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Abstract 

The paper reviews the impact of systems theory-based 
representation methods in the context of discrete event sim- 
ulation modeling. Tools for formal system specification and 
methods for model static and dynamic structure description 
are presented. Recent efforts in implementing the systems 
theory instrumented multifacetted methodology are also dis- 
cussed. 

1. Introduction 

In the past decade methodological research in the area 
of simulation and modeling has significantly changed and 
influenced the way in which we carry simulation studies today. 
The power of conventional simulation techniques has been 
extended in directions that enable us to structure data better, 
help in building hierarchical models, and assist us in designing 
simulation experiments. Two related trends have significantly 
contributed to this progress in the simulation field. One was 
the development of conceptual theories for modeling practice 
and for designing software tools for supporting such practice 
(Zeigler et. al. 1980). The other was the emergence of 
simulation languages based on theoretical frameworks (&en 
1971; Pegden 1982; Livny 1987; Zeigler 1987). Clearly, the 
latter trend demonstrates the functional and expressive power 
of theory-based modeling methods. 

Systems Theory is a scientific discipline whose primary 
concern is to provide problem solving methods and tools. 
Although Systems Theory has been a subject of intensive 
studies for over two decades and an abundant literature on 
the subject is available, its problems solving methods have 
been often ill-understood and ignored by engineers, system 
designers, and simulation practitioners. Pichler (1988) points 
out the major reasons for this problem and suggests that 
with the advent of powerful engineering workstations, systems 
theory will eventually find its way to applied sciences and 
engineering. 

There are notable exceptions to the skepticism about 
the applicability and usefulness of system-theoretic methods. 
They include work Iof Zeigler (1984a, 1987) whose multifacetted 
modeling we shall explore here in more detail. Given the space 
limitation, it is impossible to examine closely the work of others 
in this paper. However, to provide the reader with points of 
reference, we briefly describe research efforts bridging systems 
theory, system design, and simulation modeling. 

First attempts to unify..these disciplines date back to the 
early seventies and work of Oren (1971). He designed a general 
systems theory implementor language (GEST) that facilitated 
expressing both continuous and discrete simulation formalisms. 
A more advanced version named GEST81 and its high level 

development shell MAGEST (Aytac and &en 1986) provide a 
means for specifying hierarchically coupled models. 

Wymore’s work (1967, 1976, 1980) is primarily concerned 
with applying mathematical systems theory to systems engi- 
neering problems. The tricotyledon theory of system design 
(TSSD) has been applied to a number of engineering design 
problems. In TJSD, a designer specifies in mathematically rig- 
orous terms an I/O.specification of the designed system and 
a merit ordering over the set of I/O specifications. Similarly, 
a class of buildable systems and a merit ordering is defined 
with respect to available technology. A feasible design is se- 
lected from the systems that are buildable in the technology 
and satisfy the I/O specification. 

Klir has developed a general systems problem solver 
(GSPS) for inductive modeling (1984). The system is based 
on the hierarchy of systems descriptions called epistemological 
levels related to Zeigler’s taxonomy of system specification 
levels (1976). 

Fishwick (1988a, 198813) has categorized process abstrac- 
tion in simulation modeling and presented formalisms for valid 
methods of abstraction. Recently, he has developed proce- 
dures for a reverse process, i.e., refinement, used to automate 
the transition from abstract lumped models to base models. 

A new development in realizing systems concepts has 
been initiated by Pichler (1988). This new research, termed 
Computer Aided Systems Theory (CAST) and conducted at 
the University of Linz in Austria, is aimed at providing method 
banks for computer aided problem solving. CAST is derived 
from Pichler’s work on Systems Theory Instrumented Problem 
Solver (STIPS). STIPS has been realized in an object-oriented 
environment for finite state machines (Pichler 1986). 

To illustrate the power and viability of a theory-based 
approach, in this paper we shall present the basic concepts 
of a modeling framework termed multifacetted methodology 
(Zeigler 1984a). We then illustrate how the theoretically mo- 
tivated concepts have been realized in an advanced simulation 
and system design environment. The software environment is 
discussed in detail in a companion paper in this volume (Rozen- 
blit et.al. 1988). 

2. System Theoretic Concepts for Model Representa- 
tion 

In this section we present formal concepts that underlie 
the specification of simulation models. We provide a formal 
definition of a system, discuss the distinction between the 
system’s structure and behavior and present methods for the 
specification of model static and dynamic properties. 
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Hierarchy of System Specifications 

The term model is viewed here as a specification for a 
system. In general, the term system refers to a description 
(often mathematical) which captures some of the essential 
features concerning the system or problem being modelled. 
Since there are many characteristics of real systems, there 
are several concepts of the system and thus it is useful to 
organize the specifications into a coherent whole. In this 
way we arrive at a stratification of system specifications that 
starts with intuitive black box concepts at the lover levels and 
adds more and more constructs for the description of system’s 
internal structure as the levels increase. Klir’s epistemological 
classification of systems description of one such example (Klir 
1984). 

In this paper, we shall adopt a notion that a system is 
a collection of interacting component systems (Zeigler 198413). 
This recursive definition implies that we should have a means 
for expressing a decomposition process. In this process, a 
system can be represented by a collection of subsystems whose 
composition exhibits the same properties as the system subject 
to the decomposition. This implies that a system may be a 
component of a larger system. 

Zeigler provides a hierarchy of system specifications with 
morphism concepts that enable comparisons between systems 
specified at any level of abstraction. The hierarchy is defined 
as follows: 

1. 

2. 

3. 

4. 

5. 

System Specification IORO. This type of description is 
an Input/Output observation relation. It is a classical 
example of a black box. 

System Specification IOFO. For each input function of a 
given IORO there exists exactly one output function. This 
specification is called an l/O function observation. 

System Specification S (often referred to as an l/O system). 
In addition to input and output sets, a set of states and 
state-transformation mechanisms have to be defined in this 
specification. We shall shortly discuss this specification in 
more detail and show how it is used as a basis from which 
a model description can be derived. 

Structured System Specification. The specification at this 
level is the same as the one at level 3 except that each set 
and function is structured. 

System Specification NET (Coupled System). NET de- 
notes a network of system specifications consisting of a fam- 
ily of systems and a coupling mechanism. This specification 
is a basis for a hierarchical form of model construction. 

The above stratification of system specifications is inde- 
pendent of any particular modeling formalism. In other words, 
any formalism may be employed to specify a system at any 
level. A good review of major modeling formalisms (differen- 
tial equations, discrete time systems, and discrete event speci- 
fication) and their associated translation mappings into system 
specifications are given in (Zeigler 1984b). 

At each level in the above hierarchy there is a morphism 
that enables comparisons between systems specified at that 
level. Transitions between levels of system specifications and 
their associated morphisms are straightforward when we want 
to derive a specification assuming that one is given at a 
higher level (we ascertain behavior from the structure). The 

opposite transformation, i.e., recovering a structure from a 
given behavior is not possible unless certain requirements 
called justifying conditions are satisfied. Both types of 
transitions are well described in (Zeigler 1976, 1984a; Pichler 
1984). 

Formal System Definition 

We provide a formal system definition (System Specifica- 
tion S-Level 3) as a basis for describing the model’s structure 
and behavior. Subsequently, we present a modeling formalism 
called Discrete Event System Specification (DEVS) and show 
how it specifies an l/O system. 

A system is a structure: 

S =< T,X,Cl,Q,Y,c$X > 

where: 
T is the time base 
X is the input value set 
0 is the input segment set 
Q is the internal state set 
Y is the output set 
6:QxR-+Q is the state transition function 
X:Q-+Y is the output function 

The input segments of the system S have to be closed 
with respect to concatenation. In addition, 6 must have the 
semi-group property, i.e., for all W,U’ E R and for all q E Q 
the following equation must hold: 6(q,w .w’) = 6(6(q,w),w’) 

The input, state, output sets, and the output function 
constitute the static structure of the system. The time base, 
input segment set, and the state transition function are referred 
to as the system’s dynamic structure. In Section 3, we shah 
demonstrate how the formal concepts of the multifacetted 
methodology support the specification of both structures. 

In systems theory instrumented simulation, models are 
expressed in special formalisms depending on the problem at 
hand. Typical specifications include differential equations, fi- 
nite state machine, or discrete event. Each formal model de- 
scription specifies a system and selects a class of subsystems by 
placing constraints on the possible static and dynamic struc- 
tures it encompasses. A characterization of such constraints 
is given in (Zeigler 1984b). The model construction process 
involves specification of the static and the dynamic structure. 
We shall explain this process in the ensuing section. 

3. Model Specification in Multifacetted Methodology 
and Discrete Event Simulation 

The concepts of model development presented here are de- 
rived from mnltifacetted modeling methodology. Multifacetted 
methodology denotes a modeling approach which recognizes 
the existence of multiplicities of objectives and models in a 
simulation project. It provides formal representation schemes 
that support the modeller in organizing the model construction 
process, aggregating partial models, and in specifying simula- 
tion experiments (Zeigler 1964a; Rozenblit and Zeigler 1966, 
1988). 

System Entity Structure 

The key concept underlying structuring of models, their 
organization, and specification of simulation experiments (ex- 
perimental frames) is the system entity structure (Zeigler, 
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1984a). The system entity structure is based on a tree-like 
graph that encompasses the boundaries, decompositions anct 
taxonomic relationships that have been perceived for the sys- 
tem being modelled. .An entity signifies a conceptual part of the 
system which has been identified as a component in one or more 
decompositions. Each such decomposition is called an. aspect. 
Thus, entities and azipects are thought of as components and 
decompositions, respectively. In addition to decompositions, 
there are relations termed specializations. A specialization re- 
lation facilitates representation of variants for an entity. Called 
specialized entities, such variants inherit properties of an entity 
to which they are related by the specialization relation. 

Entities have attributes represented by the attached vari- 
able types. When a variable type V is attached to an entity 
E, this signifies that a variable 1.E may be used to describe 
a property of the entity E. Aspects can have coupling con- 
straints attached to them. Coupling constraints restrict the 
way in which components (represented by entities) identified 
in decompositions (represented by aspects) can be joined to- 
gether. 

In addition to coupling constraints, there are selection con- 
straints in the system entity structure. Selection constraints 
are associated with specializations of an entity. They restrict 
the way in which its subentities may replace it in the process 
of model construction (Rozenblit and Huang 1987). 

Given the system entity structure the modeller has a 
choice of a number of model alternatives. This is due to 
the multiplicity of aspects and specializations.. Therefore, 
we require that the modeller have procedures for generating 
model structures pertaining to the modeling objectives. Such 
structures should be selected from the system entity structure. 

In our previous work (Rozenblit and Huang 1987) we have 
developed procedures for generating structures underlying the 
coupled model specification. The process, called constraints- 
driven pruning, employs the production rule formalism to sup 
port automatic selection of entities from taxonomic relation- 
ships and synthesis of structures underlying simulation models. 

This approach to pruning consists in specifying the system 
entity structure for a modeling problem. Then, a knowledge 
base that contains rules for selection and configuration of the 
entities is constructed. The modeller invokes an inference en- 
gine which, thr0ug.h a series of queries based on the constraint 
rules, allows him/her to consult for an appropriate structure 
for the modeling problem at hand. The result is a recommen- 
dation for a model composition tree (Zeigler 1984s) which is a 
basis for the hierarchical model development. The model com- 
position tree is a -tree whose leaf nodes are system specifica- 
tions. These are the atomic components which wiil be coupled 
in a hierarchical manner. The interior nodes n have the follow- 
ing specification attached to them: a system specification S,, a 
coupling scheme C,, and a morphism H,,. The coupling scheme 
C, is used to interface the system specifications assigned to the 
children of the interior node. H, establishes a correspondence 
between S’, and the resultant of the coupling process using C,. 
The leaf nodes are assigned only system specifications which 
are atomic and are not subject to decomposition. 

DEVS Formalism 

The modeling formalism used to specify a system in the 
multifacetted methodology is Discrete Even System Specifica- 

tion (DEVS) (Zeigler 1976, 1984a, 1984b). DEVS provides 
a formal representation of discrete event systems. Formally, 
DEVS is a structure: 

M ==-< x,5’. Y,6, .i,ta > 

where: 
X is the external event set 
S is the sequential state set 
Y is the output set 
6 is the transition function 
X is the output function 
ta is the time advance function 

DEVS specifies an I/O system: 

s =< T,X,f&Q,Y,bX > 

where: 

T = Reals 

X = XDJJVS U (41 (an empty event) 

Il = set of discrete event segment over X 

The state set is defined as follows: 

where: 
ta: S -+ &,oo 

and (3, e) is a total state pair, where s is a sequential state and 
e is elapsed time in state s. 
The transition function consists of two pairs, namely: 

S#: S -+ S is the internal transition function 

and 

&,: Q x X * S is the external transition function 

The formal construction of the system’s transition func- 
tion ii is given in (Zeigler 1976). DEVS is closed under cou- 
pling. This property enables us to construct hierarchical DEVS 
network specifications. A detailed formal treatment of DEVS 
at the coupled system level is presented in (Zeigler I984a). 

The formal model specification in multifacetted methodol- 
ogy consists in specifying the system entity structure, attached 
variable types (called descriptive variables), pruning and then 
specifying a discrete event model for the components identified 
by the pruned entity structure. Selection of input, output, and 
state variables results in the model’s static structure. Defini- 
tion of transition and output functions add the dynamic com- 
ponents to the DEVS specification. A full scale demonstration 
of this process is presented in (‘Zeigler 1984b). 

Clearly, a formal set theoretical description of a large scale 
system would be a tedious and impractical process. In fact, 
this may well have been a re<ason why theory-based approaches 
have been shunned by simulation practitioners, and a primary 
motivation for the development of software implementing the 
above formal modeling concepts. In what follows, we shall 
briefly describe a simulation environment realizing the DEVS 
specification and the system entity structure. 

4. Implementing Theoretical Concepts 
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The Entity Structuring Program (ESP) was first devel- 
oped by Zeigler, Belogus and Bolshoi (1980) and subsequently 
modified to include graphic facilities. The system entity struc- 
ture specification has been incorporated in the DEVS-Scheme 
environment (to be discussed shortly) under the name ESP- 
Scheme. 

The program helps the modeller conceptualize and record 
the decompositions underlying a model, or family of models, 
before, during, and after development. To the extent that 
ESP- Scheme is used before beginning model development, it 
is a tool for assisting in top down model design. However, 
when additions and changes are made as the development 
proceeds, ESP serves as a recorder of progress. At the end 
of the development phase, the record constitutes de facto 
documentation of the system structure arrived at. Pruned 
entity structures serve as a basis for the retrieval from a model 
base of model components specified in DEVS-Scheme. 

The DEVS formalism has been implemented in TI- 
Scheme, a LISP-based programming environment. The shell, 
called DEVS-Scheme, supports modular, hierarchical specifi- 
cation of discrete event models (Zeigler 1987). Component 
models, called atomic models are specified using Scheme’s se- 
mantics that corresponds closely to the formal definition of 
DEVS. The elements of DEVS formalism take the following 
form in the shell: The input and output sets consist of pairs 
(port, value). Thus, x = (p,v) signals the receipt of a value v 
at an input port p. The functions take the following forms: 

internal transition function (define (int s) . ..) 
external transition function (define (ext s e x)...) 

output function (define (out s) . ..) 

advance function (define (ta s)...) 

where U...” represent function body definitions expressed in 
Scheme. The atomic models may be coupled together to 
form a model at the coupled specification level by using the 
composition tree concept introduced in Section 3. DEVS- 
Scheme is still under development. Recently, new features for 
testing model morphisms and model simplification mappings 
have been incorporated in the shell (Kim 1988, Sevinc 1988). 
We refer the reader to (Rozenblit et. al. 1988) and (Zeigler 
1987) for a full description of DEVS-Scheme. 

Other implementations of DEVS specification include the 
work of Melman and Livny (1984) and Praehofer and Spalt 
(1988). Livny has been developing tools for distributed pro- 
cessing systems using DEVS as an underlying model descrip- 
tion mechanism. His first realization of DEVS resulted in a 
SIMSCRIPTHS-based software system called Distributed Sys- 
tem Simulator (DISS). Recently, he has implemented DEVS 
concepts in Modula-2. The simulator called DeNET has been 
successfully applied in simulation of large scale distributed sys- 
terns (Livny 1987) 

Praehofer and Spalt have implemented DEVS in an object- 
oriented environment INTERLISP/LOOPS as part of the 
CAST project mentioned in Section 1. Their implementation 
is based on the original concept of DEVS-Scheme. 

5. Summary 

We have summarized a methodological development in 
simulation modeling that bases itself on systems theory con- 
cepts. We have focused on multifacetted modeling. The work 
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Figure 1. Basic Concepts and Tools in 
Multifacetted Methodology 

of others employing the theory-based concepts has been briefly 
outlined and referenced. Figure 1 retraces the major concepts 
of this paper. The system specification hierarchy is a basis for 
the model description at different levels of abstraction. The 
model development process requires that both model’s static 
and dynamic structures be defined. We have presented tools for 
deriving such specifications, namely, the system entity struc- 
ture and the DEVS formalism. We have also described the 
current efforts in implementing the tools in software environ- 
ments. 

We feel that the latest developments in implementing sys- 
tems theory concepts will ultimately result in better simulation 
management. This will be due to the abilities provided by the 
state-of-the-art software to employ systematic methods for the 
model development, automatic construction of models at the 
coupled system level, reusability of atomic model components, 
and automatic management of model bases. 
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