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Research developments leading to implementation of an intelligent software environment supporting 
system design and simulation are presented. Knowledge-based system design and multifaceted simulation 
methodologies are a foundation for the system realization. The paper describes the major theoretical 
concepts and processes employed to develop and simulate design models. The environment implementing 
these concepts and methods consists of two basic components: one serves as a front end supporting the 
model construction processes; the other is an object-oriented, discrete-event simulator supporting evalu- 
ation of hierarchical, multi-component models. Current state of the system implementation and future 
work are discussed. 
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INTRODUCTION 

Despite great strides in development of computational tools such as high performance work- 
stations intended to help to cope with the rising complexity of designs, the design process remains 
error prone. Given the often severe constraints imposed by cost, environmental impacts, safety 
regulations, etc., it is a fact of life that designers are forced to make compromises that would not 
be necessary in an ideal world. Simulation is increasingly recognized as a useful tool in assessing 
the quality of sub-optimal design choices and arriving at acceptable trade-offs. 

We have focused on developing and implementing a methodology of design in which design 
models can be synthesized and tested using computer simulation. This framework, termed 
knowledge-based system design and simulation,1-3 lends itself to realization in the form of an 
integrated, intelligent design support environment. 

Our work complements recent trends in simulation modelling research which emphasize the 
development of integrated software modelling support environments.7 Such environments are 
envisioned as conglomerates of tools that will aid modellers in the model construction process and 
simulation program generation. There are several notable features of the existing software proto- 
types that distinguish them from conventional simulation tools. First, the new simulation environ- 
ments are methodology-based, i.e. their design is strongly influenced by a methodology that 
underlies the model development process in a given environment. Second, state-of-the-art software 
technology is employed to implement theoretical concepts. Common software techniques used in 
designing the new simulation systems include object-oriented programming, graphics interfaces 
with animation and automatic programming. We also observe emergence of artificial intelligence 
(Al) applications that assist the modeller in model construction and validation, simulation man- 
agement and analysis.5'8 

In the ensuing sections, we characterize the basic tenets of our design modelling approach. We 
then describe the architecture of the software system and explain how simulation model develop- 
ment is supported by the environment. We conclude with a brief description of current applica- 
tions and work in progress on extending the system. 

MULTIFACETED MODELLING AND SYSTEM DESIGN 

Multifaceted methodology denotes a modelling approach which recognizes the existence of 
multiplicities of objectives and models in any simulation project. It provides formal representation 
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schemes that support the modeller in organizing the model construction process, aggregating 
partial models and specifying simulation experiments.9 Modelling objectives drive three funda- 
mental processes in the methodology: they facilitate the construction, retrieval and manipulation 
of design entity structures,10 selection of model structures, and specification of experimental con- 
ditions under which design models are evaluated by a simulation study. 

The design entity structure is a knowledge representation scheme based on a tree-like graph 
that encompasses the boundaries, decompositions and taxonomic relationships that have been 
perceived for the system being modelled. An entity signifies a conceptual part of the system which 
has been identified as a component in one or more decompositions. Each such decomposition is 
called an aspect. Thus entities and aspects are thought of as components and decompositions, 
respectively. In addition to decompositions, there are relations termed specializations. A special- 
ization relation facilitates representation of variants for an entity. These are called specialized 
entities and inherit properties of an entity to which they are related by the specialization relation. 

Aspects can have coupling constraints attached to them. Coupling constraints restrict the way 
in which components (represented by entities) identified in decompositions (represented by 
aspects) can be joined together. 

In addition to coupling constraints, there are selection constraints in the system entity structure. 
Selection constraints are associated with specializations of an entity. They restrict the way in 
which its subentities may replace it in the model construction process. Synthesis constraints 
restrict ways in which entities selected from specializations may be configured to represent the 
structure of the system being designed.' 112 Later, we describe the process that employs the pro- 
duction rule formalism to support automatic selection of entities and synthesis of a design model 
structure. We call this process rule-based driven design model structure generation. 

Models can be expressed in special formalisms depending on the problem at hand. Typical 
specifications include differential equations, finite state machine or discrete event. Each formal 
model description specifies a system and selects a class of subsystems by placing constraints on the 
possible static and dynamic structures it encompasses. A characterization of such constraints is 
given by Murray and Sheppard.'3 The model construction process involves the specification of 
the static and dynamic structure. In our system, models are developed using discrete event system 
specification (DEVS) formalism.9 This formalism underlies the construction of models in our 
simulation environment-DEVS-SCHEME. 

The DEVSformalism 

The DEVS hierarchical, modular formalism, as implemented in DEVS-SCHEME, closely paral- 
lels the abstract set theoretic formulation developed by Zeigler (see Kim and Zeigler9). In such a 
formalism, one must specify basic models from which larger ones are built, and how these models 
are connected together in a hierarchical fashion. A basic model, called an atomic DEVS, is defined 
by the following structure 9 

M = < X, S, Y, 6ints 6exts A, ta> 

where X is a set (external input event types), 
S is a set (sequential states), 
Y is a set (external output event types), 
6int is a function (internal transition specification), 
6ext is a function (external transition specification), 
A is a function (output function) and 
ta is a function (time advance function) 

with the following constraints: 
(i) the total state set of the system specified by M is 

Q = {(s, e)I|s E S.,O ? e S ta(5)}, 

(ii) 6int is a mapping from S to 5: 

6int: S-+S. 
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(iii) 6ext is a function: 

6ext: Q x X- S, 

(iv) ta is a mapping from S to the non-negative reals with infinity, 

ta: S -R and 

(v) A is a mapping from S to Y: 

A: S-+ Y. 

An interpretation of the DEVS and a full explication of the semantics of the DEVS are found in 
Kim and Zeigler.9 

The second form of models, called a coupled model, tells how to couple several component 
models together to form a new model. This latter model can itself be employed as a component in 
a larger coupled model, thus giving rise to the hierarchical construction. A coupled DEVS is 
defined as a structure:' 

DN= <D, Mi, Ii, Zij, SELECT> 

where D is a set (component names), and for each i in D: 

Mi is a component and 

Ii is a set (influences of i), 

and for each j in I,: 

Zi, is a function, (i-to-j output translation) and 

SELECT is a function (tie-breaking selector) 

with the following constraints: 

Mi = <Xi, Si, Yi, 6i, Ai, tail> 

Ii is a subset of D, i is not in Ii 

Zij: Yi Xj 

SELECT: subsets of D -+ D 

such that for any non-empty subset E, SELECT(E) is in E. 
The formal model specification in multifaceted methodology consists in specifying the system 

entity structure and attached variable types (called descriptive variables), pruning and then 
specifying a discrete-event model for the components identified by the pruned entity structure. 
Selection of input, output and state variables results in the model's static structure. Definition of 
transition and output functions adds the dynamic components to the DEVS specification. 

Clearly, a formal set theoretical description of a large-scale system would be a tedious and 
impractical process. In fact, this may well have been a reason why theory-based approaches have 
been shunned by simulation practitioners, and a primary motivation for the development of soft- 
ware implementing the above formal modelling concepts. 

SIMULATION MODEL DEVELOPMENT IN KBDSE 

The basic organization of the software under development is given in Figure 1. There are two 
fundamental modules in the system: 
(i) the module supporting entity structure programming and pruning (ESPP) and 

(ii) the module supporting simulation and performance analysis (DEVS-SCHEME). 
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FIG. 1. Organization of software in KBDSE. 

The modules are interfaced through the TRANSFORM procedures that automatically generate 
simulation code. The code is generated by retrieving from the model base simulation modules 
associated with the composition tree generated by the pruner. We now proceed to describe these 
modules in more detail. 

The entity structuring program and e'uner (ESPP) 
This program helps the modeller conceptualize and record the decompositions underlying a 

model (or family of models) before, during and after development. To the extent that ESPP is used 
before beginning model development, it is a tool for assisting in top-down model design. However, 
when additions and changes are made as the development proceeds, ESPP serves as a recorder of 
progress. At the end of the development phase, the record constitutes de facto documentation of 
the system structure arrived at. 

We have augmented the system entity structure into an integrated, entity-oriented knowledge 
representation scheme, taomiche frame and rule-associated system entity structure (FRASES). 
FRASES is a scheme that combines concepts of the system entity structure, frame, 14 and pro- 
duction rules.en n By exploiting the reasoning flexibility provided by production rules, the effi- 
ciency in representing declarative knowledge offered by frames, and the visibility and hierarchy 
supported by the system entity structure, FRASES is a powerful and efficient scheme for manag- 
ing domain knowledge supporting design model development. 

Structure of FRASES 

FRASES is a superclass of the system entity structures which encompasses the boundaries, 
decompositions and taxonomic relationships of the system components being modelled. All 
axioms and operations defined originally for managing system entity structures are also -present in 
FRASES representation. 

A typical example of FRASES for representing a LAN-based distributed system is shown in 
Figure 2. As shown in the figure, each entity of FRASES is associated with an entity information 
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FIG. 2. A LAN-based distributed system with FRASES. (a) Schematic representation and (b) 
FRASES representation. 

where M is the name of the associated model, 
ATTs are attributes of M, 
DSF is the design specification form, 
ESF is the experiment specification form, 
CRS are constraint rules for design model synthesis, and 
CH are FRASES children of the focus node. 

With FRASES representation, behavioural knowledge about objects is described by simulation 
models stored in the model base. M represents the name of the entity and serves as a major key to 
access its model. 

ATTs are attributes used to characterize the associated object. Attributes of an entity are parti- 
tioned into two groups, i.e. static and dynamic. Static attributes are variables used to describe 
properties of an object that do not change over time. Dynamic attributes are related to dynamic 
behaviour of the models represented by entity objects. 

The design specification form (DSF) accepts the specification of design objectives, constraints 
and criteria weighting schemes. The contents of the DSF define the system requirements that must 
be satisfied by the system to be designed. DSF information is used to guide the synthesis of design 
model structures. Each entity of FRASES has its own DSF. Once composition trees (or design 
structures) are generated based on the knowledge provided in the CRS slot, users are requested to 

479 



Journal of the Operational Research Society Vol. 41, No. 6 

define the simulation experiment in the ESF. Finally, simulation is activated via automatic extrac- 
tion and coupling of simulation models. 

The experimental specification form (ESF) is applied to accept the specification of simulation 
requirements such as an arrival process, event structure and simulation control scheme. The ESF 
provides information to direct the automatic generation of experimental frames."9 An experimen- 
tal frame specifies a limited set of circumstances under which a system is to be observed or sub- 
jected to experimentation. Again, the ESF is placed together with entity nodes of a composition 
tree (i.e. a decomposition tree with information about the coupling schemes among model 
components). 

Constraint rules for synthesis (CRS) contain heuristic rules for configuring design model struc- 
tures. Formally, selection constraint rules for pruning alternatives are associated.with special- 
ization nodes, and constraint rules for synthesizing components are associated with aspect nodes. 
Model development driven by production rules will be described in the next section. 

Rule-based synthesis of model structures 

The production rule formalism supports automatic selection of entities from taxonomic 
relationships and synthesis of structures underlying the simulation models. 

The process consists of defining selection and synthesis rules and associating them with entity 
information frames of the design entity structure. The modeller invokes the inference engine 
which, through a series of queries based on the constraint rules, allows him to consult on an 
appropriate structure for the modelling problem at hand. The result is a recommendation for a 
model composition tree.9 The composition tree is used by the DEVS-SCHEME environment to 
retrieve models from the model base. The retrieved models are automatically linked in a hierarchi- 
cal manner according to the coupling constraints. 

The prototype pruning module was originally designed in PROLOG and called MODSYN 
(model synthesizer).20 It was subsequently redesigned in COMMON LISP and incorporated in 
the ESPP shell.21 The basic components of the pruner are the knowledge base and the inference 
engine. 

To prune the design structure, we generate the following rule sets: 
(i) Selection rule set: each selection rule stands for a choice of an entity in a specialization. 

(ii) Synthesis rule set: after selection rules have been applied to the entity structure, synthesis rules 
ensure proper configuration of the selected entities. They also co-ordinate the actions of the 
selection rules. Certainty factors are employed to indicate the applicability of the rules. 

Selection rules are associated with the specialization nodes whereas the synthesis rules are 
attached to the decomposition nodes of FRASES. Each rule set can be regarded as a module. 
Therefore the entire rule base is constructed in a hierarchical manner imposed by the entity struc- 
ture. 

The production rule formalism is used to express modelling objectives, constraints and require- 
ments in the form of selection and synthesis rules. Domain experts provide knowledge about 
admissible choices of design components and their combinations, design data regarding expected 
performance given a particular component choice, etc. 

Inference engine design 

The inference engine uses the strategy of 'generate and test', i.e. it takes the initial data from the 
user and the hypothesis generated by the knowledge base to prune the search space tree. In other 
words, the engine attempts to match the data with the information contained in the knowledge 
base. If the data match, the engine 'climbs up' the tree, trying to prove the next hypothesis. We use 
aspect ordering in order to eliminate aspects not desirable in the model we are constructing, and 
specialization-oriented pruning to select unique entities for the model composition trees. A com- 
plete description of the shell can be found in Rozenblit and Huang.20 The LISP realization of the 
shell provides facilities for top-down as well as bottom-up pruning and selection of different search 
control strategies.21 

Unlike other applications, engineering designs usually require components of a system to be 
designed in a particular sequence. Essential components are always determined before other com- 
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ponents can be designed. The design sequence may be altered by environmental factors, problem 
domains or technical constraints. This requires a flexible search scheme to conduct the design 
reasoning process in the right sequence. In order to capture the dynamics of a design sequence, a 
weight-oriented FRASES inference engine (WOFIE) was proposed."7 By appropriately setting up 
the priority of a specialization node, WOFIE is capable of emulating the design reasoning process 
conducted by a human expert. 

DEVS-SCHEME SIMULATION ENVIRONMENT 

DEVS-SCHEME,22-27 a general purpose modelling and simulation environment, is an imple- 
mentation of DEVS formalism in SCOOPS, the LISP-based, object-oriented superset of PC- 
SCHEME. It runs on DOS-compatible PCs and the TI's Explorer LISP machine. 
DEVS-SCHEME is implemented as a shell that sits upon SCHEME in such a way that all of the 
underlying LISP-based and object-oriented programming language features are available to the 
user. The result is a powerful basis for combining artificial intelligence and simulation techniques. 
Since structure descriptions in DEVS-SCHEME are accessible to run-time modification, it pro- 
vides a convenient basis for development of variant family and variable structure simulation 
models. DEVS-SCHEME also serves as a medium for developing computer architectures for dis- 
tributed simulation of hierarchical, modular discrete-event models.28 

In DEVS-SCHEME, component models called atomic models are specified using SCHEME's 
semantics, which correspond closely to the formal definition of DEVS. The input and output sets 
consist of pairs (port, value). Thus, x = (p, v) signals the receipt of a value v at an input port p. The 
elements of DEVS formalism take the following form in the DEVS-SCHEME: 

Internal transition function: (define (int s) ...) 

External transition function: (define (ext s e x) ...) 

Output function: (define (out s) ...) 

Time advance function: (define (ta s) ...) 

where ... represents function body definitions expressed in SCHEME. 
The atomic models may be coupled together to form a model at the coupled specification level. 

DEVS-SCHEME is still under development. Recently, new features for testing model morphism 
and model simplification have been incorporated in the shell.23'25'29 

The -class specialization hierarchy in DEVS-SCHEME is shown in Figure 3. All classes in 
DEVS-SCHEME are subclasses of the universal class entities which provide tools for manipulat- 
ing objects in these classes (these objects are hereafter called entities). The inheritance mechanism 
ensures that such general facilities need only be defined once. Entities of desired class may be 
constructed using a method mk-ent and destroyed using a method destroy. More specifically, 
mk-ent makes the entity and places it in a class variable list which maintains the list of members of 
the given class; destroy removes the entity from this list. Every entity has a name which is assigned 
to it upon creation. 

Models and processors, the main subclasses of entities, provide the basic constructs needed for 
modelling and simulation. Models are further specialized into the major classes atomic-models and 
coupled-models, which realize atomic DEVS and coupled DEVS, respectively. The coupled-models, 
in turn, are specialized into more specific cases, a process which may be continued indefinitely as 
the user builds up a specific model base. Kernel-models, one subclass of coupled-models, is a gener- 
alized class whose subclasses provide powerful means of defining complex, hierarchical multi- 
computer architectures formed by recursive compounding of component models for basic 
processing elements of such architectures. Class processors, on the other hand, have three special- 
izations: simulators, co-ordinators and root-co-ordinators. These carry out the simulation of a 
model in a manner which follows the hierarchical abstract simulator concepts.9'30 

Due to the object-oriented realization, subclasses of existing classes and new classes can be 
readily added to DEYS-SCHEME as required. As a result the DEYS-SCHEME environment: 

(i) supports modular, hierarchical model construction, 
(ii) allows independent testing of components models, 
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FIG. 3. Class hierarchy in DEVS-SCHEME 

(iii) separates models from experimental frames, and 
(iv) supports distributed simulation. 
Details of all classes in DEVS-SCHEME along with their instant/class variables and methods are 
available.23'25 

Rule-based model retrieval and transformation 

A pruned entity structure can be synthesized into a simulation model by the operation trans- 
form. As the algorithm visits each entity in the pruned entity structure, transform calls upon a 
retrieval process that searches a model corresponding to the current entity. If one is found, it is 
used and transformation of the entity subtree is aborted. The retrieval process proceeds by evalu- 
ating rules, which consist of retrieval rules (pairs of condition and retrieval action) and conflict 
resolution rules, by which a rule is selected if there is more than one which satisfies conditions. 
Details of these rules are found in Zeigler.29 

A rule for searching a model that corresponds to the current entity says that it first looks for the 
model in the working memory, then in the model base (MBASE) and finally, if the current entity is 
is a leaf, in the entity structure base (ENBASE). Before searching the model, another rule checks 
the name of the current entity. If the current entity has a base name and a non-trivial extension 
(the extension starts with numbers or '&'), the base name is used as an entity name for the 
retrieval process. As more than one rule is satisfied when evaluated, a conflict resolution rule fires 
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only one rule. For example, if both Rule 1 and Rule 2 are satisfied, then Rule 1 is fired. We employ 
context specificity, which means that the rule with a more specific condition than other rules is 
fired, in order to resolve such a conflict. 

If a pruned entity structure is found in the ENBASE in the searching process, a transform is 
invoked and executed in a separate SCHEME environment so as not to interfere with the current 
environment. Since the self-invocation can occur in a leaf entity only, such local transformation is 
definitely recursive. 

Hierarchical model construction in DEVS-SCHEME 

The DEVS-SCHEME environment provides layers of objects and methods which may be used 
to achieve more powerful features. The knowledge base framework shown in Figure 4 is intended 
to be generative in nature, i.e. it should be a compact representation scheme which can be 
unfolded to generate the family of all possible models synthesizable from components in the model 
base. The user, whether human or artificial, should be a goal-directed agent which can interrogate 
the knowledge base and synthesize a model using pruning operations that ultimately reduce the 
structure to a composition tree. 

As shown in Figure 4, model objects expressed in DEVS-SCHEME must reside in working 
memory in order to be simulated. Such an object can be reconstructed from disk file definitions by 
direct evaluation (the only possibility for atomic-models) or by applying the transform function to 
a pruned entity structure in working memory. The pruned entity structure is in turn obtained by 
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pruning an entity structure and selecting one possibility from the whole family spanned by the 
structure. The pruned entity structure is transformed into a hierarchical simulation model by the 
operation transform described in the previous section. 

DESIGN PHASES OF KBDSE 

KBDSE applies modelling and simulation concepts to unify engineering design activities and to 
develop a methodology for systematic design model construction and evaluation. 

Design models are derived by identifying multiple conflicting objectives and requirements of 
systems. Therefore, design objectives play a fundamental role in guiding the synthesis of design 
models and the specification of experimental circumstances. 

Evaluation of design alternatives is accomplished by computer simulation. The experimental 
frame concept9 is used to specify a simulation study. Briefly, an experimental frame defines condi- 
tions with which a design model can be observed and experimented with. Simulation results are 
compared and traded off in preference to conflicting criteria. This results in a ranking of models 
and supports choices of alternatives that best satisfy the design specification. 

Evaluation of design alternatives involves the following stages: 
(i) Selecting the problem domain by retrieving the desired entity structure (FRASES). 

(ii) Identifying system requirements (e.g. cost, performance, technology, resources, etc.) from the 
design specification. 

(iii) Performing rule-based design reasoning to derive all possible alternative design models 
(composition trees). 

(iv) Specifying simulation circumstances for arrival process, event format and simulation con- 
trols. 

(v) Constructing experimental frames conforming to design objectives and simulation require- 
ments. 

(vi) Coupling the design model with experimental frames for simulation (i.e. transformation). 
(vii) Analysing performance statistics and selecting the best design model by the application of 

multi-criteria decision making methods. 
(viii) Reporting the best design. 
A schematic representation of this design process is outlined in Figure 5. With KBDSE, the 
complex design process is handled intelligently and efficiently to reduce the overall design cycle 
and cost. 

Example 
To help understand the whole process of the KBDSE design methodology, design of distributed 

systems (Figure 6) will be used as an example. 
Assume the design specification of the distributed system has been defined as follows: 

(DSF (constraint (value (> thruput 0.098) ( < cost 300))) 
(objective (max (value thruput)) (min (value cost))) 
(criteria-weighting (value (rank thruput cost))) 
;; criteria preference: thruput > cost. 

After the design specification is defined, the design pruning program is selected and activated to 
derive all possible alternative design models. For example, if MODSYN is employed, the design 
reasoning is performed in a backward-chaining manner. At each decision point, the user is asked 
questions to provide information for selecting design alternatives. For example, to determine the 
MTS-technology, the question about 'the degree of interaction among computer modules' will be 
asked. If the user indicates that the interaction among computer modules is low and resource 
sharing capability is desired, then the local area network (LAN) will be selected for MTS- 
technology. This design reasoning process will continue until all specialization nodes are traversed. 
Let us assume the following selections have been made: 

medium-access-protocol: CSMA/CD 
medium: optical-fibre 
topology: bus, ring 
access: direct-access, cache 
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FIG. 5. Design phases of KBDSE. 

The pruned FRASES (Figure 7) is then converted into two composition trees (Figure 8). Notice 
that two further composition trees are eliminated by detecting the synthesis rule: 

IF LAN-segment.medium =optical-fibre then LAN.topology 0 bus. 

After the composition trees are generated, users may define the simulation requirements with 
ESF as follows: 

(ESF (ap, (value (cond (t (normal 20))))) 
;;normal distribution with a mean 20 

(ef (value condod (t (list (symbol) (number 1.0)))))) 
;; eventformat: (Job-0 0.72) 
(sc (value (cond (( >event 100) (stop))))) 
;; stop simulation after 100 events 

Experimental frame is then generated automatically and coupled to the design model for 

performance evaluation. After simulation, the value of transducer (i.e. thruput) is collected for the 
best design selection. Assume the design cost and throughput for both design models are: 

thruput cost 

system-1 0.13 180 
system-2 0.15 250 

After rating parameters and assigning negative signs to the second set of parameters (i.e. mini- 

system-1 0 %.86 W-,W0.7-2- P 

system-2 1.0 -1.0 
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FIG. 6. Distributed systems in FRASES. 

Since the criteria preference is expressed by weak ranking,31 the extreme expected pay-off 
method can be employed to solve the MCDM problem. The partial average for each system is 
computed as follows: 

thruput cost 

system-1 0.867 0.0735 
system-2 1.0 0.0 

Finally, system-2 will be recommended (i.e. 1.0 > 0.941). 

CONCLUSIONS 

We have presented a foundation and implementation of the knowledge-based design and simu- 
lation environment called KBDSE. We have employed the multifaceted modelling methodology as 
a theoretical basis for developing the KBDSE. To realize the multifaceted modelling methodology, 
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DEVS formalism and system entity structuring formalism have been implemented in a LISP 
environment. Such an implementation opens up a wealth of possibilities for investigating 
methodology-based support of modelling and simulation. The symbolic manipulation and object- 
oriented facilities of SCHEME make it relatively easy to code complex structures and their associ- 
ated operations. The environment supports the development of discrete-event simulation models 
in a hierarchical, modular fashion. Many design examples of discrete-event simulation models- 
such as multi-level computer architectures, communication networks and multi-robotic systems- 
have been successfully run and tested in the environment. 
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