
Knowledge-Based Design and Simulation Environment (KBDSE): Foundational Concepts and
Implementation
Author(s): Jerzy W. Rozenblit, Jhyfang Hu, Tag Gon Kim, Bernard P. Zeigler
Source: The Journal of the Operational Research Society, Vol. 41, No. 6, Artificial Intelligence
and Expert Systems. Part II. Simulation and Scheduling (Jun., 1990), pp. 475-489
Published by: Palgrave Macmillan Journals on behalf of the Operational Research Society
Stable URL: http://www.jstor.org/stable/2583032 .
Accessed: 28/06/2011 15:48

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at .
http://www.jstor.org/action/showPublisher?publisherCode=pal. .

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

Palgrave Macmillan Journals and Operational Research Society are collaborating with JSTOR to digitize,
preserve and extend access to The Journal of the Operational Research Society.

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=pal
http://www.jstor.org/action/showPublisher?publisherCode=ors
http://www.jstor.org/stable/2583032?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=pal

J. OpI Res. Soc. Vol. 41, No. 6, pp. 475-489, 1990 0160-5682/90 $3.50 + 0.00
Printed in Great Britain. All rights reserved Copyright ? 1990 Operational Research Society Ltd

Knowledge-based Design and Simulation
Environment (KBDSE): Foundational Concepts and

Implementation
JERZY W. ROZENBLIT,1 JHYFANG HU,2 TAG GON KIM3

and BERNARD P. ZEIGLER'
'Department of Electrical and Computer Engineering, The University of Arizona, Tucson, Arizona,

2Department of Electrical Engineering, Tulane University, New Orleans, Louisiana, and
3Department of Electrical and Computer Engineering, University of Kansas, Lawrence, Kansas, USA

Research developments leading to implementation of an intelligent software environment supporting
system design and simulation are presented. Knowledge-based system design and multifaceted simulation
methodologies are a foundation for the system realization. The paper describes the major theoretical
concepts and processes employed to develop and simulate design models. The environment implementing
these concepts and methods consists of two basic components: one serves as a front end supporting the
model construction processes; the other is an object-oriented, discrete-event simulator supporting evalu-
ation of hierarchical, multi-component models. Current state of the system implementation and future
work are discussed.

Key words: modelling, simulation, system design

INTRODUCTION

Despite great strides in development of computational tools such as high performance work-
stations intended to help to cope with the rising complexity of designs, the design process remains
error prone. Given the often severe constraints imposed by cost, environmental impacts, safety
regulations, etc., it is a fact of life that designers are forced to make compromises that would not
be necessary in an ideal world. Simulation is increasingly recognized as a useful tool in assessing
the quality of sub-optimal design choices and arriving at acceptable trade-offs.

We have focused on developing and implementing a methodology of design in which design
models can be synthesized and tested using computer simulation. This framework, termed
knowledge-based system design and simulation,1-3 lends itself to realization in the form of an
integrated, intelligent design support environment.

Our work complements recent trends in simulation modelling research which emphasize the
development of integrated software modelling support environments.7 Such environments are
envisioned as conglomerates of tools that will aid modellers in the model construction process and
simulation program generation. There are several notable features of the existing software proto-
types that distinguish them from conventional simulation tools. First, the new simulation environ-
ments are methodology-based, i.e. their design is strongly influenced by a methodology that
underlies the model development process in a given environment. Second, state-of-the-art software
technology is employed to implement theoretical concepts. Common software techniques used in
designing the new simulation systems include object-oriented programming, graphics interfaces
with animation and automatic programming. We also observe emergence of artificial intelligence
(Al) applications that assist the modeller in model construction and validation, simulation man-
agement and analysis.5'8

In the ensuing sections, we characterize the basic tenets of our design modelling approach. We
then describe the architecture of the software system and explain how simulation model develop-
ment is supported by the environment. We conclude with a brief description of current applica-
tions and work in progress on extending the system.

MULTIFACETED MODELLING AND SYSTEM DESIGN

Multifaceted methodology denotes a modelling approach which recognizes the existence of
multiplicities of objectives and models in any simulation project. It provides formal representation

475

Journal of the Operational Research Society Vol. 41, No. 6

schemes that support the modeller in organizing the model construction process, aggregating
partial models and specifying simulation experiments.9 Modelling objectives drive three funda-
mental processes in the methodology: they facilitate the construction, retrieval and manipulation
of design entity structures,10 selection of model structures, and specification of experimental con-
ditions under which design models are evaluated by a simulation study.

The design entity structure is a knowledge representation scheme based on a tree-like graph
that encompasses the boundaries, decompositions and taxonomic relationships that have been
perceived for the system being modelled. An entity signifies a conceptual part of the system which
has been identified as a component in one or more decompositions. Each such decomposition is
called an aspect. Thus entities and aspects are thought of as components and decompositions,
respectively. In addition to decompositions, there are relations termed specializations. A special-
ization relation facilitates representation of variants for an entity. These are called specialized
entities and inherit properties of an entity to which they are related by the specialization relation.

Aspects can have coupling constraints attached to them. Coupling constraints restrict the way
in which components (represented by entities) identified in decompositions (represented by
aspects) can be joined together.

In addition to coupling constraints, there are selection constraints in the system entity structure.
Selection constraints are associated with specializations of an entity. They restrict the way in
which its subentities may replace it in the model construction process. Synthesis constraints
restrict ways in which entities selected from specializations may be configured to represent the
structure of the system being designed.' 112 Later, we describe the process that employs the pro-
duction rule formalism to support automatic selection of entities and synthesis of a design model
structure. We call this process rule-based driven design model structure generation.

Models can be expressed in special formalisms depending on the problem at hand. Typical
specifications include differential equations, finite state machine or discrete event. Each formal
model description specifies a system and selects a class of subsystems by placing constraints on the
possible static and dynamic structures it encompasses. A characterization of such constraints is
given by Murray and Sheppard.'3 The model construction process involves the specification of
the static and dynamic structure. In our system, models are developed using discrete event system
specification (DEVS) formalism.9 This formalism underlies the construction of models in our
simulation environment-DEVS-SCHEME.

The DEVSformalism

The DEVS hierarchical, modular formalism, as implemented in DEVS-SCHEME, closely paral-
lels the abstract set theoretic formulation developed by Zeigler (see Kim and Zeigler9). In such a
formalism, one must specify basic models from which larger ones are built, and how these models
are connected together in a hierarchical fashion. A basic model, called an atomic DEVS, is defined
by the following structure 9

M = < X, S, Y, 6ints 6exts A, ta>

where X is a set (external input event types),
S is a set (sequential states),
Y is a set (external output event types),
6int is a function (internal transition specification),
6ext is a function (external transition specification),
A is a function (output function) and
ta is a function (time advance function)

with the following constraints:
(i) the total state set of the system specified by M is

Q = {(s, e)I|s E S.,O ? e S ta(5)},

(ii) 6int is a mapping from S to 5:

6int: S-+S.

476

J. W. Rozenblit et al.-Knowledge-based Design and Simulation Environment (KBDSE)

(iii) 6ext is a function:

6ext: Q x X- S,

(iv) ta is a mapping from S to the non-negative reals with infinity,

ta: S -R and

(v) A is a mapping from S to Y:

A: S-+ Y.

An interpretation of the DEVS and a full explication of the semantics of the DEVS are found in
Kim and Zeigler.9

The second form of models, called a coupled model, tells how to couple several component
models together to form a new model. This latter model can itself be employed as a component in
a larger coupled model, thus giving rise to the hierarchical construction. A coupled DEVS is
defined as a structure:'

DN= <D, Mi, Ii, Zij, SELECT>

where D is a set (component names), and for each i in D:

Mi is a component and

Ii is a set (influences of i),

and for each j in I,:

Zi, is a function, (i-to-j output translation) and

SELECT is a function (tie-breaking selector)

with the following constraints:

Mi = <Xi, Si, Yi, 6i, Ai, tail>

Ii is a subset of D, i is not in Ii

Zij: Yi Xj

SELECT: subsets of D -+ D

such that for any non-empty subset E, SELECT(E) is in E.
The formal model specification in multifaceted methodology consists in specifying the system

entity structure and attached variable types (called descriptive variables), pruning and then
specifying a discrete-event model for the components identified by the pruned entity structure.
Selection of input, output and state variables results in the model's static structure. Definition of
transition and output functions adds the dynamic components to the DEVS specification.

Clearly, a formal set theoretical description of a large-scale system would be a tedious and
impractical process. In fact, this may well have been a reason why theory-based approaches have
been shunned by simulation practitioners, and a primary motivation for the development of soft-
ware implementing the above formal modelling concepts.

SIMULATION MODEL DEVELOPMENT IN KBDSE

The basic organization of the software under development is given in Figure 1. There are two
fundamental modules in the system:
(i) the module supporting entity structure programming and pruning (ESPP) and

(ii) the module supporting simulation and performance analysis (DEVS-SCHEME).

477

Journal of the Operational Research Society Vol. 41, No. 6

PerformancrModelingmrchitectur

* ESP-4
A ESP-Scheme

Geneao ESP-Lisp

Design 1 running * FRASES

T MODSYN to h T S p e s t o i y r
s ESPP g r b ei Syng f t

* WORIE
, *~~~~~Transform_

Simulation

*DEVS-Schemei
The eniystutrngpormn neEPDistributed Simulation

Performance Modelfas Arcinto w d

FIG. 1. Organization of software in KBDSE.

The modules are interfaced through the TRANSFORM procedures that automatically generate
simulation code. The code is generated by retrieving from the model base simulation modules
associated with the composition tree generated by the pruner. We now proceed to describe these
modules in more detail.

The entity structuring program and e'uner (ESPP)
This program helps the modeller conceptualize and record the decompositions underlying a

model (or family of models) before, during and after development. To the extent that ESPP is used
before beginning model development, it is a tool for assisting in top-down model design. However,
when additions and changes are made as the development proceeds, ESPP serves as a recorder of
progress. At the end of the development phase, the record constitutes de facto documentation of
the system structure arrived at.

We have augmented the system entity structure into an integrated, entity-oriented knowledge
representation scheme, taomiche frame and rule-associated system entity structure (FRASES).
FRASES is a scheme that combines concepts of the system entity structure, frame, 14 and pro-
duction rules.en n By exploiting the reasoning flexibility provided by production rules, the effi-
ciency in representing declarative knowledge offered by frames, and the visibility and hierarchy
supported by the system entity structure, FRASES is a powerful and efficient scheme for manag-
ing domain knowledge supporting design model development.

Structure of FRASES

FRASES is a superclass of the system entity structures which encompasses the boundaries,
decompositions and taxonomic relationships of the system components being modelled. All
axioms and operations defined originally for managing system entity structures are also -present in
FRASES representation.

A typical example of FRASES for representing a LAN-based distributed system is shown in
Figure 2. As shown in the figure, each entity of FRASES is associated with an entity information

J. W. Rozenblit et al.-Knowledge-based Design and Simulation Environment (KBDSE)

a

(Processor cesor r ystem EL

(Memory Memor dio

Processor Processor

Processor Prodesyst e (Pi (truu ___

(M (Value P 1)) I

(Satts importss (value data-in)) (functions ElF
(oports (value data-out))
((type (value entity)) ...module Segm)en

(pwrosmIon 0.5))..))) .ELFComputing LANjjj
(Dpara (Clock-Rate (default 10)) Modules IEF

(Buffer (if-needed compute-size))) module

(counter data-out) (timer)))) Poe Computing S Comm.
| (DSF | Modulemory l Noe

(constraints (value 100 LANCom
| ~~~((> MIPS 10) (< cost 300) module Segments {

| ~~~~(< power-consumption 0.5)) III |DIY |
(objectives (value ((max MIPS) -- | LAN

I ~~~(min cost power-consumnption))) Processor | |Segment Comm.

(AP (value (cond ((< events 100) | eoy |EId Comm.e
(Poisson 10)) (t (normal 1)) 1)) I/O-devices Node

(EF (value (cond (t (list (symbol) ...
(CH (Value nil)))

FIG. 2. A LAN-based distributed system with FRASES. (a) Schematic representation and (b)
FRASES representation.

where M is the name of the associated model,
ATTs are attributes of M,
DSF is the design specification form,
ESF is the experiment specification form,
CRS are constraint rules for design model synthesis, and
CH are FRASES children of the focus node.

With FRASES representation, behavioural knowledge about objects is described by simulation
models stored in the model base. M represents the name of the entity and serves as a major key to
access its model.

ATTs are attributes used to characterize the associated object. Attributes of an entity are parti-
tioned into two groups, i.e. static and dynamic. Static attributes are variables used to describe
properties of an object that do not change over time. Dynamic attributes are related to dynamic
behaviour of the models represented by entity objects.

The design specification form (DSF) accepts the specification of design objectives, constraints
and criteria weighting schemes. The contents of the DSF define the system requirements that must
be satisfied by the system to be designed. DSF information is used to guide the synthesis of design
model structures. Each entity of FRASES has its own DSF. Once composition trees (or design
structures) are generated based on the knowledge provided in the CRS slot, users are requested to

479

Journal of the Operational Research Society Vol. 41, No. 6

define the simulation experiment in the ESF. Finally, simulation is activated via automatic extrac-
tion and coupling of simulation models.

The experimental specification form (ESF) is applied to accept the specification of simulation
requirements such as an arrival process, event structure and simulation control scheme. The ESF
provides information to direct the automatic generation of experimental frames."9 An experimen-
tal frame specifies a limited set of circumstances under which a system is to be observed or sub-
jected to experimentation. Again, the ESF is placed together with entity nodes of a composition
tree (i.e. a decomposition tree with information about the coupling schemes among model
components).

Constraint rules for synthesis (CRS) contain heuristic rules for configuring design model struc-
tures. Formally, selection constraint rules for pruning alternatives are associated.with special-
ization nodes, and constraint rules for synthesizing components are associated with aspect nodes.
Model development driven by production rules will be described in the next section.

Rule-based synthesis of model structures

The production rule formalism supports automatic selection of entities from taxonomic
relationships and synthesis of structures underlying the simulation models.

The process consists of defining selection and synthesis rules and associating them with entity
information frames of the design entity structure. The modeller invokes the inference engine
which, through a series of queries based on the constraint rules, allows him to consult on an
appropriate structure for the modelling problem at hand. The result is a recommendation for a
model composition tree.9 The composition tree is used by the DEVS-SCHEME environment to
retrieve models from the model base. The retrieved models are automatically linked in a hierarchi-
cal manner according to the coupling constraints.

The prototype pruning module was originally designed in PROLOG and called MODSYN
(model synthesizer).20 It was subsequently redesigned in COMMON LISP and incorporated in
the ESPP shell.21 The basic components of the pruner are the knowledge base and the inference
engine.

To prune the design structure, we generate the following rule sets:
(i) Selection rule set: each selection rule stands for a choice of an entity in a specialization.

(ii) Synthesis rule set: after selection rules have been applied to the entity structure, synthesis rules
ensure proper configuration of the selected entities. They also co-ordinate the actions of the
selection rules. Certainty factors are employed to indicate the applicability of the rules.

Selection rules are associated with the specialization nodes whereas the synthesis rules are
attached to the decomposition nodes of FRASES. Each rule set can be regarded as a module.
Therefore the entire rule base is constructed in a hierarchical manner imposed by the entity struc-
ture.

The production rule formalism is used to express modelling objectives, constraints and require-
ments in the form of selection and synthesis rules. Domain experts provide knowledge about
admissible choices of design components and their combinations, design data regarding expected
performance given a particular component choice, etc.

Inference engine design

The inference engine uses the strategy of 'generate and test', i.e. it takes the initial data from the
user and the hypothesis generated by the knowledge base to prune the search space tree. In other
words, the engine attempts to match the data with the information contained in the knowledge
base. If the data match, the engine 'climbs up' the tree, trying to prove the next hypothesis. We use
aspect ordering in order to eliminate aspects not desirable in the model we are constructing, and
specialization-oriented pruning to select unique entities for the model composition trees. A com-
plete description of the shell can be found in Rozenblit and Huang.20 The LISP realization of the
shell provides facilities for top-down as well as bottom-up pruning and selection of different search
control strategies.21

Unlike other applications, engineering designs usually require components of a system to be
designed in a particular sequence. Essential components are always determined before other com-

480

J. W. Rozenblit et al.-Knowledge-based Design and Simulation Environment (KBDSE)

ponents can be designed. The design sequence may be altered by environmental factors, problem
domains or technical constraints. This requires a flexible search scheme to conduct the design
reasoning process in the right sequence. In order to capture the dynamics of a design sequence, a
weight-oriented FRASES inference engine (WOFIE) was proposed."7 By appropriately setting up
the priority of a specialization node, WOFIE is capable of emulating the design reasoning process
conducted by a human expert.

DEVS-SCHEME SIMULATION ENVIRONMENT

DEVS-SCHEME,22-27 a general purpose modelling and simulation environment, is an imple-
mentation of DEVS formalism in SCOOPS, the LISP-based, object-oriented superset of PC-
SCHEME. It runs on DOS-compatible PCs and the TI's Explorer LISP machine.
DEVS-SCHEME is implemented as a shell that sits upon SCHEME in such a way that all of the
underlying LISP-based and object-oriented programming language features are available to the
user. The result is a powerful basis for combining artificial intelligence and simulation techniques.
Since structure descriptions in DEVS-SCHEME are accessible to run-time modification, it pro-
vides a convenient basis for development of variant family and variable structure simulation
models. DEVS-SCHEME also serves as a medium for developing computer architectures for dis-
tributed simulation of hierarchical, modular discrete-event models.28

In DEVS-SCHEME, component models called atomic models are specified using SCHEME's
semantics, which correspond closely to the formal definition of DEVS. The input and output sets
consist of pairs (port, value). Thus, x = (p, v) signals the receipt of a value v at an input port p. The
elements of DEVS formalism take the following form in the DEVS-SCHEME:

Internal transition function: (define (int s) ...)

External transition function: (define (ext s e x) ...)

Output function: (define (out s) ...)

Time advance function: (define (ta s) ...)

where ... represents function body definitions expressed in SCHEME.
The atomic models may be coupled together to form a model at the coupled specification level.

DEVS-SCHEME is still under development. Recently, new features for testing model morphism
and model simplification have been incorporated in the shell.23'25'29

The -class specialization hierarchy in DEVS-SCHEME is shown in Figure 3. All classes in
DEVS-SCHEME are subclasses of the universal class entities which provide tools for manipulat-
ing objects in these classes (these objects are hereafter called entities). The inheritance mechanism
ensures that such general facilities need only be defined once. Entities of desired class may be
constructed using a method mk-ent and destroyed using a method destroy. More specifically,
mk-ent makes the entity and places it in a class variable list which maintains the list of members of
the given class; destroy removes the entity from this list. Every entity has a name which is assigned
to it upon creation.

Models and processors, the main subclasses of entities, provide the basic constructs needed for
modelling and simulation. Models are further specialized into the major classes atomic-models and
coupled-models, which realize atomic DEVS and coupled DEVS, respectively. The coupled-models,
in turn, are specialized into more specific cases, a process which may be continued indefinitely as
the user builds up a specific model base. Kernel-models, one subclass of coupled-models, is a gener-
alized class whose subclasses provide powerful means of defining complex, hierarchical multi-
computer architectures formed by recursive compounding of component models for basic
processing elements of such architectures. Class processors, on the other hand, have three special-
izations: simulators, co-ordinators and root-co-ordinators. These carry out the simulation of a
model in a manner which follows the hierarchical abstract simulator concepts.9'30

Due to the object-oriented realization, subclasses of existing classes and new classes can be
readily added to DEYS-SCHEME as required. As a result the DEYS-SCHEME environment:

(i) supports modular, hierarchical model construction,
(ii) allows independent testing of components models,

481

Journal of the Operational Research Society Vol. 41, No. 6

ENTITIES -1st

I
11

~-name

ENTITY

-processor-prn MODELS -parent PROCESSORS -parent

-inport -devs-component
-time-of-last-event

-outport -time-of-next-event
-cell-position - n e

ATOMIC-MODELS COUPLED-MODELS SIMULATORS
-ind-vars -children ROOT
-int-transfn -receivers CO-ORDINATORS
-ext-transfn -influencees -clock
-outputfn
-time-advancefn CO-ORDINATORS

-*-child
-wait-list

KERNEL-MODELS
DIGRAPH-MODELS -init-cel1

-composition-tree -out-in-coup
-influence-digraph -class

BROADCAST CONTROLLED
MODELS MODELS

-controller

HYPERCUBE-MODELS CELLULAR-MODELS

-ext-coup -ext-coup

-num-infl -infl-origin
-structure

* Uppercase Letters: Classes
* Lowercase Letters: Class/Instance Variables

FIG. 3. Class hierarchy in DEVS-SCHEME

(iii) separates models from experimental frames, and
(iv) supports distributed simulation.
Details of all classes in DEVS-SCHEME along with their instant/class variables and methods are
available.23'25

Rule-based model retrieval and transformation

A pruned entity structure can be synthesized into a simulation model by the operation trans-
form. As the algorithm visits each entity in the pruned entity structure, transform calls upon a
retrieval process that searches a model corresponding to the current entity. If one is found, it is
used and transformation of the entity subtree is aborted. The retrieval process proceeds by evalu-
ating rules, which consist of retrieval rules (pairs of condition and retrieval action) and conflict
resolution rules, by which a rule is selected if there is more than one which satisfies conditions.
Details of these rules are found in Zeigler.29

A rule for searching a model that corresponds to the current entity says that it first looks for the
model in the working memory, then in the model base (MBASE) and finally, if the current entity is
is a leaf, in the entity structure base (ENBASE). Before searching the model, another rule checks
the name of the current entity. If the current entity has a base name and a non-trivial extension
(the extension starts with numbers or '&'), the base name is used as an entity name for the
retrieval process. As more than one rule is satisfied when evaluated, a conflict resolution rule fires

482

J. W. Rozenblit et al.-Knowledge-based Design and Simulation Environment (KBDSE)

only one rule. For example, if both Rule 1 and Rule 2 are satisfied, then Rule 1 is fired. We employ
context specificity, which means that the rule with a more specific condition than other rules is
fired, in order to resolve such a conflict.

If a pruned entity structure is found in the ENBASE in the searching process, a transform is
invoked and executed in a separate SCHEME environment so as not to interfere with the current
environment. Since the self-invocation can occur in a leaf entity only, such local transformation is
definitely recursive.

Hierarchical model construction in DEVS-SCHEME

The DEVS-SCHEME environment provides layers of objects and methods which may be used
to achieve more powerful features. The knowledge base framework shown in Figure 4 is intended
to be generative in nature, i.e. it should be a compact representation scheme which can be
unfolded to generate the family of all possible models synthesizable from components in the model
base. The user, whether human or artificial, should be a goal-directed agent which can interrogate
the knowledge base and synthesize a model using pruning operations that ultimately reduce the
structure to a composition tree.

As shown in Figure 4, model objects expressed in DEVS-SCHEME must reside in working
memory in order to be simulated. Such an object can be reconstructed from disk file definitions by
direct evaluation (the only possibility for atomic-models) or by applying the transform function to
a pruned entity structure in working memory. The pruned entity structure is in turn obtained by

.

.f

..................... i. Ei. i.. -

.-

........... --..

:0. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~- .,.....

save-entstr save-entstr
retrieve save-state

load-entstr load-entstr store
resume-state

FI 4 . E s i e

483~l

- se-crrntienttm f okn makelsp lil

gadd-item make-broadcast
...F make-hypercube

$? ~~make-cellular

Journal of the Operational Research Society Vol. 41, No. 6

pruning an entity structure and selecting one possibility from the whole family spanned by the
structure. The pruned entity structure is transformed into a hierarchical simulation model by the
operation transform described in the previous section.

DESIGN PHASES OF KBDSE

KBDSE applies modelling and simulation concepts to unify engineering design activities and to
develop a methodology for systematic design model construction and evaluation.

Design models are derived by identifying multiple conflicting objectives and requirements of
systems. Therefore, design objectives play a fundamental role in guiding the synthesis of design
models and the specification of experimental circumstances.

Evaluation of design alternatives is accomplished by computer simulation. The experimental
frame concept9 is used to specify a simulation study. Briefly, an experimental frame defines condi-
tions with which a design model can be observed and experimented with. Simulation results are
compared and traded off in preference to conflicting criteria. This results in a ranking of models
and supports choices of alternatives that best satisfy the design specification.

Evaluation of design alternatives involves the following stages:
(i) Selecting the problem domain by retrieving the desired entity structure (FRASES).

(ii) Identifying system requirements (e.g. cost, performance, technology, resources, etc.) from the
design specification.

(iii) Performing rule-based design reasoning to derive all possible alternative design models
(composition trees).

(iv) Specifying simulation circumstances for arrival process, event format and simulation con-
trols.

(v) Constructing experimental frames conforming to design objectives and simulation require-
ments.

(vi) Coupling the design model with experimental frames for simulation (i.e. transformation).
(vii) Analysing performance statistics and selecting the best design model by the application of

multi-criteria decision making methods.
(viii) Reporting the best design.
A schematic representation of this design process is outlined in Figure 5. With KBDSE, the
complex design process is handled intelligently and efficiently to reduce the overall design cycle
and cost.

Example
To help understand the whole process of the KBDSE design methodology, design of distributed

systems (Figure 6) will be used as an example.
Assume the design specification of the distributed system has been defined as follows:

(DSF (constraint (value (> thruput 0.098) (< cost 300)))
(objective (max (value thruput)) (min (value cost)))
(criteria-weighting (value (rank thruput cost)))
;; criteria preference: thruput > cost.

After the design specification is defined, the design pruning program is selected and activated to
derive all possible alternative design models. For example, if MODSYN is employed, the design
reasoning is performed in a backward-chaining manner. At each decision point, the user is asked
questions to provide information for selecting design alternatives. For example, to determine the
MTS-technology, the question about 'the degree of interaction among computer modules' will be
asked. If the user indicates that the interaction among computer modules is low and resource
sharing capability is desired, then the local area network (LAN) will be selected for MTS-
technology. This design reasoning process will continue until all specialization nodes are traversed.
Let us assume the following selections have been made:

medium-access-protocol: CSMA/CD
medium: optical-fibre
topology: bus, ring
access: direct-access, cache

484

J. W. Rozenblit et al.-Knowledge-based Design and Simulation Environment (KBDSE)

|Problem
~~~~~Identification 

/ Desig -FRASES ) esign 

Report & 8 pecification 
\ Document i \ -Constraints 

FIG. 5. Design phases\of KBDSE. 
II ut -Criteria Pruning 

T Design Composition i 

thttw urhr opoiio resar liiatdbydtetngteyytesistrue:s 

IFLA-egment.medumSopialfirutelLN tiopoon#bs 

Synthesis & erem requirements 
< Simulation m d b Secification 

even f a :utomati 0 
Experimental 

Frame 

FIG. 5. Design phases of KBDSE. 

The pruned FRASES (Figure 7) is then converted into two composition trees (Figure 8). Notice 
that two further composition trees are eliminated by detecting the synthesis rule: 

IF LAN-segment.medium =optical-fibre then LAN.topology 0 bus. 

After the composition trees are generated, users may define the simulation requirements with 
ESF as follows: 

(ESF (ap, (value (cond (t (normal 20))))) 
;;normal distribution with a mean 20 

(ef (value condod (t (list (symbol) (number 1.0)))))) 
;; eventformat: (Job-0 0.72) 
(sc (value (cond (( >event 100) (stop))))) 
;; stop simulation after 100 events 

Experimental frame is then generated automatically and coupled to the design model for 

performance evaluation. After simulation, the value of transducer (i.e. thruput) is collected for the 
best design selection. Assume the design cost and throughput for both design models are: 

thruput cost 

system-1 0.13 180 
system-2 0.15 250 

After rating parameters and assigning negative signs to the second set of parameters (i.e. mini- 

system-1 0 %.86 W-,W0.7-2- P 

system-2 1.0 -1.0 

485 



Journal of the Operational Research Society Vol. 41, No. 6 

Distributed 
System 

module 

Message Computing 
Transfer Modules 
System III 

l Computing 
MIS Module 

technology C 
CM-element 

Interconnection Local Processor Memory 
Network Area I/ I I 

Network Device access 

l 11 1 1 
LAN-element topology Direct Cache 

4K, I lAccess 

LAN Comm. Bus Ring 
Segments Nodes Star 

LAN Comm. 
Segment Node 

medium access- 
medium protocol (MTS-technology (CRS (Sel (Value 

l l l (s l (if interaction among computer modules 
l [ . =~~~~ low and resource sharing capability 

TwPstied Optical Token desired then select LAN)) 
Pair ~ Fibre Passing .... 

Baseband 
Coaxial CSMA/CD (LAN-element (CRS (Syn (Value 
Cable (yl (if LAN-segment.medium = Optical-Fiber 

Broadband then LAN.topology != Bus)) 
Coaxial ..... 
Cable 

FIG. 6. Distributed systems in FRASES. 

Since the criteria preference is expressed by weak ranking,31 the extreme expected pay-off 
method can be employed to solve the MCDM problem. The partial average for each system is 
computed as follows: 

thruput cost 

system-1 0.867 0.0735 
system-2 1.0 0.0 

Finally, system-2 will be recommended (i.e. 1.0 > 0.941). 

CONCLUSIONS 

We have presented a foundation and implementation of the knowledge-based design and simu- 
lation environment called KBDSE. We have employed the multifaceted modelling methodology as 
a theoretical basis for developing the KBDSE. To realize the multifaceted modelling methodology, 

486 



J. W. Rozenblit et al.-Knowledge-based Design and Simulation Environment (KBDSE) 

Distributed 
System 

module 

LAN-MTS Computing 
LAN-MTS Modules 

topology LAN-element Computing 
topology LAN-element Module 

n Li 
Bus Ring CSMA/CD CM-element 

Comm.-Node 

Optical-Fiber- Processor Memory 
LAN-Segments P1 

III IO acs 
Optical-Fiber- CSMA/CD Device access 
LAN-Segment Comm.-Node 

Direct 
Access 

Cache 
FIG. 7. A pruned FRASESfor distributed systems. 

Distributed 
System 

module 

I I~~~~~~~~~~~~ 
Ring-LAN-MTS Computing 

I Modules 

LAN-element . III 
Computing 

Module 

Optical-Fiber- CSMA/CD I 
LAN-Segments Comm.-Node CM-element 

III III 
Optical-Fiber- CSMA/CD 
LAN-Segment Comm.-Node Processor I/O-Devices 

Cache-Memory 

Distributed 
System 

module 

CompIuting 
Ring-LAN-MTS Mopules 

I 
Modules 

LAN-element III 
Computing 

Module 

Optical-Fiber- CSMA/CD I 
LAN-Segments Comm.-Node CM-element 

LNS CSMAjCD n 
Optical-Fiber- Comm.-Node Processor I I/O-Devices 
LAN-SegmentI 

Direct-Access 
Memory 

FIG. 8. Composition trees for distributed systems. 

487 



Journal of the Operational Research Society Vol. 41, No. 6 

DEVS formalism and system entity structuring formalism have been implemented in a LISP 
environment. Such an implementation opens up a wealth of possibilities for investigating 
methodology-based support of modelling and simulation. The symbolic manipulation and object- 
oriented facilities of SCHEME make it relatively easy to code complex structures and their associ- 
ated operations. The environment supports the development of discrete-event simulation models 
in a hierarchical, modular fashion. Many design examples of discrete-event simulation models- 
such as multi-level computer architectures, communication networks and multi-robotic systems- 
have been successfully run and tested in the environment. 

REFERENCES 

1. J. W. ROZENBLIT and B. P. ZEIGLER (1985) Concepts for knowledge-based system design environments. In Proceedings 
of the 1985 Winter Simulation Conference, San Francisco, California. 

2. 0. BALci and R. E. NANCE (1987) Simulation support: prototyping the automation-based paradigm. In Proceedings of 
the 1987 Winter Simulation Conference, Atlanta, Georgia, December 1987, 495-502. 

3. D. W. BALMER (1987) Modelling styles and their support in the CASM environment. In Proceedings of the 1987 Winter 
Simulation Conference, Atlanta, Georgia, December 1987, 478-485. 

4. D. W. BALMER and P. J. PAUL (1986) CASM-the right environment for simulation. J. Opl Res. Soc. 37, 443-452. 
5. J. 0. HENRIKSEN (1983) The integrated simulation environment: simulation software of the 1990s. Opns Res. 31, 1053- 

1073. 
6. JHYFANG Hu, Y. HUANG and J. W. ROZENBLIT (1989) FRASES-A knowledge representation scheme for engineering 

design. In Advances in AI and Simulation (SCS simulation series) 20(4), 141-146. 
7. JHYFANG Hu (1989) Knowledge-based design support environment for design automation and performance evaluation. 

PhD Thesis, University of Arizona, Tucson, Arizona. 
8. Y. M. HUANG (1987) Building an expert system shell for model synthesis in logic programming. MS Thesis, University 

of Arizona, Tucson, Arizona. 
9. TAG GON KIM and B. P. ZEIGLER (1987) The DEVS formalism: hierarchical, modular system specification in an object 

oriented framework. In Proceedings of the 1987 Winter Simulation Conference, Atlanta, Georgia, December 1987, 559- 
566. 

10. TAG GON KIM (1988) A knowledge-based environment for hierarchical modelling and simulation. Technical Report 
AIS-7 (PhD Thesis), University of Arizona, Tucson, Arizona. 

11. TAG GON KIM and B. P. ZEIGLER (1989) The DEVS-SCHEME simulation and modelling environment. In Knowledge 
Based Simulation: Methodology and Application (PAUL A. FISHWICK and RICHARD B. MODJESKI, Eds), Springer Verlag 
Inc., New York. 

12. M. MINSKY (1975) A framework for representing knowledge. In The Psychology of Computer Vision (P. H. WINSTON, 

Ed.), 211-277, McGraw-Hill, New York. 
13. K. J. MURRAY and S. V. SHEPPARD (1987) Automatic model synthesis using automatic programming and expert 

systems techniques toward simulation modeling. In Proceedings of the 1987 Winter Simulation Conference, Atlanta, 
Georgia, December 1987, 534-543. 

14. A. NEWELL and H. A. SIMON (1972) Human Problem Solving, Prentice-Hall, Englewood Cliffs, New Jersey. 
15. N. PAN (1989) A LISP-based shell for model structure generation in knowledge-based system design. MS Thesis, 

University of Arizona, Tucson, Arizona. 
16. J. W. ROZENBLIT (1985) A conceptual basis for integrated model-based system design. PhD Thesis, Wayne State 

University, Detroit, Michigan. 
17. J. W. ROZENBL!T and Y. HUANG (1987) Constraint-driven generation of model structures. In Proceedings of the 1987 

Winter Simulation Conference, Atlanta, Georgia, December 1987, 604-611. 
18. J. W. ROZENBLIT and B. P. ZEIGLER (1988) Design and modelling concepts. In Encyclopedia of Robotics, pp. 308-322. 

John Wiley, New York. 
19. J. W. ROZENBLIT and B. P. ZEIGLER (1986) Entity-based structures for model and experimental frame construction. In 

Modelling and Simulation in Artificial Intelligence Era (M. S. ELZAS et al., Eds), North-Holland, Amsterdam. 
20. J. W. ROZENBLIT and Y. M. HUANG (1989) Rule-based generation of model structures in multifacetted modelling and 

system design. ORSA J. Computing (submitted). 
21. J. W. ROZENBLIT and JHYFANG Hu (1989) Experimental frame generation in a knowledge-based system design and 

simulation environment. In Modelling and Simulation Methodology: Knowledge System Paradigms (M. S. ELZAS, T. I. 
OREN and B. P. ZEIGLER, Eds), pp. 451-466. North-Holland, Amsterdam. 

22. J. W. ROZENBLIT, J. Hu and Y. HUANG (1989) An integrated, entity-based knowledge representation scheme for system 
design. In Proceedings of the 1989 NSF Engineering Design Research Conf. Amherst, MA, 393-408. 

23. SULEYMAN SEVINC (1988) Automatic simplification of models in a hierarchical modular discrete event simulation 
environment. PhD Thesis, University of Arizona, Tucson, Arizona. 

24. B. P. ZEIGLER (1984a) Multifaceted Modelling and Discrete Event Simulation, Academic Press, London. 
25. B. P. ZEIGLER (1984b) System-theoretic representation of simulation models. IIE Trans. 16, 10-27. 
26. B. P. ZEIGLER (1986) DEVS-SCHEME: a LISP-based environment for hierarchical, modular discrete event models. 

Technical Report AIS-2 CERL Laboratory, University of Arizona, Tucson, Arizona. 
27. B. P. ZEIGLER (1987) Hierarchical, modular discrete-event models in an object-oriented environment. Simulation, 50, 

219-230. 
28. B. P. ZEIGLER, TAG GON KIM, S. SEVINc and G. ZHANG (1989) Implementing methodology-based tools in DEVS- 

SCHEME. In Modelling and Simulation Methodology: Knowledge System Paradigms (M. S. ELZAS, T. I. OREN and B. 
P. ZEIGLER, Eds), North-Holland, Amsterdam. 

488 



J. W. Rozenblit et al. -Knowledge-based Design and Simulation Environment (KBDSE) 

29. B. P. ZEIGLER (1990) Object-Oriented Simulation with Hierarchical Modular Models: Intelligent Agents and Endomorphic 
Systems. Academic Press, Boston. 

30. A. I. CONCEPCION and B. P. ZEIGLER (1988) DEVS formalism: A framework for hierarchical model development. IEEE 
Trans. on Software Engineering, 14, 228-241. 

31. A. OsyczKA (1984) Multicriterion Optimization in Engineering. Ellis Horwood Press Ltd, Chichester. 

489 


	Article Contents
	p. 475
	p. 476
	p. 477
	p. 478
	p. 479
	p. 480
	p. 481
	p. 482
	p. 483
	p. 484
	p. 485
	p. 486
	p. 487
	p. 488
	p. 489

	Issue Table of Contents
	The Journal of the Operational Research Society, Vol. 41, No. 6, Artificial Intelligence and Expert Systems. Part II. Simulation and Scheduling (Jun., 1990), pp. i-iii+459-552
	Front Matter [pp.  i - iii]
	Editorial [pp.  459 - 460]
	Simulation
	A Simulation and Learning Technique for Generating Knowledge about Manufacturing Systems Behavior [pp.  461 - 474]
	Knowledge-Based Design and Simulation Environment (KBDSE): Foundational Concepts and Implementation [pp.  475 - 489]
	Is There a Place in OR for Intelligent Tutoring Systems? [pp.  491 - 503]

	Scheduling
	Expert Systems for Vehicle Scheduling [pp.  505 - 515]
	Integration of AI and OR Techniques for Computer-Aided Algorithmic Design in the Vehicle Routing Domain [pp.  517 - 525]
	Distribution of Empty Railcars by an Expert System: A Case Study with Comparison with OR Approaches [pp.  527 - 537]
	An Integrated Framework for Generating and Revising Factory Schedules [pp.  539 - 552]

	Back Matter



