
Proceedings of the 1988 Winter Slmutation Conference
M. Abrams, P. Haigh, and J. Comfort (eds.)

Systems theory instrumented simulation modeling

Jerzy W. Rozenblit
Dept. of Electrical and Computer Engineering

University of Arizona
Tucson, Arizona 85721

Abstract

The paper reviews the impact of systems theory-based
representation methods in the context of discrete event sim-
ulation modeling. Tools for formal system specification and
methods for model static and dynamic structure description
are presented. Recent efforts in implementing the systems
theory instrumented multifacetted methodology are also dis-
cussed.

1. Introduction

In the past decade methodological research in the area
of simulation and modeling has significantly changed and
influenced the way in which we carry simulation studies today.
The power of conventional simulation techniques has been
extended in directions that enable us to structure data better,
help in building hierarchical models, and assist us in designing
simulation experiments. Two related trends have significantly
contributed to this progress in the simulation field. One was
the development of conceptual theories for modeling practice
and for designing software tools for supporting such practice
(Zeigler et. al. 1980). The other was the emergence of
simulation languages based on theoretical frameworks (&en
1971; Pegden 1982; Livny 1987; Zeigler 1987). Clearly, the
latter trend demonstrates the functional and expressive power
of theory-based modeling methods.

Systems Theory is a scientific discipline whose primary
concern is to provide problem solving methods and tools.
Although Systems Theory has been a subject of intensive
studies for over two decades and an abundant literature on
the subject is available, its problems solving methods have
been often ill-understood and ignored by engineers, system
designers, and simulation practitioners. Pichler (1988) points
out the major reasons for this problem and suggests that
with the advent of powerful engineering workstations, systems
theory will eventually find its way to applied sciences and
engineering.

There are notable exceptions to the skepticism about
the applicability and usefulness of system-theoretic methods.
They include work Iof Zeigler (1984a, 1987) whose multifacetted
modeling we shall explore here in more detail. Given the space
limitation, it is impossible to examine closely the work of others
in this paper. However, to provide the reader with points of
reference, we briefly describe research efforts bridging systems
theory, system design, and simulation modeling.

First attempts to unify..these disciplines date back to the
early seventies and work of Oren (1971). He designed a general
systems theory implementor language (GEST) that facilitated
expressing both continuous and discrete simulation formalisms.
A more advanced version named GEST81 and its high level

development shell MAGEST (Aytac and &en 1986) provide a
means for specifying hierarchically coupled models.

Wymore’s work (1967, 1976, 1980) is primarily concerned
with applying mathematical systems theory to systems engi-
neering problems. The tricotyledon theory of system design
(TSSD) has been applied to a number of engineering design
problems. In TJSD, a designer specifies in mathematically rig-
orous terms an I/O.specification of the designed system and
a merit ordering over the set of I/O specifications. Similarly,
a class of buildable systems and a merit ordering is defined
with respect to available technology. A feasible design is se-
lected from the systems that are buildable in the technology
and satisfy the I/O specification.

Klir has developed a general systems problem solver
(GSPS) for inductive modeling (1984). The system is based
on the hierarchy of systems descriptions called epistemological
levels related to Zeigler’s taxonomy of system specification
levels (1976).

Fishwick (1988a, 198813) has categorized process abstrac-
tion in simulation modeling and presented formalisms for valid
methods of abstraction. Recently, he has developed proce-
dures for a reverse process, i.e., refinement, used to automate
the transition from abstract lumped models to base models.

A new development in realizing systems concepts has
been initiated by Pichler (1988). This new research, termed
Computer Aided Systems Theory (CAST) and conducted at
the University of Linz in Austria, is aimed at providing method
banks for computer aided problem solving. CAST is derived
from Pichler’s work on Systems Theory Instrumented Problem
Solver (STIPS). STIPS has been realized in an object-oriented
environment for finite state machines (Pichler 1986).

To illustrate the power and viability of a theory-based
approach, in this paper we shall present the basic concepts
of a modeling framework termed multifacetted methodology
(Zeigler 1984a). We then illustrate how the theoretically mo-
tivated concepts have been realized in an advanced simulation
and system design environment. The software environment is
discussed in detail in a companion paper in this volume (Rozen-
blit et.al. 1988).

2. System Theoretic Concepts for Model Representa-
tion

In this section we present formal concepts that underlie
the specification of simulation models. We provide a formal
definition of a system, discuss the distinction between the
system’s structure and behavior and present methods for the
specification of model static and dynamic properties.

282

Hierarchy of System Specifications

The term model is viewed here as a specification for a
system. In general, the term system refers to a description
(often mathematical) which captures some of the essential
features concerning the system or problem being modelled.
Since there are many characteristics of real systems, there
are several concepts of the system and thus it is useful to
organize the specifications into a coherent whole. In this
way we arrive at a stratification of system specifications that
starts with intuitive black box concepts at the lover levels and
adds more and more constructs for the description of system’s
internal structure as the levels increase. Klir’s epistemological
classification of systems description of one such example (Klir
1984).

In this paper, we shall adopt a notion that a system is
a collection of interacting component systems (Zeigler 198413).
This recursive definition implies that we should have a means
for expressing a decomposition process. In this process, a
system can be represented by a collection of subsystems whose
composition exhibits the same properties as the system subject
to the decomposition. This implies that a system may be a
component of a larger system.

Zeigler provides a hierarchy of system specifications with
morphism concepts that enable comparisons between systems
specified at any level of abstraction. The hierarchy is defined
as follows:

1.

2.

3.

4.

5.

System Specification IORO. This type of description is
an Input/Output observation relation. It is a classical
example of a black box.

System Specification IOFO. For each input function of a
given IORO there exists exactly one output function. This
specification is called an l/O function observation.

System Specification S (often referred to as an l/O system).
In addition to input and output sets, a set of states and
state-transformation mechanisms have to be defined in this
specification. We shall shortly discuss this specification in
more detail and show how it is used as a basis from which
a model description can be derived.

Structured System Specification. The specification at this
level is the same as the one at level 3 except that each set
and function is structured.

System Specification NET (Coupled System). NET de-
notes a network of system specifications consisting of a fam-
ily of systems and a coupling mechanism. This specification
is a basis for a hierarchical form of model construction.

The above stratification of system specifications is inde-
pendent of any particular modeling formalism. In other words,
any formalism may be employed to specify a system at any
level. A good review of major modeling formalisms (differen-
tial equations, discrete time systems, and discrete event speci-
fication) and their associated translation mappings into system
specifications are given in (Zeigler 1984b).

At each level in the above hierarchy there is a morphism
that enables comparisons between systems specified at that
level. Transitions between levels of system specifications and
their associated morphisms are straightforward when we want
to derive a specification assuming that one is given at a
higher level (we ascertain behavior from the structure). The

opposite transformation, i.e., recovering a structure from a
given behavior is not possible unless certain requirements
called justifying conditions are satisfied. Both types of
transitions are well described in (Zeigler 1976, 1984a; Pichler
1984).

Formal System Definition

We provide a formal system definition (System Specifica-
tion S-Level 3) as a basis for describing the model’s structure
and behavior. Subsequently, we present a modeling formalism
called Discrete Event System Specification (DEVS) and show
how it specifies an l/O system.

A system is a structure:

S =< T,X,Cl,Q,Y,c$X >

where:
T is the time base
X is the input value set
0 is the input segment set
Q is the internal state set
Y is the output set
6:QxR-+Q is the state transition function
X:Q-+Y is the output function

The input segments of the system S have to be closed
with respect to concatenation. In addition, 6 must have the
semi-group property, i.e., for all W,U’ E R and for all q E Q
the following equation must hold: 6(q,w .w’) = 6(6(q,w),w’)

The input, state, output sets, and the output function
constitute the static structure of the system. The time base,
input segment set, and the state transition function are referred
to as the system’s dynamic structure. In Section 3, we shah
demonstrate how the formal concepts of the multifacetted
methodology support the specification of both structures.

In systems theory instrumented simulation, models are
expressed in special formalisms depending on the problem at
hand. Typical specifications include differential equations, fi-
nite state machine, or discrete event. Each formal model de-
scription specifies a system and selects a class of subsystems by
placing constraints on the possible static and dynamic struc-
tures it encompasses. A characterization of such constraints
is given in (Zeigler 1984b). The model construction process
involves specification of the static and the dynamic structure.
We shall explain this process in the ensuing section.

3. Model Specification in Multifacetted Methodology
and Discrete Event Simulation

The concepts of model development presented here are de-
rived from mnltifacetted modeling methodology. Multifacetted
methodology denotes a modeling approach which recognizes
the existence of multiplicities of objectives and models in a
simulation project. It provides formal representation schemes
that support the modeller in organizing the model construction
process, aggregating partial models, and in specifying simula-
tion experiments (Zeigler 1964a; Rozenblit and Zeigler 1966,
1988).

System Entity Structure

The key concept underlying structuring of models, their
organization, and specification of simulation experiments (ex-
perimental frames) is the system entity structure (Zeigler,

283

1984a). The system entity structure is based on a tree-like
graph that encompasses the boundaries, decompositions anct
taxonomic relationships that have been perceived for the sys-
tem being modelled. .An entity signifies a conceptual part of the
system which has been identified as a component in one or more
decompositions. Each such decomposition is called an. aspect.
Thus, entities and azipects are thought of as components and
decompositions, respectively. In addition to decompositions,
there are relations termed specializations. A specialization re-
lation facilitates representation of variants for an entity. Called
specialized entities, such variants inherit properties of an entity
to which they are related by the specialization relation.

Entities have attributes represented by the attached vari-
able types. When a variable type V is attached to an entity
E, this signifies that a variable 1.E may be used to describe
a property of the entity E. Aspects can have coupling con-
straints attached to them. Coupling constraints restrict the
way in which components (represented by entities) identified
in decompositions (represented by aspects) can be joined to-
gether.

In addition to coupling constraints, there are selection con-
straints in the system entity structure. Selection constraints
are associated with specializations of an entity. They restrict
the way in which its subentities may replace it in the process
of model construction (Rozenblit and Huang 1987).

Given the system entity structure the modeller has a
choice of a number of model alternatives. This is due to
the multiplicity of aspects and specializations.. Therefore,
we require that the modeller have procedures for generating
model structures pertaining to the modeling objectives. Such
structures should be selected from the system entity structure.

In our previous work (Rozenblit and Huang 1987) we have
developed procedures for generating structures underlying the
coupled model specification. The process, called constraints-
driven pruning, employs the production rule formalism to sup
port automatic selection of entities from taxonomic relation-
ships and synthesis of structures underlying simulation models.

This approach to pruning consists in specifying the system
entity structure for a modeling problem. Then, a knowledge
base that contains rules for selection and configuration of the
entities is constructed. The modeller invokes an inference en-
gine which, thr0ug.h a series of queries based on the constraint
rules, allows him/her to consult for an appropriate structure
for the modeling problem at hand. The result is a recommen-
dation for a model composition tree (Zeigler 1984s) which is a
basis for the hierarchical model development. The model com-
position tree is a -tree whose leaf nodes are system specifica-
tions. These are the atomic components which wiil be coupled
in a hierarchical manner. The interior nodes n have the follow-
ing specification attached to them: a system specification S,, a
coupling scheme C,, and a morphism H,,. The coupling scheme
C, is used to interface the system specifications assigned to the
children of the interior node. H, establishes a correspondence
between S’, and the resultant of the coupling process using C,.
The leaf nodes are assigned only system specifications which
are atomic and are not subject to decomposition.

DEVS Formalism

The modeling formalism used to specify a system in the
multifacetted methodology is Discrete Even System Specifica-

tion (DEVS) (Zeigler 1976, 1984a, 1984b). DEVS provides
a formal representation of discrete event systems. Formally,
DEVS is a structure:

M ==-< x,5’. Y,6, .i,ta >

where:
X is the external event set
S is the sequential state set
Y is the output set
6 is the transition function
X is the output function
ta is the time advance function

DEVS specifies an I/O system:

s =< T,X,f&Q,Y,bX >

where:

T = Reals

X = XDJJVS U (41 (an empty event)

Il = set of discrete event segment over X

The state set is defined as follows:

where:
ta: S -+ &,oo

and (3, e) is a total state pair, where s is a sequential state and
e is elapsed time in state s.
The transition function consists of two pairs, namely:

S#: S -+ S is the internal transition function

and

&,: Q x X * S is the external transition function

The formal construction of the system’s transition func-
tion ii is given in (Zeigler 1976). DEVS is closed under cou-
pling. This property enables us to construct hierarchical DEVS
network specifications. A detailed formal treatment of DEVS
at the coupled system level is presented in (Zeigler I984a).

The formal model specification in multifacetted methodol-
ogy consists in specifying the system entity structure, attached
variable types (called descriptive variables), pruning and then
specifying a discrete event model for the components identified
by the pruned entity structure. Selection of input, output, and
state variables results in the model’s static structure. Defini-
tion of transition and output functions add the dynamic com-
ponents to the DEVS specification. A full scale demonstration
of this process is presented in (‘Zeigler 1984b).

Clearly, a formal set theoretical description of a large scale
system would be a tedious and impractical process. In fact,
this may well have been a re<ason why theory-based approaches
have been shunned by simulation practitioners, and a primary
motivation for the development of software implementing the
above formal modeling concepts. In what follows, we shall
briefly describe a simulation environment realizing the DEVS
specification and the system entity structure.

4. Implementing Theoretical Concepts

284

The Entity Structuring Program (ESP) was first devel-
oped by Zeigler, Belogus and Bolshoi (1980) and subsequently
modified to include graphic facilities. The system entity struc-
ture specification has been incorporated in the DEVS-Scheme
environment (to be discussed shortly) under the name ESP-
Scheme.

The program helps the modeller conceptualize and record
the decompositions underlying a model, or family of models,
before, during, and after development. To the extent that
ESP- Scheme is used before beginning model development, it
is a tool for assisting in top down model design. However,
when additions and changes are made as the development
proceeds, ESP serves as a recorder of progress. At the end
of the development phase, the record constitutes de facto
documentation of the system structure arrived at. Pruned
entity structures serve as a basis for the retrieval from a model
base of model components specified in DEVS-Scheme.

The DEVS formalism has been implemented in TI-
Scheme, a LISP-based programming environment. The shell,
called DEVS-Scheme, supports modular, hierarchical specifi-
cation of discrete event models (Zeigler 1987). Component
models, called atomic models are specified using Scheme’s se-
mantics that corresponds closely to the formal definition of
DEVS. The elements of DEVS formalism take the following
form in the shell: The input and output sets consist of pairs
(port, value). Thus, x = (p,v) signals the receipt of a value v
at an input port p. The functions take the following forms:

internal transition function (define (int s) . ..)
external transition function (define (ext s e x)...)

output function (define (out s) . ..)

advance function (define (ta s)...)

where U...” represent function body definitions expressed in
Scheme. The atomic models may be coupled together to
form a model at the coupled specification level by using the
composition tree concept introduced in Section 3. DEVS-
Scheme is still under development. Recently, new features for
testing model morphisms and model simplification mappings
have been incorporated in the shell (Kim 1988, Sevinc 1988).
We refer the reader to (Rozenblit et. al. 1988) and (Zeigler
1987) for a full description of DEVS-Scheme.

Other implementations of DEVS specification include the
work of Melman and Livny (1984) and Praehofer and Spalt
(1988). Livny has been developing tools for distributed pro-
cessing systems using DEVS as an underlying model descrip-
tion mechanism. His first realization of DEVS resulted in a
SIMSCRIPTHS-based software system called Distributed Sys-
tem Simulator (DISS). Recently, he has implemented DEVS
concepts in Modula-2. The simulator called DeNET has been
successfully applied in simulation of large scale distributed sys-
terns (Livny 1987)

Praehofer and Spalt have implemented DEVS in an object-
oriented environment INTERLISP/LOOPS as part of the
CAST project mentioned in Section 1. Their implementation
is based on the original concept of DEVS-Scheme.

5. Summary

We have summarized a methodological development in
simulation modeling that bases itself on systems theory con-
cepts. We have focused on multifacetted modeling. The work

System Specification

I

I t
Static Structure Dynamic Structure

Definition Definition

I
System Entity

-Yture
Entity SLxcturing

Tools
I

I
DEVS

F"rr;alism
DEVSkcheme

Modular, hierarchical
Object-Oriented

Simulation Environment

Figure 1. Basic Concepts and Tools in
Multifacetted Methodology

of others employing the theory-based concepts has been briefly
outlined and referenced. Figure 1 retraces the major concepts
of this paper. The system specification hierarchy is a basis for
the model description at different levels of abstraction. The
model development process requires that both model’s static
and dynamic structures be defined. We have presented tools for
deriving such specifications, namely, the system entity struc-
ture and the DEVS formalism. We have also described the
current efforts in implementing the tools in software environ-
ments.

We feel that the latest developments in implementing sys-
tems theory concepts will ultimately result in better simulation
management. This will be due to the abilities provided by the
state-of-the-art software to employ systematic methods for the
model development, automatic construction of models at the
coupled system level, reusability of atomic model components,
and automatic management of model bases.

References

Aytac, 2. K. and T. I. &en (1986) MAGEST: A Model
Based Advisor and Certifier for GEST Programs, in
Modelling and Simulation Methodology in the Artificial
Intelligence Era, (eds. Elzas, M. et. al.), North Holland,
Amsterdam, pp. 299-307

Fishwick, P. A., (1988a) The Role of Process Abstraction in
Simulation. IEEE Transactions on Systems, Man and
Cybernetics, 18(l), January.

Fishwick, P. A., (1988b) Automating the Transition from
Lumped Models to Base Models. hoc. of the

285

1988 Eastern Simulation Conference, Orlando, Florida,
April. pp. 57-(33.

Kim, 1‘. G., (1988) A. Knowledge-Based Environment for Hi-
erarchical Modelling and Simulation, ‘Doctoral Disser-
tation, University of Arizona, Tucson.

Klir, G. J., (1984) General Systems Framework for Inductive
Modelling, in: Simulation and Model-Based’ Method-
ologies: an Integrative View (eds. Oren, T.I. et. al.)
Springer-Verlag, New York, pp. 69-90

Livny, M. (1987) DeLab-A Simulation Laboratory, Proc.
of the 1987 Winter Simulation Conference, Atlanta,
December, pp. 486-494

Melman, M. and M. Livny (1984) The DISS Methodology
of Distributed System Simulation, Simulation Journal,
April, pp. 163-176

Pichler, F. (1984) Symbolic Manipulation of Systems Models,
in: Simulation and Model-Based Methodologies: an
Zntegrative View (eds. Oren, T.I. et. al.) Springer-
Verlag, New York, pp. 217-234.

Pichler, F. (1986) Model Components for Symbolic Processing
by Knowledge-Based Systems: The STIPS Framework,
in: Modelling and Simulation Methodology in the
Artificial Intelligence Era (eds. Elzas, M. et. al.),
North-Holland, Amsterdam pp. 133-142

Pichler, F. (1988) CAST-Computer Aided Sytems Theory: A
Framework for Interactive Method Banks, in: Cyber-
netics and Systems ‘88, (ed. Trapl, R.) Kluwer Aca-
demic Publishers, pp. 731- 736

Praehofer, H. and A. Spalt (1988) An Interactive Simulation
Environment Based on Systems Theory Concepts and
Object Oriented Programming”, in: Cybernetics and
Systems ‘88, (ed. Trap], R.) Kluwer Academic Publish-
ers.

&en, T. I., (1971) General Systems Theory Implementor.
Doctoral Dissertation, University of Arizona, Tucson.

Rozenblit, J. W. and Zeigler, B. P., (1988) Design and
Modelling Concepts, in: International Encyclopedia of
Robotics, (ed. Dorf, R.) John Wiley and Sons, New
York.

Rozenblit, J. W. and Zeigler, B. P., (1986) Entity Based Struc-
tures for Experimental Frame and Model Construction,
in: Modelling and Simulation in the Artificial ZntelU-
gence Era, (ed. M. S. Elzas, et. al.) North Holland,
Amsterdam, pp. 79-100.

Rozenblit, J. W. and Y. M. Huang (1987) Constraint-Driven
Generation of Model Structures. Proc. of the 1987
Winter Simulation Conference, Atlanta, December, pp.
604-611

Rozenblit, J. W., Kim, T. G. and B. P. Zeigler (1988)
Towards the Implementation of a Knowledge-Baaed
System Design and Simulation Environment. Proc.
of the 1988 Winter Simulation Conference, San Diego.
December.

Sevinc, S. (1988) .4utomatic Simplification of Simulation Mod-
els in a Hierarchical, Modular Simulation Environment,
Doct. Dissertation, University of Arizona, Tucson.

M'ymore, W. A., (I!JSO) A hfathematical Theory of Systems
Design. Technical Report, Urriversity of Arizona, Tnc-
son, Arizona.

Wymore, W. A.., (1’367) .4 Mathematical Theory of Syste.ms
Engineering-The Elements, John Wiley and Sons, New
York.

Wymore, W. A., (1976) Systems Engineering Methodology
for Inlerdisciplinary Teams, John Wiley and Sons, New
York.

Zeigler, B. P. (1976) Theory of Modelling and Simulation, John
Wiley and Sons, New York.

Zeigler, B. P., Belogus, D., Boshoi, A. (1980) ESP - An
Interactive Tool for System Structuring. Proc. of the
1980 E’uropean Meeting on Cybernetics and Research,
Hemisphere Press.

Zeigler, B. P. (1984a) Multifaceted Meddling and Discrete
Event Sjmulatjon, Academic Press, London.

Zeigler, B. P. (1984b) System-Theoretic Representation of
Simulation Models. IIE Transactions, March, pp. 19-34

Zeigler, B. P. (1987) Hierarchical, Modular Discrete Event
Modelling in an Object Oriented Environment. Sim-
ulation Journal, vol 49:5, pp. 219-230.

Jerzy W. Rozenblit is an assistant professor in the Electrical
and Computer Engineering Department at The University of
Arizona. He received his Ph.D. in Computer Science from
Wayne State University in Detroit, in 1985. His research
interests are in the areas of modelling and simulation, system
design, and artificial intelligence. He is a member of ACM,
IEEE Computer Society, and The Society for Computer
Simulation.

Jerzy W. Roxenblit
Dept. of Electrical and Computer Engineering
The University of Arizona
Tucson, Arizona 85721
(602) 621-6177

286

