniformity: any two nodes with the same labels have
identical attached variables and isomorphic subtrees.
The uniformity axiom ensures compactness of repre-
sentation; once a node and its substructure and at-
tributes have been specified, it need not be done again
if a new node with the same label in a different path of
the tree is created. For example, in Figure 1 if
Analog /Digital Converter were added as an entity of
Vision System and then as an entity of Sensory System,
those two entities would have identical attached vari-
ables and substructures.

2. Strict hierarchy: no label appears more than once
down any path of the tree. The strict hierarchy axiom
ensures that no object can be decomposed into itself.
For example, decomposing Mechanical System into
Robot would violate this axiom.

3. Alternating mode: each node has a mode which is
either ‘‘entity, aspect,”’ or ‘‘specialization’’; if the
mode is entity, then the modes of its successors are
aspect or specialization; if the mode is aspect or spe-
cialization, then its children are entities. The mode of
the root is entity. The alternating mode axiom en-
sures consistency in successive decompositions and
specialization of entities. The root of an SES tree is
always an entity. Consider again Figure 1 with Robot
as the root entity. Next level nodes in this tree are
specializations, namely, Intelligence and Motion
Specialization and a decomposition node called Sub-
system Decomposition. The children of these nodes
are entities.

4. Inheritance: every entity in a specialization inherits all
the variables, aspects and specializations from the par-
ent of the specialization. The inheritance axiom facili-
tates derivation of alternate arrangements of entities in
an SES tree. The root entity Robot has a specialization
called Motion Specialization with entities Fixed and
Mobile. In such a specialization relation Robot is re-
ferred to as a general type relative to the entities Fixed
and Mobile, which are called specialized types. Be-
sides having their own structure and attributes, Fixed
and Mobile inherit all of the variables and substruc-
tures of Robot. To make this true, we must be assign to
Robot only those attributes that are common to all its
variants.

5. Valid siblings: no two sibling nodes have the same
label.

6. Attached variables: no two variables attached to the
same item have the same name. The last two axioms
prevent us from specifying duplicate names for entities
in the same decomposition (specialization) and from
duplicating the names of entities’ attached variables.

LEINY
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The axioms furnish a unifying set of rules for devel-
oping and manipulating entity structures. A more detailed,
formal treatment of the system entity structure concepts
can be found in [23, 31].

The system entity structure specifies a family of
possible arrangements of components for the system being
designed (hereafter called design configurations). The en-
tities represent system components whose models will be
built. Aspects and specializations allow us to specify a
family of design alternatives by selecting different compo-
nents and decompositions. Thus, the system entity struc-
ture is a generative scheme from which a set of substruc-
tures underlying the construction of alternative design
models can be derived. The multiplicity of taxonomic and
decomposition relationships in a large design entity struc-
ture leads to a combinatorial explosion of possible model
alternatives. Therefore, it is necessary to provide proce-
dures that effectively reduce both the complexity of the
search process for admissible model structures and the
size of the search space itself. This paper emphasizes the
importance of this problem and describes a rule-based
procedure to solve it, called pruning.

Pruning the system entity structure results in a set of
alternative composition trees.*"?*' A model composition
tree is a structure from which a simulation model is
constructed hierarchically by coupling model specifica-
tions associated with the nodes of the tree. To obtain a
model composition tree from the system entity structure,
we need to select a unique aspect for each entity and
eliminate specializations. An example of a model composi-
tion tree that results from the system entity structure
shown in Figure 1 is given in Figure 8 and discussed in
Section 5. Rule-based pruning is discussed first.

3. Rule-Based Model Structure Synthesis

The multiplicity of aspects and specializations in large
design entity structures offers a spectrum of choices for
alternative model structures. Therefore, an effective pro-
cedure capable of handling the combinatorially unfolding
set of design model choices is needed. Our previous work
focused on a process termed generic experimental frame
driven pruning.?"*! This process is summarized next
and its deficiencies are pointed out. These deficiencies
motivated us to extend the previously developed algo-
rithms and develop the rule-based approach presented in
this paper.

The generic experimental frame driven pruning is
based on the following scheme. Assume that a set of
generic variables that reflect design dynamic performance
attributes (e.g., throughput, queue length, component uti-
lization) is defined. This set is called a generic experi-
mental frame.*"! Also, assume that an entity structure
has been transformed into a structure that contains no
specializations. Such an entity structure is called a pure
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entity structure. For entity structures in which specializa-
tions occur, procedures for mapping such structures into a
set of pure entity structures are provided in the next
paragraph. In specifying pruning algorithms, the concept
of a nondeterministic algorithm is employed, i.e., the
algorithms are allowed to contain operations whose out-
come is not defined uniquely but limited to a specified set
of possibilities. In the case of pruning pure entity struc-
tures, the purpose of the nondeterministic version of the
algorithm is to provide a definition of the set of all correct
model structures that the deterministic version should
produce.

The case of pruning entity structures with specializa-
tions is more complex. The choice of a nondeterministic
algorithm is justified in that there is no deterministic
procedure that generates the solution in polynomial
time. 2123

The goal of the generic frame based pruning process
is defined as follows: extract the substructure(s) of the
system entity structure whose entities have the attached
variables present in the generic experimental frame. Thus,
obtain model substructure(s) whose variables correspond
to those expressed by design dynamic performance at-
tributes. These substructures form the basis for building
design models which can be evaluated by simulation with
respect to performance measures that the attributes charac-
terize.

Consider first the pruning of pure entity structures. A
nondeterministic version of the algorithm employs a func-
tion choose that selects an aspect for an entity. The
algorithm returns a nondeterministically selected composi-
tion tree that accommodates the generic experimental
frame. The deterministic version of the algorithm is based
on depth first tree traversal. In this procedure, every entity
in each aspect is searched for occurrences of variables
present in the generic frame. The entities are attached to
the model composition tree being built as the search is
progressing. The algorithm calls itself recursively for each
entity being searched.

The limitation of the procedure is that it operates on
pure entity structures. Therefore, the procedure must be
augmented with modules that prune entity structures with
specializations. The extended procedure includes an algo-
rithm which generates a set of all possible pure structures
given any entity structure. This process is called Spfit.
The set of pure entity structures is generated by substitut-
ing the specialized entities (entities that occur in a special-
ization relation of their parent entity) in place of their
parent entity. (Thus the number of pure structures is equal
to the number of specialized entities.) The pure structures
are then pruned as described in the preceding paragraph.

A deterministic algorithm that performs the split gen-
erates all the combinations of pure entity structures result-
ing from substituting specialized entities into the parent
entities. Basically, it unfolds the entity structure in a
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combinatorial manner. Thus, the problem grows exponen-
tially with respect to the size of the system entity struc-
ture. Beyond the computational complexity, there is no
way to capture and propagate constraints imposed on the
structure of the system being designed (recall that the
generic frame represents only behavioral aspects of a
design problem).?"!

To alleviate these problems, the production rule for-
malism is used as a framework for design entity structure
pruning. The rule-based driven pruning is characterized as
follows: A knowledge base for a given design application
domain is defined. The knowledge base contains rules for
selection and synthesis of entities defined in specializa-
tions and aspects of the design entity structure. The rules
are derived from both the performance and the structural
constraints of the design application. Then, the modeler
invokes an inference engine which, through a series of
queries, produces a recommendation for the structure of
the design model. An overview of the model generation
process is shown in Figure 2.

3.1. Rule Base Construction

Knowledge base construction begins with knowledge ac-
quisition. A software tool aiding knowledge acquisition
for the system entity structure specification was first de-
veloped by Zeigler, Belogus and Bolshoi®” and subse-
quently incorporated in the DEVS-Scheme system—a hi-
erarchical, object-oriented, discrete event simulation envi-
ronment—under the name ESP-Scheme.?

The program helps the modeler to conceptualize and
record the decompositions underlying a model, or family
of models, before, during, and after development. To the
extent that ESP-Scheme is used before beginning the
model development, it assists in the top-down model
design. However, when additions and changes are made as
the development proceeds, ESP servees as a recorder of
progress. At the end of the development phase, the record
constitutes de facto documentation of the system structure
arrived at. Pruned entity structures serve as a basis for
retrieval from a model base of model components speci-
fied in DEVS-Scheme.

Recall that an entity structure represents possible
configurations of components of the system being de-
signed. From the problem solving standpoint, the nodes of
the entity structure represent states which make up the
search space. The process of design model structure gen-
eration can be interpreted as a search directed by con-
straints through the search space consisting of the entities,
their aspects and specializations. An inferencing scheme
drives this search. The resultant model structure is given
by the composition tree generated from the states selected
through the inferencing process.

The form of the constraints depends on the problem
domain. Al techniques use production rules as a constraint
representation framework. This rule-based approach is the
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basis of many successful expert systems, e.g., MYCIN,
DENDRAL, PROSPECTOR.?¥ Some of its advantages
are: (a) the conversion of knowledge into a rigid formal-
ism results in easy checking of uniformity, (b) each pro-
duction rule represents a small, independent piece of
knowledge, thus facilitating modularity (c) rigid syntax
affords the convenience of checking consistency, and (d) it
is relatively easy to furnish simple explanation facilities!*!
that annotate why or how a rule was invoked in the
inferencing process. However, design of complex explana-
tion facilities requires substantial effort and is the subject
of separate research.!'*!

In our approach, the rules are used to express model-
ing objectives, design constraints, users’ requirements and
performance expectations. The rule sets define a space of
constraints within which design solutions can be found.
The aim of the inferencing process is to generate solutions
from this space.

The following steps provide the rules that guide
pruning of the system entity structure: (1) for each special-
ization, specify a set of rules for selecting an entity from
this specialization, (2) for each entity with an aspect,
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specify synthesis rules that ensure that the entities selected
from specializations below this aspect are configurable
(i.e., the components they represent can be validly cou-
pled) and that such a configuration satisfies the design
problem at hand. Each rule can be assigned a certainty
factor indicating the rule’s degree of applicability.

The modules of selection and synthesis rules are
defined as follows:

Selection rule set: this rule set is associated with a
specialization of an entity (let us denote it ES). The rules
determine which specialized entity can be selected from
this specialization to serve as an instance of the class
represented by the entity ES.

Synthesis rule set: this rule set is associated with an
entity that has an aspect (let us denote it EA). The rules
check whether the aspect’s entities can be combined ac-
cording to the coupling constraints to form the entity EA.
In case an entity has multiple aspects, the synthesis rules
define alternative configurations of components for this
entity. The rules may specify a separate configuration for
each aspect or they may combine several aspects to form
one configuration. (Note that the aspects of an entity do
not necessarily represent disjoint decompositions. A new
aspect can be constructed by selecting from these aspects
as desired.)

Recall Figure 1 with the Robot system entity struc-
ture. Below, we give an illustrative selection and a synthe-
sis rule for this entity structure. A complete knowledge
base for the Robot design example is given in Section 4,
Table 1.

Example of a selection rule for the entity Control
Subsystem:

Rsel

If position accuracy is high (< 0.01 inch) or
memory capacity in robot is high and
budget is high and
moving of end effector is interruptible

Then type of control is controlled-trajectory (1.0)

Example of a synthesis rule for the entity Robot:

Rsyn
If recommended-robot is determined-by-type-of-motion
and
type of motion is mobile-free-flier and
type of control is controlled-trajectory
Then robot system is configurable (1.0) and
motion subsystem is free flier (1.0) and
remote communication is required (0.9) and

engine motion mechanism is strongly recommended
(1.0

The selection and synthesis rule sets define a knowl-
edge base utilized by the inference engine for pruning a
design entity structure for a particular application domain.
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Writing the rules is a nontrivial task. It requires that the
knowledge engineer closely cooperate with the design
experts and follow a knowledge acquisition process driven
by the system entity structure representation. The entity
structure serves as a framework to explore design knowl-
edge. The relevant knowledge is ‘‘coded’” in a cluster of
rules called a rule module. The chaining path of a rule
module is connected only to its parent and children mod-
ules. This eliminates ‘‘bugs’’ in rules such as circulated
chaining or unchained rules.!®)

Following the guidelines below, a complete rule base
for a design application domain is built.

Phase I: Selection Rules

1. Each rule corresponds to an entity node in a specializa-
tion. The conclusion of a rule is an action that substi-
tutes this entity node for its parent entity. This is called
instantiation of a general entity type. The premise of
the rule is made up of attached variables and their legal
values which are derived from the designer’s expertise.
The legal values can be selected through a consultation
process or may be assigned by default. Consider the
rule Rsel given above. Its premise part is defined by
the following compound condition: (position accuracy
is high (< 0.01 inch) or memory capacity in robot
is high and budget is high and end effector is inter-
ruptible). The conclusion part states that if the
above conditions are satisfied, then the type of control
to be used in the system being designed is controlled-
trajectory.

2. Repeat Step 1 with another entity until a rule set has
been created for all the entities in this specialization.

3. In the sequence of a tree postorder, find another entity
and repeat the above steps until all the entities in the
specializations of the system entity structure have been
assigned selection rules.

Phase II: Synthesis Rules (attached to entities with as-
pects)

1. The premise of a synthesis has one or two parts. The
first part is formed from the conclusions of the next
level selection rules. (The action of the rule is to
combine the specialized entities chosen by the selection
rule module.) For example, in the rule Rsyn above, the
conclusions of selection rules are mobile-free-flier,
controlled-trajectory, and determined-by-the-type-of-
motion. The second part is optional, but may include
conditions that employ variables and their value assign-
ments that describe the entity to which the rule is
attached. Such conditions may impose a manner in
which components can be connected or arranged in the
final configuration of the system being designed.

2. The conclusion of a rule is a set of assertions specify-
ing components that make up the entity to which the

synthesis rules are attached. Again consider the rule
Rsyn. The conclusion part states that a robot can be
synthesized given that the conditions of the premise
part are satisfied, and that the following subsystem
types are required: a free flier motion subsystem, a
remote communication subsystem, and an engine mo-
tion mechanism. The assertions of the conclusion part
may also include a specific way of coupling the con-
stituent components, e.g., a cascade or a parallel com-
position. For entities with multiple aspects, the synthe-
sis rules define alternative configurations of compo-
nents for this entity. (Recall that the aspects of an
entity do not necessarily represent disjoint decomposi-
tions and a new aspect can be constructed by selecting
entities from existing aspects as desired.) These asser-
tions define an aspect called a generated aspect (please
see Figure 3). A generated aspect specifies a final,
unique arrangement of subentities for the entity being
synthesized.
3. In postorder, repeat Steps 1 and 2.

Figures 3 and 4 illustrate examples of the syntax of
the rules and the order of their specification.

Selection Rule:
If vl=Lv-1l1and v2=Lv-22 or
v3=1Lv-32
Then E3 = S1
where

Lv stand for legal values of attributes
Synthesis Rule.
IfE3=S1and E4 =83 and
include (ES) = true
Then AE1 (generated aspect) = (81, 83, E5)

where

include (E5) is a set of conditions for composing a new aspect
AEI (generated aspect) that includes S1, $3, and ES

Figure 3. Examples of creating selection and synthesis rules. E,
entity; A, aspect; Spec., specialization; S, specialized entity; V,
attribute (attached variable).
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Figure 4. Postorder of writing selection and synthesis rules. E,

entity; A, aspect; Spec., specialization; S, specialized entity;
SEL, selection module; SYN, synthesis module.

Based on the above development method, the rule
base consists of two types of rule sets organized in a
hierarchical manner and mapped onto the entity structure.
This characteristic may facilitate the construction of au-
tonomous knowledge base units applied in a distributed
problem-solving network. In other words, this rule base
organization may not only benefit the future knowledge
base refinements and verifications but also the construc-
tion of large scale knowledge-based systems (LSKBs)."!

3.2. Organization of the System Shell

After the knowledge base has been constructed, it is
subjected to an inferencing process by a shell called
MODSYN (MODel SYNthesis).!'>) MODSYN consists of
four components as depicted in Figure 5: the inference
engine. the user interface, the explanation facility, and the
working memory. The shell was implemented in Turbo
Prolog and runs on IBM PC compatible machines. Brief
descriptions of each component follow.

The Inference Engine

The inferencing mechanism has two parts: the reasoning
and the control module. Since the shell was implemented
in Prolog, the reasoning technique inherits such features as
pattern matching, backtracking, and nondeterminism.
When a goal is given (objective of the model synthesis),
the inference engine tries to match this goal with the
conclusion of the first synthesis rule. If the goal does not
match, another synthesis rule is selected. (If no rule
matches the goal, pruning fails.) If matched, the inference
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KNOWLEDGE USER
ACQUISITION INTERFACE
EXPLANATION
FACILITY
INFERENCE
ENGINE
entity
structure
KNOWLEDGE
BASE
s MEMORY

Figure 5.  MODSYN architecture.

engine explores all possible chaining paths to satisfy the
premise part of the rule. All explored paths form a tree
structure with the goal as its root. The nodes of the tree
represent rules unless its leaves are facts from the user’s
specifications or the working memory. The facts (data)
from the user determine whether the reasoning tree can be
constructed or not. In other words, the inference engine
takes the goal and data from the user, and uses the
hypotheses generated by the knowledge base to prune the
search space tree. If all the facts provided are consistent
with the knowledge base, a pruned reasoning tree is
generated.

The control technique is a depth-first search which
traverses the entity structure as depicted in Figure 6. The
search begins from the main synthesis module down to the
leaf selection modules. The module instantiation processes
proceed in the opposite direction. If a module is instanti-
ated, the engine climbs up to its parent and then down to
the sibling modules. When the sibling modules are instan-
tiated, parents are as well. The search process continues
until the main synthesis module is instantiated expanding
only one aspect of an entity at a time and eliminating the
aspects that cannot be synthesized. This enables the con-
struction of a composition tree for a design model. Unlike
the generic frame based pruning, rule-based pruning oper-
ates on system entity structures in their most compact
form, i.e., the structures are not split or unfolded with
respect to specialization and aspect relations. This signifi-
cantly speeds up the entity structure traversal.

User Interface and Explanation Facilities

MODSYN uses two basic windows in the user interface:
the entity structure display and the consultation display.
The former displays an entity structure with a dynamic
menu that shows associated rules or attributes at each
node. The latter is menu-driven. The legal values of
objects’ attributes are retrieved from the rule base auto-
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Table I
Selection and Synthesis Rules for Robot Design

Intelligence Specialization Selection Rules for the Entity Robot

R1 if then

desired autonomy is high or medium recommended-robot is intelligent (0.9)
R2 if then

desired autonomy is low recommended-robot is unintelligent (0.9)
R3 if then

desired autonomy is ‘‘don’t care”’ recommended-robot is determined-

by-type-of-motion (1.0)

Motion Specialization Selection Rules for the Entity Robot

R4 if then
budget is relatively low and recommended-motion-type is fixed (1.0)
working area is not greater than 25 square feet or
requirement of arm carrying capacity is heavy
(> 1000 Ibs)
RS if then
budget is relatively high and recommended-motion-type is mobile (1.0)
working area is usually greater than 25 square feet or
requirement of arm carrying capacity is not heavy

(<= 1000 lbs)
Mounting Specialization Selection Rules for the Entity Fixed Robot
R6 if then
recommended-motion-type is fixed and type of mounting is fixed-pedestal (0.9)

power consumption is low and
degree of freedom is low and
work area has a solid ground
R7 if then
recommended-motion-type is fixed and type of mounting is fixed-supported-from-above (0.7)
power consumption is medium and
degree of freedom is low and
work area has a soft ground
R8 if then
recommended-motion-type is fixed and type of mounting is fixed-track-based (0.8)
power consumption is relatively high and
degree of freedom is medium

Motion Subsystem Specialization Selection Rules for the Entity Mobile Robot

R9 if then
recommended-motion-type is mobile and type of motion is mobile-wheel-based (0.9)
required moving speed is medium and
ground adaptivity is medium
R10 if - then
recommended-motion-type is mobile and type of motion is mobile-track-based (0.9)
required moving speed is high and
ground adaptivity is low and
power consumption is low
R11 if then
recommended-motion-type is mobile and type of motion is mobile-leg-based (0.7)
required moving speed is low or
ground adaptivity is high
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Continued

R12 if
recommended-motion-type is mobile and
required moving speed is high and
ground adaptivity is high and
power consumption is high

then

type of motion is mobile-free-flier

Control Subsystem Specialization Selection Rules for the Entity Control Subsystem

R13 if
position accuracy is low (> 0.01 inch) or
budget is relatively low and
memory capacity in robot is low and
moving of end effector is not interruptible
R14 if
position accuracy is medium (between 0.01 to
to 0.005 inch) or budget is medium and
moving of end effector is interruptible
RI1S if
position accuracy is high (< 0.005 inch) or
memory capacity in robot is high and
budget is high and moving of end
effector is interruptible

then
type of control is point-to-point

then
type control is continuous-path

then
type of control is controlled-trajectory

Synthesis Rules for the Main Synthesis Module

R16 if
recommended-robot is intelligent and
type of control is controlled-trajectory

R17 if
recommended-robot is determined-by-type-
of-motion and type of motion is
mobile-free-flier and type of
control is controlled-trajectory

then
robot system is configurable (0.9) and
robot is an intelligent robot (1.0) and
cognition system is strongly recommended
(1.0) and communication subsystem is
either remote or hard-wired (1.0)

then
robot system is configurable (1.0) and
motion subsystem is free flier (1.0) and
remote communication is required (0.9) and
engine motion mechanism is strongly
recommended (1.0)

matically. Besides the values, other terms such as UN-
KNOWN, WHAT, and WHY are included in the menu.
The last two terms provide simple explanation facilities as
to what facts have been determined and the triggering
status of the system.

Working Memory

The shell employs a default relational database of the
Prolog programming environment as the working mem-
ory. The working memory is used to store generated facts
during the inferencing process.

4. Example: Generating a Robot Model Structure

In related work,*! we have been developing concepts for
establishing a simulation environment capable of support-

ing the design of robot organizations for managing chemi-
cal, or similar laboratories aboard the Space Station.
Model specifications in such a simulation environment are
facilitated by applying the system entity structure con-
cepts. In the following, we illustrate the model structure
generation concepts by first developing a high level robot
system entity structure and then applying the rule-based
pruning procedure.

The System Entity Structure

Recall Figure 1 discussed in Section 2. Intelligence Spe-
cialization classifies the entity Robot as Intelligent or
Unintelligent. Motion Specialization generates Fixed
Robot and Mobile Robot. Mounting Specialization fur-
ther classifies Fixed Robot as Pedestal Based Robot, Robot
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Supported from Above, and Track Based Robot while
Motion Type Specialization defines Mobile Robot as
Wheel Based, Track, Based, Legs Based, or Free Flier
Robot.

The entity Robot has an aspect called Subsystem
Decomposition whose major components are Cognition,
Mechanical, Control, and Communication Subsystems
each of which is further classified and decomposed. Enti-
ties in the Robot design entity structure have attached
variables which represent attributes of system components
represented by the entities. In Figure 1, the variables are
prefixed a hyphen (-).

To select a specific robot design model structure, we
construct a knowledge base that consists of selection and
synthesis rules that reflect robot design expertise.

The Knowledge Base

The selection and synthesis rule modules given in Table I
have been defined for the Robot entity structure (numbers
in parenthesis are certainty factors with (0.0-1.0) range).

The group of rules for Intelligence Specialization
define criteria for selecting an intelligent or unintelligent
robot design (Figure 1). In this rather simple example, the
criterion used is the degree of desired autonomy the robot
should have. The next three selection modules correspond
to Motion Specialization, Mounting Specialization of Fixed
Robots, and Motion Subsystem Specialization. Notice the
two tiered hierarchy of selection rule blocks. This hierar-
chy corresponds to the hierarchy of specializations in the
SES of Figure 1. General criteria for selecting fixed
versus mobile robots are the scope of the work area, arm
carrying capacities, and available budget. More specific
criteria such as power consumption, ground adaptivity,
moving speed, and degree of freedom enable further selec-
tion of robot components. The rules for choosing the type
of control use attributes such as memory capacity, inter-
ruptibility of the end effector, and accuracy. The synthesis
rules define the overall configuration for the entity Robot
based on the choices resulting from lower level selection
modules.

We now illustrate pruning of the system entity struc-
ture of Figure 1 with respect to the rules specified above.

4.1. Consultation Process and Pruned Model

The following is a consultation session that generates a
recommendation for a robot model structure. The ques-
tions are activated by MODSYN. The user’s responses are
preceded by the symbol >.

1. Is the autonomy of robot high, low, or don’t care?
> don’t care

2. What is the budget?
> high

3. What is the scope of work area?
> greater than 30 square feet

4. What is the moving speed? (relative value)
> high

5. Is the ground adaptivity high, medium, or low?
> high

6. What is the value of power consumption?
> high

7. What is the required position accuracy?
> smaller than 0.01 inch

8. Is the end effector interruptible?
> yes

Conclusion: Robot system is configurable (0.9) and
type of control is controlled-trajectory (1.0) and
motion subsystem and is free flier (0.9) and
remote communication is required (0.81) and
engine motion mechanism is strongly recommended (0.9)

MODSYN uses backward chaining as its reasoning
mechanism. Table II describes the chaining process for the
consultation session listed above. The resulting pruned
entity structure is shown in Figure 7. This structure
defines the composition tree depicted in Figure 8.

Although the sizes of the system entity structure and
the rule base in this example are relatively small, manual
tracing of the pruning process proves rather cumbersome.
In larger design problems, such an inspection would be
ineffective. Hence, it is clear that MODSYN provides a
means for assisting the user in design decisions concerning
choices of design model components and their arrange-
ment.

As we have indicated in Section 2, the next phase in
this design framework is to develop a simulation model for
the design structure recommended by MODSYN. This is
beyond the scope of this paper. However, ample examples
of discrete event model specification in Model Based
System Design are given in the literature.”**>%1 A
schematic of a model that would be developed and simu-
lated to obtain performance design measures is shown in
Figure 9.

5. How the Presented Framework Supports System
Design and Modeling

Basic elements in the dynamics of the design process®'"'®!

are summarized below and related to our methodology.

1. Designs are created by individuals who use basic prob-
lem-solving techniques, namely, defining the problem,
proposing a solution and testing how well the solution
works with respect to the problem definition. Model-
ing, as a creative act, very much follows the above
steps. To build a model, the designer defines the
requirements and objectives of the project in the light
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Table II
Example of Inferencing Process
Rule Rule Facts
Triggered Fired Given Explanations
R16 Desired-autonomy The first synthesis rule R16 is triggered. The system attempts
=‘‘don’t care”’ to verify if the type of robot is Intelligent
Rule 16 cannot fire since the robot type is determined by the
type of motion as given by rule R3.
R17 Rule 17 is triggered and the system attempts to verify if its
premises are satisfied. Since the answer to the question
““‘Is the autonomy of robot high, low, or don’t care?”’ is
‘““don’t care,” the robot type is determined by the type of
R3 motion as given by rule R3.
R12 The first condition of rule 17 holds true. The system chains
backward to rule 12.
RS It checks if the type of motion is mobile-free-flier.
To confirm this, MODSYN checks rule 5.
Budget = high Rule 5 determines if the motion type is mobile. To verify this,
scope of work area = the system asks for values of budget and the scope of the
greater than 30 sq. ft. work area.
RS The answers entered for questions 2 and 3 cause rule 5 to fire.
The control returns to rule 12.
Moving speed = high The values for moving speed, ground adaptivity, and power
adaptivity = high consumption are obtained through the next three queries
power consumption = (4, 5, and 6).
high
R12 Rule 12 fires and the control returns to rule 17. The system
R15 must now verify if the type of control is controlled trajectory.
Position accuracy = This is done by checking rule 15 and asking for values of
smaller than 0.005 in. position accuracy and the interruptibility of the end effector.
interruptible end The answers to questions 7 and 8 cause rules 15 and 17 to fire.
effector = yes The system reaches the conclusion given by rule 17.
R15
R17

of his perception of reality. Models in our approach are
interpreted as ‘‘design blueprints.’’ Simulation is a
means of executing models and testing how well they
meet the project’s requirements.

. The problems being addressed are often large-scale.
Thus, methods for decomposing the problems into
subproblems should be easily comprehensible by the
designer. Solutions of the subproblems could then be
generated and integrated using proper aggregation
mechanisms. By providing mechanisms for model de-
composition, hierarchical specification and aggregation
of model components, our approach responds to the
needs stipulated above. The system entity structure
facilitates generation of families of models (of designs)
in various decompositions and specializations.

3. The attributes of design should be described in compar-

ative measures. Designs should be ranked by using
trade-off techniques. Pruning allows designers to gen-
erate several alternative design structures. Correspond-
ing models can be evaluated by simulation. They can
be ranked based on the results obtained from simula-
tion studies.

. The tools, techniques and methods are currently mostly

manual methodologies and automated tools for system
design are only now evolving.!”! The underlying pur-
pose of multifaceted modeling is to provide structures
implementable in computerized support environments.
This is where we envision the possibility for a response
to the growing needs for computer-aided design tools.
Current tools lack an underlying theoretical framework
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Figure 6. Depth-first search in knowledge base. SEL, selection

module; SYN, synthesis module; SG, subgoal; A, answer (fired
rules).
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that permits a uniform treatment of system design by
providing concepts such as structure and behavior,
decomposition and hierarchy of specification. The mul-
tifaceted framework offers well structured representa-
tion schemes and formalized operations that can exploit
such schemes. This significantly reduces the effort in
designing expert computer-based environments. %

The findings presented in this paper contribute to
both simulation modeling and system design:

1. New procedures for the objectives-driven model devel-
opment process are formulated based on the system
entity structure and production rule formalism.

2. The formal concepts of the methodology integrate de-
sign steps and facilitate a uniform treatment of design
at different levels of abstraction. The representation
schemes are well structured and have well formalized
operations that can exploit such structures. This can
support design of CAD environments.

3. The methodology is tailored to a very wide area of
problems.

4. By being well structured, the approach can be easily
explained and followed. Thus, communication, docu-
mentation, explanation, and education in design can be
improved.

6. Summary and Future Research

This paper presented our work in supporting the model
development process. A rule-based process for selecting
and synthesizing design model structures has been pro-
posed. This process is driven by the design project’s
requirements and constraints. Two types of rules, i.e.,
selection rule and synthesis rule are sufficient to generate
an acceptable structure. Thus, the modeler is assisted in
choosing and properly configuring design models.

Our current efforts are focused on reducing the com-
plexity of the knowledge base caused by the number of
rules that have to be specified for a given entity structure.
This complexity can be diminished by employing the
entity structure driven rule base development strategy and
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improving the efficiency of the pruning procedure. We are
investigating the feasibility of both forward and backward
pruning with different search direction control strategies.

We intend to extend the pruning concepts to set up a
framework for an efficient generation of design model
structures on a multi-processor hardware platform. More
specifically, the objectives of extending the pruning con-
cepts are to: (1) develop methods for assigning knowledge
base modules, characterized by the design entity structure,
to processors, (2) develop a pruning inferencing scheme
using a distributed, multiprocessor architecture, with the
aim of reducing the time it takes to do a design, and (3)
devise methods for concurrently generating a family of
pruned entity structures.
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