17/06 2011 FR 11:19

FAX +496979823147 UB Frankfurt

TN 953 76
Weed [[/

AR

79021136

TITLE: Computer Aided

from

STATUS: PENDING 20110616

REQUEST DATE: 20110616 NEED BEFORE: 20110716

BORROWER: AZD RECEIVE DATEH:

RENEWAL REQ: NEW DUE DATE;

LENDERS: *UFfl, GEBAY, DKB, oDy, UFH
Systemp Theory - BEUROCAST<<c'>» 89

the Internat, Workshop, , /

ISBN: 9780387522159
IMPRINT: Borlin Spr
JERIES:{ Lecture Notes
ARTICLE:
Directions to Explore
IS8SUE DATE: 1990
PAGES: 322-335
VERIFIED: ='IN:953763
BHIP 70: ILL/UNIVERGI

BILY TO: same//FRIN 97
SHIP VIA: Axiel, Odysg
MAXCOST: IFM - $50
COPYRIGHT COMPLIANCE:
ODYSSEY: 150,135,238,
FAX)y (520) 627-4619 /
EMATY: askddteu.libra
. AFFILIAYTION: AZNET
BORROWING NOTES: Por
your)
page limit, please CO

PATRON: 'Hwang, George

inger, 1990,

in Computer Science ; 420,

Computer Aided 8Systems Theory and Xnowledge-Baged

<ODYSSEY:150,135.238,6/ILLy OCLE

TY ARIZONA LIBRARYES/1530 E

4~2652689//BLLD acct#5l-108
ey oar Library Mail

Qar,
6/ILL

/ODYSSREY PREFERRED/TL. ..
ry.arizona.edu
GLF ; GWLA ; SHRS
Book Chapter requests, scan

NDITIONAL réquest. Thank you,

the chapter only, do not lend book.

@001/015

OCLC #: 320287808
SOURCE: ILLiad
DUE DATE:

8PCL MBS;

Proceedings. A seleetion of papers

Syetem Design and Simulation;

UNIVERSITY/TUCSON AZ 8%5721-0055

If over

Lf? CJQWL._.:«“C .t,l-g. ﬁ"fﬂ&-w-, | 4.4
O b2 b Leaee g,

- Zs

>
) \T'ﬁ:.‘..

Deee -Ne oo

Z002/015
17/06 2011 FR 11:19 FAX +496979823147 UB Frankfurt Qoo

Computer Aided Systems Theory and Knowledge-Based
System Design and Simulation; Directions to Explore

Jerzy W, Rozenblit
Dept. of Blectrical and Computer Engineering
University of Arizona
Tucson, Arizona 85721
11.S.A,
and

Herbert Prachofer
Dept. of Systems Theory and Information Engineering
Johannes Kepler University
A-4040 Linz, Austria

Abstract

This paper examines a possible merger of methods and techniques of Computer
Aided Systems Theory (CAST) and Knowledge-Based System Design and Simulation
Methodology. The basic tenets of both methodologies and the state of Ltheir implementation
in computer-aided environments are discussed, The central focus of the paper is the
application of CAST techniques to support the design model construction and development
process,

1. Introduction

Progress in hardware and software technologies has resulted in availabllity of tools
for the implementation of systems theory based concepls and frameworks (Pichler and
Praechofer 1988, Praehofer 1986), Such frameworks are a basis for problem solving in
a number of disciplines including system design and simulation modelling (Rozenblit and
Zeigler 1988), In this paper we focus on the knowledge-hased system design and simulation
methodology, a framework derived from multifacetted modelling (Zeigler 1984). A brief
discussion of CAST is followed by the description of our approach to system design and
simulation. Then, we explore the synergism between CAST methods and our design
methodology.

In examining the synergism, we pose the following questions: “What aspects of the
design process can be supported by CAST?" “What system specifications can be made
available by CAST and employed in system design?”, “Can CAST support optimal design
model development and gelection?”, We also briefly consider another set, of problems. Such
problems concern the aquestion of whether we can incorporate the techniques (and their
imp!ementa.tions) of knowledge-based design in CAST method banks,

The motivation for examining the above issues stems from the need to improve the
design model specification Process and extend our framework to include various classes of

7 15
17/06 2011 FR 11:1§ FAX +496979823147 UB Frankfurt Zoo3/0

323

modelling formalisins, CAST method banks can provide this type of assiatance. We shall
discuss this in detail in Sections 4 and 5, Since our design and simulation framework is
based on the system theoretical approach, it is natural that we seek assistance offered by
the computer-aided systems theory.

The contribution of knowledge-based design and simulation to CAST is viewed in the
following context: the definition of CAST specifies it as a bank of interactive methods for
problem solving (Pichler 1088, Pichler and Schwaertzel 1088). It is therefore worthwhile
Lo consider creating method banks that would incorporate our modelling expetience and
tools in the CAST environment. Ouy experience in implementing such methods in Artificial
Intelligence languages (Rozenblit et. al. 1988, Rozenblit and Huang 1987) may also prove
useful for CAST realization,

In the ensuing section, we define the concepts of GAST that we plan to abply Lo our
system design methodology. For a more detailed exposition of CAST research the reader
_is referred to (Pichler and Schwaerste) 1988, Pichler 1988).

2, Computer Ajded Systems Theory

Systems Theory intends to provide general problem solving concepts for different
fields of applications. Although Systems Theory knowledge is regarded as an important
theoretical background for many technical and scientific disciplines and is included in many
university curricula, the use of gystem theoretical methods for practical engineering is still
low. The reason for that has been the lack of powerful computer implementations which
would make Systems Theory easy to use (Pichler and Schwaertzel 1988).

Nowadays, with the availability of powerful workstations with user-{riendly man.-
machine interfaces and the availability of modern software engineering concepts, Systems
Theory should be given a new opportunity. By implementing system theoretical problem
solving techniques in a user~f riendly, easy to handle and casy to learn way, these techniques
should become appealing to an engineer. Pichler (1988a) has defined an effort bringing
Systems Theory to a domain termed Computer Aided Systems Theory.

This project, carriad out at the Department of Systems Theory and Information
Engineering at the University of Linz, aims io implement interactive method banks
to support system theoretical problem solving. The underlying theoretical framework
used to develop such method banks is STIPS (Systems Theory Instrumented Problem
Solving)} (Pichler 1986). The STIPS framework provides several system types, system
transformations (analysis and synthesis operations) for manipulation of systems and the
so—called STIPS machine (8TIPS.M) to control the problem solving process. The STIPS
problem solving process can be described in the following way: stariing with an initial
system description and using a control strategy imposed by the STIPS machine, new
system specifications are derived. “This brocess continues until a satisfying goal state
is achieved, An implementation of STIPS—-an interactive CAST method bank---has to
provide schemes for computer representation of systems and system types, and modelling
concepts for the system definition and implementation of system transformations,

17/06 2011 FR 11:20 FAX +496979823147 UB Frankfurt ioodso1s

324

3. Knowledge-Based System Design and Simulation

Our research employs Artificial Intelligence and Multifacetted Simulation Modelling
to unify engineering design activities and develop a methodology for systematic simulation
model construction and evaluation. The methodology is based on codifying appropriate

- decompositions, taxonomic, and coupling relationships. This constitutes the declarative
design knowledge base. Beyond this, we provide the procedural knowledge base in the
form of production rules used to process the elements in a design domain,

As a step toward a complete design kunowledge representation scheme, we have
combined the decomposition, taxonomic, and coupling relationships in a representation
form called the system entity structure, a declaralive scheme related o frame-theoretic
and object-based representations. The entities of the entity structure refer to conceptual
components of reality for which models may reside in the design model base. Also
associated with entities are slots for attribute knowledge representation. An entity may
have several aspects, sach denoting a decormposition, and therefore having several entities.
An entity may also have several speclalizations, each representing a classification of tha
possible variants of the entity. The generative capability of the entity structure enables
convenient generation and representation of design model attributes at multiple levels of
aggregation and abstraction, A complete specification of the system entity structure and its
associated structure transformations are presented in (Zeigler 1984, Rozenblit and Zeigler
1088), We provide an illustrative example in Section 5.

The primary application of the above knowledge representation scheme is the
objectives-driven development of design models. In this approach, a model is synthesized
from components identified through the system entity structure and stored in the design
model base, The synthesis process is guided by project’s objectives, requirements, and
constraints. The objectives guide the pruning process. The pruning process consists in
specifying a knowledge base that contains rules for selection and configuration of the
entities represented by the system entity structure. The designer invokes the inference
engine which, through a series of queries based on the constraint rules, allows him/her to
consult on an appropriate structure for the modelling problem at hand. The result is a
recommendation for a design model composition tree (Zeigler 1984).

The model composition tree is a troe whose leaf nodes are system specifications.
These are the atomic components which will be coupled in a hierarchical manner. The
interior nodes n have the following specification attached to them: a system specification
P, & coupling scheme C,, and a morphism H,. The coupling scheme Cy is used to
interface the system specifications assigned to the children of the interior node, H,
establishes a correspondence between Snoand the resultant of the coupling process using

Cn. The leaf nodes are assigned only system specifications which are atomic and are

- not gubject to decomposition. The composition tree is used by DEVS-Scheme software
environment (Rozenblit et. al, 1088, Zeigler 1987) to retrieve models from the mode) base.
The retrieved models are automatically linked in a hierarchical manner according to the
coupling constraints, '

The modeling formalism used for system specification in our methodology is Discrete
Even System Specification (DEVS) (Zeigler 1978, 1984), DEVS provides a formal

Z 1
17/06 2011 FR 11:20 FAX +496979823147 UB Frankfurt 005/015

325

representation of discrete event systems, Formally, it is defined as follows:

DEVS is a structure:

M =< X,5,Y,6\ta >

where:

15 the extornal event set

is the sequential state set

is the output set

is the transition function

ia the output function
_ 18 the time advance function

&> o

DEVS specifies a. system

S =< X, 0,Y,8) >
where;
T = Reals

X = Xpgys U {8} (an empty event)
{1 = set, of discrete event segment over X

The state set is defined ag follows;

Q={(s:€) | s ¢ $,0 < e < ta(s))

where:

ta:§ s Ry oo
and (s,e) iz a total state pair, where s is 3, sequential state and e is elapsed time in state
g,

The transition function consists from two pairs, namely:
b4: 5 — S is the internal transition function

and .
be2:Q X X —» S is the external transition function

The formal constructjon of the system’s transition function 6 is given in (Zeigler 1976).
DEVS is closed under coupling. This Property enables us to construct hierarchical DEVS
network specifications. A detajled formal treatment of DEVS at the coupled system level
i presented in (Zeigler 1984).

Performance of design models is evaluated through computer simulation in the DEVS-
Scheme environment. DEVS-Scheme is an object-oriented simulation shell for modeling

17/06 2011 FR 11:20 FAX +496979823147 UB Frankfurt @006/015

326

and design that facilitates construction of families of models specified in the DREVS
formalism. Models are evaluated in respective experimental frames. An experimental
[rame defines a set of input, control, output, and summary variables. Those objects specify
conditions under which a model is simulated and observed. The environment supports
construction of distributed, hierarchical discrete event models and is written in the PC-
Scheme language which runs on IBM compatible microcomputers and Al Workstations,

We have been substantiating the above methodology by case studies involving design
and simulation of distributed computer architectures, local ares networks, and more
recently, VLSI packages.

The modelling and simulation aspect of our methodology is currently focused on the
discrete event domain. However, it is easy o notice that the entity structuring concepts
are applicable to any ¢class of systems that exhibit hierarchy and modularity of structure.
Our first effort in improving the efficacy of the methodology is to extend the simulation

- concepts so that facilities for specification of systems other than discrete event will be
available. We briefly describe these efforts in the next section.

4. Simulation Concepts Non-Homogenous Model Specificationsg

Although it is possible to emulate other typas of dynamic systems, like differential
equation specified systems or discrete time systems using the DEVS formalism, we plan to
enrich the framework by developing simulation concepts for different system types. The
following reasons motivate such a development: '

1. One of the major achievements. in developing the DEVS formalism and simulation
concepts to simulate DRVS systerns was to separate the formulation of the model
from the implementation of the simulation program (Zeigler 1984). Employing DEVS,
the user has to specify the model; the time schoduling during the simulation run is
handled by the abstract simulator, This leads to & very clear and convenient model
realization. DEVS models are mainly buill for performance evaluation. When DREVS
gystems are used for simulatijon modelling where other types of systerns would be more
appropriate, a loss in modelling convenience may result, Parts of the time scheduling
for the specific type of simulation, which could be done by a special abstract simulator,
must be specified in the model. By using a specializes abstract simulator for each
system type, the modelling process and its support may be improved.

An abstract simulator which uses all the implicit knowledge about the dynamic
behavior of a special system' type can be implemented in the most efficient way.

B

3. With a spacific system type, we associate not only a specific dynamic behavior, but
Systems Theory also provides, system transformations whose applicability depends
on the type of the system. Therefore the use of systems of the most appropriate
type, most apprapriate for the problem being solved, facilitates the use of system
tranaformations. "Thus, combining Computer Aided Systems Theory and Knowiedge~
Based System Design and Stmulation becomes possible.

As a field of application for the different modelling and simulation concepts, we are
considering VI.SI hardware design. In this area, simulation is the major tool to evaluate and

17/06 2011 FR 11:20 FAX +496979823147 UB Frankfurt K007/015

327

verify design blueprints, Systems Theory methods and techniques are well devaloped and
investigated in this domain as well, In hardware design, several different simulations and
hence design models of different system types can be used. Differential equation specified
systems are used to investigate physical properties at the transistor level. Differential
equations are also used to specify and simulate the behavior of analogous devices. Discrete
time models, networks of sequential machines, and networks of sequential circuits and
Boolean functions can be used to design digital systems. They can also be used to evaluate
the behavior of a design and to verify the functional design of a device without considering
physical properties of its realization. DEVS systems can be used for logic simulation at
the gate level, DEVS systems can be applied to evaluate the performance of a hardware
systeri.

The simulation concepts will not only facilitate simulation of networks of components
of the same type, but will also enable simulation of networks of components which are of
different system types. We intend to develop simulation concepts for possible combinations
of DEVS systems, differentia) equation specified systems and diserete time systems. These
concepts will enable digital simulation of the following hardware devices:

1. hybrid systems (coupling of analog and digital systems, when the digital part is modeled
by a discrete time system as well as when it is modeled at the gate level considering
gate delay times)

2. asynchronous digital systems (couplings of digital systems which work with different
clock times) :

|2

interrupls (can be modeled and simulated by coupling a DEVS model to a model of a
digital device)

4. modelling and simulation of hardware devices where the parts of the device are modeled
at different design levels ' (e.g., parts of the device are modeled at the gate level
considering gate delay times, and other parts are modeled by discrete time systems).

The abstract simulator for a hierarchical DEVS has a hierarchical structure reflecting
the structure of a hierarchical the model. Tor every atomic DEVS there exists a simulator,
for every DEVS network there exlsts a coordinator (Zeigler 1984). We intend to built the
abstract simulator for differential equation specified systems and discrete time specified
systems in a hierarchical way, This simulator will reflect the structure of the model, As
the abstract simulator for DEVS facilitates distributed simulation, so will the abstract
simulators for the other types of system specifications.

A special coordinator has to be built for the simulation of networks of different type
components. Lor each possible combination of system types, there must be a special
¢oordinator. This coordinator has to coordinate the coupling between the parts of differen,
-type. The simulation of the parts can be done by the standard coordinators and simulators.

5. CAST Support for Knowledge-Based System Design and Simulation

We perceive CAST as being instrumental in supporting the development of simulation
models, As we have stated in Section 2, the model development process begins with setting

Z 1
17/06 2011 FR 11:21 FAX +496979823147 UB Frankfurt 0087015

328

up a system entity structure that generates model composition trees. The development
of an entity structure is referred to ag the static model structuring (Zeigler 1984a). The
model static structure is defined by the entities specified in the system entity structure,
the input, output, and state variables. Definition of transition and output functions adds

the dynamic components to the model’s specification,

We have developed software that enables us to set up and prune entity structures.
However, there does not exist an explicit methodology which would guide the designer in
successfully structuring a design problem using the entity structure concepts. Therefore, we
would like to investigate principles and approaches for setting up design entity structures
for a class of hierarchical, modular systems,

To set up the entity structure, the designer must conceptualize the domain in terms
of the structure concepts. Thus, by examining these concepts, we can generale a set of
questions that must be answered at every stage of the structuring process. For example,
considering the concepts of aspect, multiple decomposition, and specialization, we have
questions such as the following to be asked while defining an entity: what are the possible
ways of decomposing this entity? Will it occur at most once or will there be a possibly
varying number of like entities? Should this entity be treated as a generalized class with
several sub-specializations? '

Of course, not only must the designer be able to ask himself such questions, he/she
must be able to answer them. To help on this side, we should develop criteria for making
decisions of the sort elicited in the questions. For example, several decompositions for
an entity are possible if, looking ahead one can foresee the existence of a set of atomic
components that can be disjointly partitioned in more than one way. An entity should be
considered as a generalized class, if its potential specializations possess a significant degree
of common structure. Sometimes such criteria may refer to implications of decisions that
may not be known until the structuring has progressed further, This kind of decision
support can be provided by CAST and iis transformation methods for varioys system
specifications. We envision this support in the following way.

System transformations can be used to compute alternative dynamic structures for an
entity, to compute realizations of an entity and decompositions of a given entity, provided
a system specification is associated with jt.

The major . generic transformation that will be offered by CAST to support the
entity structuring and mode] development are as follows (a8 a fundamenta) orientation
and classification of systern stansformations we use the approach of Pichler (Pichler and
Schwaertzel 1988). As illustrations for the generic classes of transformations we use
examples from the sequential machine theory):

A system transformation from the generic system lype Black Box to the generic gystem
type Generator is called a realization transformation. From an input/output relation of
an entity, the dynamic behavior of the entily is derived, An example from the sequential
machine theory is the machine identification problem,

Important are transformations which convert a system of type Generator into a
another Generator, [or a given dynamic structure, alternative dynamic structures are

17/06 2011 FR 11:21 FAX +496979823147 UB Frankfurt @oos/015

329

obtained which can be better with regard to specific criteria, The sequential machine
theory provides a number of such methods. Among them are: state minimization
of sequential machines or linear machines, sequential circuit realizations of sequential
machines, linear realizations or shift register realizations of sequential machines.

Another type of transformations are decompositions, transformations from the
Generator type to the Network type. Decompositions not only affect the dynamic structure
of an entity but also the static structure. A new aspect representing the decomposition will
be added to the entity as decompositions are generated by CAST methods. The well known
decomposition Mmethods of the sequential machine theory are the classical decompositions
employing the lattice of 8.p. partitions of a machine. Gate realizations of sequential circuits
or boolean functions are undersiood to be decomposition methods as well.

The reverse transformation, the computation of an atomije system from a network
with identical dynarmit behavior, is also important for model development. As DEVS,
differential equation specified systems and discrete time systems are closed under coupling,
this is always possible.

The conceptual idea for using CAST to support the model structuring process is
depicted in Figure 1.

Association of

Static Structuring > Dynamic Structuring

System Dynamics
v

CAST Transformations
v Association of v

Entity Structure <« "Realization
Refinement Structure

v
Simulation Model <
Development

Figure 1. Model Structuring Support by CAST

At any point in the structuring process, the designer may face the types of questions we
have mentioned above, He would then would invoke CAST transformations for generating

17/06 2011 FR 11:21 FAX +896979823147 UB Frankfurt @oio/015

330

possible realizations of system specifications associated with a given entity. This result
would serve as a basis for. deciding whether or not and how to decompose the entity.
For example, a CAST transformation may generate several implementations of a finite
state automaton and the designer may use the concept of partitions with the substitution
property to design circuits that require less components as & result of decomposition, There
is another benefit of combining CAST methods with the entity structuring process, As
CAST transformations are applied to systemy specifications associated with the entities,
simulation model specifications may be simultaneously generated and stored in the mode!
base,

Chip
physical decomposition

Controller ALY Intexconnects

Figure 2a. System Entity Structure for Chip Design

Controller

dynamic structurn speclialfizarion

ContrSegqMach ContrRadMach Contr3hiftRegMach

Figure 2b. Dynamic Structure Speclelization Generated by
' CAST Classification of Dynamic System Specifications

Contygller

dynamic structyre docomposition

 f
serial decomposition parallel &ecompoaltion
™ f L]
Head Tail Part) Part2 Output
: Function

dynamfe structyre
specialization

it

1
PartiSeqMach PartlRedNach PartiLinearSeqMach

Figure 2c. Dynemic Structure Dacomposition and Specialization
Genexated by CAST Transtormationa

d 1
17/06 2011 PR 11:22 FAX +496979823147 UB Frankfurt go11/015

331

A simple example demonstrates how the above concepts would be realized. Figure 2a
shows a high level system entity structure for a chip design. The physical decomposition
aspect represents a decomposition of the chip into its physical parts. As one of the
parts, a controller is identified. The dynamic part of the controller can be represented
by a sequential machine model, herein named “ContrSeqMach”, By applying system
transformations of the Generator to Generator type we obtain several alternative dynamic
models of the controller, e.g., reduced machine (ContrRedMach) and shift register machine
(ContrShiftRegMach) (Figure 2b). When we apply decomposition methods given by the
CAST method bank to the controller’s system specification, the result may be serial and
paraller decompositions shown in Figure 2¢. This figure also illustrates how the interactive
application of CAST transformations ean be extended into the next level in the system
entity structure. The dynamic specification of “Part1” in paralle) decomposition may be
a a sequential machine “Part1SeqMach” or any one of other several alternative models
derived through Generator to Generator transformations,

The major benefit of this approach is the ability to derive automatically model
specifications for modelling domains for which CAST translormations are available, and the
support in the entity structuring process. It is important to notice that in a complex design
problem such model specifications may cut across several modelling formalism. Therefore,
we have to undertake the eflorls described in Section 4 of developing simulation concepts
for non-homogeneous model specifications. For example, we may select a discrete time
system to model the ALU unit and a sequential machine to model the controller. Therefore
a special coordinator would have to be cmployed to simulate these two components at the
coupled model level.

6. Current State of Implementations

We have undertaken efforts towards implementing the theoretical concepts underlying
both the system design methodology and the CAST research.

6.1 Software for System Design and Simulation Support

To support the design process, we have available a set of software tools that are
currently being integraied in a shell running on an Af workstation. The basic organization
of the software is depicted in Figure 3.

The system entity structure specification has been incorporated in the DEVS-Scheme
environment under the name ISP-Scheme. The program helps the modeller conceptualize
and record the decompositions underlying a model, or family of models, before, during,
and after development. To the extent that ESP-Scheme is used before beginning model
development, it is a tool for agsisting in top down model design., However, when additions
and changes are made as the development proceeds, ESP serves as a recorder of progress,
At the end of the development phase, the record constitutes de facto documentation of the
system structure arrived at. Pruned entity structures serve as a basis for retrieval from a
model base of model components specified in DEVS-Scheme. This is accomplished by the
Transform procedures (Kim 1988, Zeiglor 1987).

"To aid in the pruning process, we have developed an expert system shell (Rozenblit

17/06 2011 FR 11:22 FAX +496979823147 UB Frankfurt @o1z/015

332

and Huang 1987, Rozenblit et. al 1988) which generates design model composition trees
given a set of design constraints and requirements expressed as production rules.

The architecture of the DEVS-Scheme simulation system is derived from the abstract
simulator concepts associated with the DEVS formalism. These concepts are naturally
implementable by multiprocessor computer architectures. Therefore, models developed in
DEVS-Scheme are readily transportable to distributed simulation systems design according
to such principles.

r—ESP*‘! (PASCAL)——I

ESP-SCHEME 1 Enlity structure & pruner
~STRUCTURE Large Enity Structure Management
~PRUNE —J -~ Model integration

TRANSFORM
-SYNTHESIZE

DEVS-SCHEME

Hierarchical, Hodular
Dizcrete Evant

flodelting and Simulation
Ervvironimer,

Figure 3. Organization of System Design and Simulation Support Software

DEVS-Scheme is coded in SCOQPS, an object oriented environment provided by PC-
Scheme. All classes in DEVS-Scheme are subclasses of the universal class entities which
provides tools for manipulating objects in these classes, The inheritance mechanism ensures
that such general facilities need only be defined once. Entities of a desired class may be
constructed by using a method mk-ent which makes an entity, and destroy which destroys
an entity.

17/06 2011 FR 11:22 FAX 4496979823147 UB Frankfurt Q013/015

333

Models and processors, the main subclasses of entities, provide the basic constructs
needed for modelling and simulation. Models are further specialized into atomic-models
and coupled-models which in turn are specialized into more specific categories. This process
may continue until the user builds up a desired model base, Detailed description of the
class hierarchy in DEVS-Scheme is given by Kim (1988),

In this environment, the user, whether human or artificial, is & goal-directed agent
who examines the knowledge base and synthesizes a simulation model.

6.2. Current State of CAST Implementation

‘The start of the project CAST at the University of Linz was the implementation of
an interactive method bank to support Finite State Machine methods. The name of this
system is CAST.FSM (Computer Aided Systems Theory: Finite State Machine) (Pichler
1088, Pichler and Prachofer 1988). 1t evolved out of the attempt to use sequential machine
methods for design for testability problems in VLST hardware design (Prachofer 1986). It
is a prototypic implementation which is used to show the applicability of Finite State
Machine methods to hardware design.

CAST.FSM is coded in the functional programming language Interlisp-D, a LISP
dialect developed by XEROX Parc, and the object oriented superset of Interlisp-D LOOQPS
(Lisp Object Oriented Programming System). Tt runs on SIEMENS 5815 workstations
which are equivalent to XFROX 1108 workstations, Interlisp-I) is a powerful LISP
dialect including a powerful programming environment. It emphasizes an interactive,
display oriented programming style and therefore provides techniques to implement modern
man/machine interfaces, like window, mouse and menu technique. These techniques have
been used to implement a user-friendly, interactive interface for CAST.FEM.

For the structuring of the program, we used the object oriented programming
paradigm of LOOPS. Using this paradigmn, a natural computer representation of the
Systems Theory knowledge was possible. System types are represented by class definitions.
Systems are instances of classes and system transformations are implemented by method
definitions,

The interactive method bank CAST.I'SM is already well developed. Many difféerent
system types and a number of methods for system definition, system representation
and system transformation are implemented. Among the most important system lypes
are sequential machines, deterministic sequential machines, linear sequential machines,
sequential circuits and different types of functions. Examples of implemented system
transformations which also can be of interest in a knowledge-based system design and
simulation environment are: reduction of deterministic and linear sequential machines,
parallel and serial decomposition of deterministic machines using the lattice of s.p.
partitions, the computation of a sequential circuit realization or the shift register realization
of sequential machines. -

Another part of CAST deals with Petri Nets, This program called CAST.PN

(Mittelmann 1988) is implemented in the same environment as CAST.FSM. The design
of the program is based on the object oriented programming paradigm and it uses the

17/06 2011 FR 11:23 FAX +496979823147 UB Frankfurt gora/e1s

334

interactive, graphic 1/0 facilities. A means to specify a Petrl Net model interactively and
graphically are provided. It is possible to associate arbitrary LISP functions with the
event nodes, which are executed when the event is active. The user can choose between
two types of models, condition /event systems and place/transition nets.

The program LISAS (Lisp Implemented Systolic Array Simulator) (Mueller 1986) can
be regarded as another CAST implementation facilitating the simulation of synchronous
cellular arrays. It is specially developed for the simulation and verification of systolic array
designs. As the other CAST implementations, LISAS is coded in Interlisp-D/LOOPS. The
user interface facilitates interactive design and simulation of the array. The nodes can be
specified by LISP expressions which results in a high flexibility of the nodes' function
definition,

The integration of software tools employed by CAST and the systems design
methodology will be simple due to the same programming paradigms vsed in their design
(i.e., object oriented programming).

H

7. Conclusions

We have explored a potential application of CAST concepts to support knowledge-
based system design and simulation methodology. We focused on the interaciive
application of system transformations to derive decompositions and realizations of a gystem
in the model development process.

There are a number of other jssues that we feel should be investigated in the
context of merging the two developments. It is desirable to consider incorporating in
the CABT method banks procedures for specification of design objectives, requirements,
and constraints as well as schemes for model validation and simplification. In this venue,
we plan to employ our simulation modelling experience with discrete event systems and
extend the results to modelling formalisms discussed in Section 4. We plan to verify
the concepts presesited in this papers in case studies from the area of signal processing
hardware design. :

Acknowledgment

The ideas presented in this paper originated during discussions at the 1988 CAST
Workshop, at Gallneukirchen, Austria, April 1988, The authors would like to thank
Professor franz Pichler for making it possible for them to participate in the workshop.

References

Kim, T. Q., (1988) A Knowledge-Based Buvironment for Mierarchical Modelling and
Simulation, Doctoral Dissertation, University of Arizona, Tueson,

Mittelmann, R. (1988) Object Oriented Implementation of Petri Nets Concepts in:
Cybernetics and Systems '88 (ed. R. Trappl) Kluver Academic Publisher, pp. 731
- 736

Mueller-W., T, (1986) LISP Implemented Systolic Array Simulator, Master Thesis (in
German) University of Linu, Austria, 1986

17/06 2011 FR 11:23 FAX +496979823147 UB Frankfurt Q0157015

334

Pichler, F. (1986) Model Components for Symbolic Processing by Knowledge-Based
Systems: The STIPS Framework, in: Modelling and Simulation Methodology in
the Artificial Intelligence Era (eds Elzas, M. et. al.), North-Holland, Amsterdam
pp. 133-142

Pichler, F. and H. Schwaertzel (1988) CAST: Computerunterstuetzte Systemtheorie
Konstruktion interaktiver Methodenbanken, Springer Verlag Berlin (Lo appear)

Picliler, F. and H. Praehofer (1088) Computer Aided Systems Thoery: Finite State
Machines in: Cybernetics and Systems 88 (ed. R, Trappl) Kluver Academic
Publisher, pp, 737 -~ 732 '

Pichler, . (1988) CAST—Modelling Approaches for Software Design. Proc of the
Sixth Symposium on Empirical Foundations of Informations and Software Sciences
(EFISS), October 19-21, Atlanta.

Pichler, I, (1988a) CAST-Computer Aided Sytems Theory: A Framework for Interactive
Mcthod Banks, in: Cybernetics and Systems '88, (ed. Trapl, R.} Kluwer Academic
Publishers, pp. 731- 736

Prachofer, I1. (1986) LOOPS Implentation of automata theoretical methods. Master Thesis
(in German) University of Linz, Austria.

Rozenblit, J. W. and Zeigler, B. P., (19¢8) Design and Modelling Concepts, in:
Inter;ml.zondl Encyclopedia of Robotwe, (ed. Dorf, R.) John Wiley and Sons, New
York.

Rtozenblit, J. W. and Zeigler, B, P., (1986) Entity Based Structures for Experimental Frame
and Model Construction, in: Modelling and Simulation in the Artificial Intelligence
Bra, (ed. M. 8. Elzas, et, al.) North Holland, Amsterdam, pp. 79-100.

Rozenblit, J. W. and Y. M. Huang (1987) Constraint-Driven Generation of Model
Structures. Proc. of the 1987 Winter Simulation Conference, Atlanta, December,
pp. 604-611,

Rozenblit, J. W., Kim, T. G. and B. P, Zeigler (1988) Towards the Implementation of a
Knowledgo -Based System Design and Simulation Environment. Proc. of the 1088
Winter Simulation Conference, San Diego. December.

Zeigler, B. P. (1976) Theory of Modelling and Simulation, John Wiley and Sons, New
York

Zeigler B. P, (1984) Mult:faceted Modol!mg and Discrete Event Simulation, Academic
Press, London.

Leigler, B, P. (1984a) System~Theoretic Representation of Simulation Models, [E
Transactions, March, pp. 19-34

Zeigler, B. P, (1987) Hierarchical, Modular Discrete Event Modelling in an Object Oriented
Environment. Simulation Journal, vol 49:5, pp. 219-230.

