University of AriZona Document Delivery

Journal Title: International
Encyclopedia of Robotics Applications
and Automation

Article Author: Rozenblit, JW. and
Zeigler, B.P.

Article Title: Design and Modeling
Concepts

Volume:

Issue:

- Month/Year: 1988

Pages: 308-322 (scan notes and titie/copyright
pages for chapter requests)

Imprint: New YorkWiley

Lftefn

Paged by { ‘iZ (Initials)

Reason Not Filled (check one):

0 NOS O LACK VOLASSUE

0 PAGES MISSING FROM VOLUME
3 NFAC (GIVE REASON):

1% awm

Trans. #: 951840
0

Call #: TJ210.4 .157 1988
Location: Science-Engineering Library

item #:

CUSTOMER INFORMATION:

Liana Napalkova
liananapalkova @email.arizona.edu

STATUS: Faculty
DEPT: Electrical/Computer Engr

University of Arizona Library

Document Delivery

1510 E. University Blvd.
Tucson, AZ 85721

(520) 621-6438

(520) 621-4619 (fax)
AskiLL @u.library.arizona.edu

308 DESIGN AND MODELING CONCEPTS

DESIGN AND MODELING CONCEPTS

Jerzy W. RozENBLIT
BERNARD P. ZEIGLER
The University of Arizona
Tucson, Arizona

MULTI-OBJECTIVE SYSTEM MODELING

The ability to increase the decision-making capabilities in dif-
ferent environments is related to the scope of our possible
intervention into the operation of the systems being modeled.
Zeigler (1) classifies the levels of intervention into three broad
categories: management, control, and design. Management
type of intervention connotes determining policies whose inter-
pretation and execution is then delegated to subordinate lev-
els. Control intervention is an action deterministically related
to policy. In contrast, design represents the greatest scope of
intervention in that the designer either creates the “real sys-
tem” or augments, modifies, or replaces a part of existing real-
ity (see also ASSEMBLY, ROBOTIC, DESIGN FOR).

The effects of interventions are uncertain due to the exis-
tence of uncontrollable parts in the system and it becomes
necessary to encode knowledge about such parts in models of
the system. Models represent abstractions of the reality whose
primary function is to capture the structural and behavioral
relationships in the system. These relationships would be diffi-
cult to observe were the models not available.

Thus, the modeling methodology should be an inherent com-
ponent in computer-aided decision systems in management,
control, and design (1-4). The tools and activities prescribed
by this methodology enable the decision makers to evaluate
(based on the analysis of the models’ simulation) the effects
of interventions before they are actually carried out. The
“best,” in terms of performance measures related to the system
under evaluation, intervention alternatives are chosen and
finally deployed in the real system. The choice of performance
measures reflects the objective the decision maker (be it an
economist, a designer of a power plant, or a technician super-
vising a chemical process) attempts to achieve. The nature of
the objectives orients and drives the modeling and simulation
processes,

It is easy to conceive that any real system could be subject
to a multiplicity of objectives in management, control, or de-
sign context. Consider an example to illustrate such a situa-
tion. Assume that a banking conglomerate is in the process
of computerizing operations in several of its branches. Apart
from having a computer network designed, the bank is estab-
lishing a Computing Services Department to handle and sup-
port the new system. Outlined below are some of the aspects
relevant to the operation of the new computer system and
department.

Objective

1. Cost requirements (required model of): financing schemes
and policies, investment capital, long-term maintenance
costs, new personnel hiring and training, etc.

2, Financial operations (required model of): network opera-
tion, likely speed-ups in transaction processing time and
decreases in transaction processing costs, growth of ser-

vice volume, interactions with other computerized insti-
tutions.

3. Customer satisfaction (required model of): customer
tastes (eg, popularity of dial-up access, automated teller
machines), customer interface (waiting, accessibility,
ease of completing a transaction, etc).

4. Data security: communication protocols, communication
media (phone lines, hardware), security schemes.

5. Personnel requirements: system operation, human—ma-
chine interface.

6. Quality control: network operation, communication
schemes, inter- and intrabranch interfaces.

It is rather unlikely that a comprehensive model of a com-
puterized banking network, reflecting all of the above objec-
tives, could be constructed. Even if it were possible to build
such a model, its validation, and subsequently, verification
and simulation would present a paramount degree of complex-
ity. Instead, envision a collection of partial models, each re-
flecting a specific objective. This implies that the objectives
orient the model building process by helping to demarcate
the system boundaries and determine the model components
of relevance (1,5). The fundamental formal concept supporting
these activities is the system entity structure. The entity struc-
ture enables the modeler to encompass the boundaries and
decompositions conceived for the system (1).

The role of the objectives is equally important in the process
of specifying the experimentation aspects for the models that
have been perceived for the real system. The key concept in
this process is that of experimental frame ie, the specification
of circumstances under which a model (or the real system) is
to be observed and experimented with (1,6,7). The experimen-
tal frame definition reflects the objectives of modeling by sub-
jecting the model to input stimuli (which in fact represent
potential interventions), observing reactions of the model by
collecting output data, and controlling the experimentation
by placing relevant constraints on values of the designated
model state variables. The data collected from such experi-
ments serve as a means of evaluating the effects of intended
interventions.

Generation of meaningful experimental conditions is not
a trivial task and requires that the modeler understand the
nature of the objectives and their interactions. A frame, simi-
larly to a model, may reflect a single or a complex set of goals.
Recall our example of the banking network and the following
objectives: customer satisfaction, financial operation, and data
security. When a comprehensive model (or partial models re-
flecting each aspect) is devioped, a relevant set of frames must
be available in order to perform the experiment. Notice, how-
ever, that the above three objectives may conflict with one
another. For example, improving customer satisfaction by pro-
viding dial-up access by public telephone lines might decrease
the level of data security. On the other hand, purchase of an
obsolete computer system may decrease customer satisfaction
through the lack of convenient access and not provide the
adequate level of security, even though the system might be
suited to handle all of the bank’s operations. Thus, meaningful
trade-off experimental frames have to be specified, and the

models must be evaluated within the context of trade-off order-
ings over the set of objectives.

This article discusses and recognizes the multiplicity of ob-
jectives, models, and experimental frames as a sine qua non
condition of the modern, advanced modeling methodologies.
The focus is specifically on the issues concerning the system
design, understood here as the use of modeling techniques to
procure and evaluate a model of the system being designed.
Inthe ensuing section, the synergism between simulation mod-
eling and system design is underscored.

System Design and Modeling, Synergies

The design aspect in decision-making offers the widest scope
of intervention in that the designer develops a model from
which a new system will be created. As opposed to system
analysis, where the model is derived from an existing, real
system, in system design the model comes first as a set of
“blueprints” from which the system will be built, implemented,
or deployed (8,9). The blueprints might take several forms;
they could be simple verbal informal descriptions, a set of
equations, or a complex computer program. The goal of such
defined system design is to study models of designs before
they are actually implemented and physically realized.

At this point, the fundamental question arises: Why are
modeling and simulation methodologies needed to support sys-
tem design? Before this question is answered, the basic ele-
ments in the dynamics of the design process must be summa-
rized (9-13):

1. Designs are created by individuals who use the basic
problem-solving techniques, namely, problem definition,
proposal of a solution, and test of the solution against
the problem definition.

2. The problems being addressed are often of a large scale.
Thus, there should be methods for decomposing the prob-
lems into subproblems easily comprehensible by the de-
signer. Partial solutions could then be generated and
integrated using proper aggregation mechanisms.

3. Solutions (designs) are built based on the designer’s per-
ception of reality; they result from the transformation
of the designer’s ideas and knowledge into a blueprint
of the system to be created.

4. The attributes of design should be described in compara-
tive measures and applied by using trade-off techniques.

5. The tools, techniques, and methods are currently mostly
manual methodologies; automated tools for system de-
sign are only now evolving (14,15).

.Recall that the primary goal is to locate the system design
Wwithin the modeling framework. An attempt is made to provide
2 systematic methodology for a design process supported by
adequate formal structures and leading toward future com-
Puterization. As depicted in Figure 1, system design is brought
into the multifaceted framework with design process being
Supported by the modeling and simulation techniques in the
manner described below.

Modeling is a creative act of individuals using the basic
px"’blem-solving techniques, building conceptual models based

‘DESIGN AND MODELING CONCEPTS

(Objectives)

309

» Modeling

G
Design

model
base

Simulation €

T

\ >\\\k)
Base of

experimental
frames

Evaluation

Figure 1. Design in the multifaceted modeling context.

on the knowledge and perception of reality, requirements, and
objectives of the modeling project. The models are design blue-
prints. This constitutes direct relation to points 1 and 3.

By providing mechanisms for model decomposition, hierar-
chical specification, and aggregation of partial models (1), the
multifaceted modeling approach fully responds to the needs
of system design signaled in point 2. Adding the previously
mentioned system entity structure, one is now equipped with
a facility to generate families of models (of design) in various
decomposition aspects.

The experimental frame concept responds to the needs of
point 4. This unique structure provides a spectrum of perfor-
mance evaluation methods, including evaluation of multilevel,
multicomponent, hierarchically specified models (13).

Finally, the underlying purpose of the multifacted modeling
is that it provides structures implementable in computerized
support environments. This is where the possibility for a re-
sponse to the drastically growing needs for compter-aided de-
sign tools is envisioned. The current tools lack an undetlying
theoretical framework that permits a uniform treatment of
system design by providing concepts such as structure and
behavior, decomposition, and hierarchy of specification (1,15).
The existing architectures are usually conglomerates of vari-
ous, often incompatible, tools whose coordination poses serious
problems and often defies their purpose (4,14,16,17). The rep-
resentation schemes offered by the multifacted framework are
well structured and have formalized operations that can ex-
ploit such structures. This significantly reduces the effort of
designing expert computer-based environments.

In the following sections, a conceptual framework for model-
based design is set up. The proposed methodology utilizes the
formal modeling concepts. Several major steps underlie the
methodology:

» The system entity structure is a basic means of organizing
a family of possible configurations of the system being
designed.

310 DESIGN AND MODELING CONCEPTS

+ The objectives and requirements of the design project in-
duce appropriate generic experimental frames.

« The design entity structure is pruned with respect to the
generic frames. This results in a family of design configu-
rations that conforms to the design objectives.

+ The pruned substructures serve as skeletons for generat-
ing rules for synthesis of design models.

* Resulting models are evaluated in respective experimen-
tal frames and the best design models are chosen on the
basis of such evaluations.

FORMAL FRAMEWORK FOR MODEL-BASED
SYSTEM DESIGN

This section provides the necessary formal background for the
multifaceted system design introduced earlier.

The System Entity Structure

To represent a family of design configurations appropriately,
a structure is needed that embodies knowledge about the fol-
lowing relationships: decomposition, taxonomy, and coupling.
The decomposition scheme allows a representation in which
an object (component of a system being designed) is decom-
posed into components. The structure should be able to operate
on and communicate about the decomposition scheme.

Taxonomy is a representation for the kinds of variants that
are possible for an object, ie, how they can be categorized
and subclassified.

The third kind of knowledge to represent is that of coupling
constraints on the possible ways in which components identi-
fied in decompositions can be coupled together.

A formal object that embodies these three basic relation-
ships is called the system entity structure. The system entity
structure is based on a treelike graph encompassing the sys-
tem boundaries and decompositions that have been conceived
for the system. An entity signifies a conceptual part of the
system that has been identified as a component in one or more
decompositions. Each such decomposition is called an aspect.
Thus, entities and aspects should be thought of as components
and decompositions, respectively. The system entity structure
organizes possibilities for a variety of system decompositions
and model constructions.

Both entities and aspects can have attributes represented
by the so-called attached variables types. When a variable
type V is attached to an item occurrence I, this signifies that
a variable 1.V may be used to describe the item occurrence I.
Therefore, whereas an unqualified variable type such as
LENGTH may have multiple occurrences in the entity struc-
ture, a qualified variable, eg, QUEUE1, LENGTH belongs to
one and only one item occurrence, QUEUEL.

The system entity structure satisfies the following axioms
(18,19):

I. Uniformity: any two nodes that have the same labels,
have identical variable types, and isomorphic substruc-
tures.

2. Strict hierarchy: no label appears more than once down
any path of the tree.

3. Alternating mode: each node has a mode that is either
“entity” or “aspect” (decomposition or specialization); the
mode of a node and the modes of its successors are always
opposites. The mode of the root is entity.

4. Valid brothers: no two brothers have the same label.

5. Attached variables: no two variables attached to the
same item have the same type.

The entity/aspect distinction can be interpreted as follows:
an entity represents an object of the system being designed,
which either can be independently identified or is postulated
as a component in some decomposition of the system. An aspect
represents one decomposition, out of many possible, of an en-
tity. The entities of an aspect represent disjoint components
of a decomposition induced by the aspect. The aspects of an
entity do not necessarily represent disjoint decompositions.

For a more detailed and formal treatment of the entity
structure concept, consult Ref. 1. How the discussed knowledge
representation scheme is realized by the concept is discussed
below.

An entity may have several specializations. Each specializa-
tion may in turn have several entities. The original entity is
called a general type relative to the entities belonging to a
specialization, which are called special types. Since each such
entity may have several specilizations, a hierarchical structure
results which is called a taxonomy (1,20,21).

The alteration property is a salient feature which requires
that entities and specializations alternate along any path from
the root to leaves. The same property holds for entities and
aspects. Specializations have independent existence, just as
entities do. A specialization may occur in more than one loca-
tion. Whenever it occurs, it carries with it all its attributes
and substructures. Of course, it may not be meaningful to
attach a particular specialization to a particular entity.

Hierarchical decomposition is in many ways analogous to
the specialization hierarchy just discussed. The alternation
property now requires alternation of aspects and entities. An
aspect is a mode of decomposition for an entity just as a special-
ization is mode of classification for it. There may be several
ways of decomposing an object, just as there may be several
ways of classifying it. Formally, aspects and specializations
are quite alike in their behavior. They each alternate with
entities but cannot be hung from each other. A special type
of decomposition called a multiple decomposition facilitates
flexible representation of multiple entities whose number is
in a system may vary. (Throughout the illustrations, the multi-
ple decomposition aspect is denoted by triple vertical bars and
specializations by double vertical bars.)

Specialization is a concept distinct from that of decomposi-
tion. However, there is a way of mapping a specialization hier-
archy into an equivalent decomposition aspect which inti-
mately involves the multiple decomposition concept. The
transformation, illustrated in Figure 2, is simple: if entities
Al and A2 are special types of entity A, then the multiple
component As is decomposable into the multiple components
Als and A2s.

To express the coupling constraints, the following procedure
is employed: apply the mapping to remove the specializations
to obtain an entity structure containing only entities and as-

B. Specialization

A

As

B. Decomposition

Als A2s

Figure 2. Removing specialization using the decomposition aspect.

pects. Now imagine that models are synthesized by working
down the entity structure, selecting a single aspect for each
entity and zero or more entities for each aspect. Such a process
is called pruning of the entity structure (see Entity Structure
and Experimental Frame-based Design Model Development).
A pruning procedure is also defined as one that operates di-
rectly on entity structures with specializations. The coupling
constraints must then be associated with aspects, since they
represent the decompositions chosen when pruning. Moreover,
a constraint must be associated with an aspect that contains
all the entities involved in that constraint. What is more, this
aspect should be minimal in the sense that there be no other
aspect that lies below it in the entity structure which also
éncompasses all the entities involved in the constraint.

The following example illustrates how the system entity
Sthture can be employed as a representation scheme for a
family of design possibilities.

sume that an aerospace agency is planning to launch a

DESIGN AND MODELING CONCEPTS 311

fully automated space station. In the first stages of develop-
ment, the entity structures representing various configura-
tions for the stations are proposed. One of the possible design
entity structures is depicted in Figure 3.

For the sake of brevity, only three aspects, the automation,
control, and communications aspects, are presented in the il-
lustration. First, the automation aspect: assume that one of
the design objectives is that the station be capable of perform-
ing a number of different tasks using a coordinated group of
robots (subsequently called robot organization). The tasks, eg,
station keeping, maintenance, launching satellites, refueling
other space ships, may be performed at different sites called
workstations,

The organization, as shown in Figure 3, may employ various
types of robots, The two specialized types present in the struc-
ture are termed executive and functional robots. It is assumed
that an executive robot has managerial skills, (ie, it can coordi-
nate, hire, and fire robots in the task accomplishment process.
A functional robot can be coordinated by an executive one
and perform tagks for which it has been designed and pro-
grammed,

The robots, viewed from the standpoint of their organiza-
tional structure, are specialized into adaptive and nonadaptive
organizationg, The adaptive architecture is further specialized
into a hiel'al'chical tree-based architecture and a nonhierarchi-
cal distributeq adaptive organization. In the tree-based archi-
tecture, the rohots are recruited from the availability pool and
returned to it 5ccording to the adaptive reconfiguration strat-
egy. The aby, scheme, termed “hire/fire,” has been proposed
b-y Zeigler and Reynolds (22,23), who are investigating adap-
tive computg,. architectures.

€ Nonhjerarchical organization can be visualized as a
parallel-serjy) type of organization whose adaptation scheme
may be. baseq on the schemes similar to that of a CPM method.
Assuming that 5 task can be represented by an activity net-

Space station

L

T T 1
_Automation aspect Communication aspect Control aspect
Warkstations Servi [” ae P r I l I
ce Receivers Transmitters Antenn roe, , . i
—;ask arrival organization Tazisﬂrs_ architecture Software Monitors Interfaces
—Task departyre Task gglvarll
parture
Component Organizati n]s,I ialization Comporn* | H i bipati
decomposition & onspec dec:omnoes”l{i Architecture specialization
| Adaptive on l 1
: —#.Components
Robots Nonadaptive —#.Tasks Nonadaptive Adaptive distributed von Neuman
| Adaptive organization distributed —#.Components
Robots’ decom position specialization S5y -—-#.Tasksu
S
Functiona] . . l l
Executive Hierarchical ~ Nonhierarchical Coordinator . . ; ;
—H#Robots —# Subordinate —Degree _,#_s‘;bordmatep,%e Functional H|_erar;:.h|cat Nonhierarchical
robots —Balance factors Ssorg (h‘g?e;; ;19) degree
~Depth —Balance factors

Figure 3. Design entity structure for the space station €xam,

type.

®. <. denotes an attached variable

312 DESIGN AND MODELING CONCEPTS

work, the adaptation consists in shifting the robots from the
least to the most critical activities.

In the control aspect, the processors, software, and real-
time monitors are the basic components of the station. The
processors, like the robots, may have the following architecture
specialization types: classic von Neuman, distributed nona-
daptive, and an adaptive hire/fire organization. The adaptive
architecture requires that functional processors (equivalent
in their role to functional robots) and coordinators (equivalent
to executive robots) be present.

The Experimental Frame Definition

The system entity concept facilitates the representation of de-
sign structures. A means for expressing the dynamics of the
design models is also needed. Since the design framework is
objectives-driven, the experimental frame concept is used as
the other underlying object in system design. The role of ex-
perimental frames will be twofold. First, the frame will repre-
sent the behavioral aspects of the design objectives and facili-
tate retrieval of entity structures that conform to those
objectives. Secondly, the experimental frame will serve as a
means of evaluating the design models with respect to given
performance measures.

The conceptual basis for a methodology of model construc-
tion in which the objectives of modeling play the key and for-
mally recognized role (therefore called objectives-driven meth-
odology) was laid down by Zeigler (1).

The basic process in this methodology is that of defining
an experimental frame, ie, a set of circumstances under which
a model or real system is to be observed and experimented
with. This process comprises the following steps. The purposes
(objectives) for which the simulation study is undertaken lead
to asking specific questions about the system to be simulated.
This in turn requires that appropriate variables be defined
so that a modeler can answer these questions. Ultimately,
such a choice of variables is reflected in experimental frames
that also express constraints on the trajectories of the chosen
variables. The constraints on observations and control of an
experiment should be in agreement with the modeling objec-
tives. A choice of relevant variables constitutes the first impor-
tant stage of experimental frame specification. The next step
is to categorize the variables into input, output, and run control
and place constraints on the time segments of these variables.
Formally, the experimental frame specifies the following seven
tuple:

EF = <T)I’O)C;WI1WC7SU’WSU>
where

T is a time base

I is the set of input variables

O is the set of output variables

C is the set of run control variables
Wi is the set of admissible input segments, ie, a subset of all
time segments over the cross product of the input variable
ranges
is the set of run control segments, ie, a subset of all time
segments over the cross product of the control variable
range.

SU is a set of summary variables
Wsuy = {s:s:] X 0 —> SU.range} is the set of summary mappings

We

The 1/O data space defined by the frame is the set of all pairs
of /O segments:

D = {(w,r): we (T,X), re (T,Y) and dom(w) = (r)}

where X and Y are input and output value sets, respectively.

Since experimental frames should have a meaningful inter-
pretation for both the model and the real system, a concept
of restricting the initial state for the model must be provided.
The run control variables serve this purpose. They initialize
the experiments and set up conditions for their continuation
and termination. The set of initial values for the run control
variables is called INITIAL. The subset of the control space
defined by the termination conditions is called TERMINAL.
The set of run control segments is then defined as (for a de-
tailed formal treatment of the experimental frame concept,
see Ref. 1):

We = Imm:<t;t>— 2
and m(t;)e INITIAL, m(t)e CONTINUATION for te{(t;,t)}

where Z = cross product of the ranges of individual control

variables, and t; and t; are the beginning and end of the obser-
vation interval, respectively.

CHARACTERIZATION OF THE MULTILEVEL, MULTIPHASE
SYSTEM DESIGN

System design concepts are found in many disciplines. The
paradigms of each discipline underlie the methods for design
representation and methodology. In systems theory, the domi-
nant framework is the mathematical representation. In sys-
tems methodology, the methods are adopted from operations
modeling; in philosophy, the models of thinking play an impor-
tant role. A wide spectrum of studies on the subject has been
documented in the literature (8,9,11,12,24-27).

Common Traits in System Design Methodologies

Reviewing most of the conventional design methodologies
leads to the following scheme of reasoning (8,9,12,24,27):

. State the problem.

. Identify goals and objectives.

. Generate alternative solutions.
. Develop a model.

. Evaluate the alternatives.

. Implement the results.

DV W -

The methods to address each of the above aspects of design
depend on the discipline and often vary in the degree that
they are found in most of the approaches. The most important
traits are

1. Objectives-driven nature of design. Everything in the de-
signed system is considered and evaluated in relation
to the purposes of the project.

2. Hierarchical nature of design. Structures of systems be-
ing designed are represented in multilevel hierarchies
that express decompositions of the system into subsys-
tems (28).

3. Design as decision making. Design is concerned with
actions to be taken in the future. Thus, incorrect deci-
sions in the early stages of design may impede all subse-
quent actions.

4. Iterative nature of design. It is widely recognized that
the design process should be iterative in that the de-
signer should be able to return to earlier phases of design
from any stage of the process. Analogies are often made
here with cybernetics and control theory where iteration
is continued until a desired equilibrium point is reached
(12,28).

5. Optimization in design. Design seeks optimization of the
whole system with respect to its objectives. Careful con-
sideration must be given if attempts are made to opti-
mize subsystems separately. Appropriate coordination
methods must then be used to attain the overall objective
(28). .

Orthogonal System Design

Inthe context of this article the term system design will denote
the use of modeling and simulation techniques to build and
evaluate models of the system being designed.

The design process is considered a series of successive re-
finements comprising two types of activities. The first type
concerns the specification of design levels in a hierarchical
manner. The design levels are successive refinements of the
decomposition of the system under consideration. The first,
and thus the most abstract level, is defined by the behavioral
description of the system. Subsequently, the next levels are
defined by decomposing the system into subsystems (modules,
components) and applying decompositions to such subsystems
until the resulting components are not further decomposable.
The atomic system components are represented at the lowest
level of the design hierarchy. At each level, the specialization
of components into different categories is allowed for. This
facilitates the representation of design alternatives.

The second type of design activity is concerned with “hori-
zontal” actions associated with design levels. Such actions in-
c_lude requirements specification, system functional descrip-
tl.On, development of design models, experimentation by
Simulation, evaluation of results, and choice of the best design
solution,

The design should proceed along both axes of the above

racterization. The designer must be able to structure the
des‘gn& explore alternative structures, and derive complete
Specifications and models at any level. Transitions between
design levels must be possible and easy to perform.

Such an orthogonal specification of the design process is
?ﬂ:ex'x called a design matrix. The design process is represented
In Figure 4. The space defined by the cross product of phases
and levels is in various methodologies filled with different
Iethods, techniques, and tools. However, such methods and
tools are often incompatible and there are no underlying struc-
mrFS Integrating the design steps at various levels and phases.

» of course, motivates and justifies efforts to solve that
Problem by applying structures such as the system entity for-
and experimental frame.

DESIGN AND MODELING CONCEPTS 313

Phases
lterative application
of techniques and
methods
Structural
levels
Target system

Figure 4. Orthogonal system design.

To illustrate how the levels of design can be defined, con-
sider the class of computer system designs (16,17,29).

It is common view in the literature (14,16) that the design
levels for computer system design are based on the following
scheme:

1. Behavioral level: general description of system behavior,
purpose, and attributes.

2. Functional system architecture level: functional system
characteristics, partitioning of the system into hardware/
software functional specifications.

3. Hardware/software architecture level: representation of
the system in terms of the main building blocks, (eg,
processors, memory, peripherals, etc.)

4. Module level: detailed description of the architecture-
level building blocks.

5. Register-transfer level: the data paths, control sequences,
and timing diagrams that implement the modules.

6. Logic level: specification of the system in terms of the
detailed interconnection of logic components.

7. Circuit level: representation by physical circuits.

The phases for this type of design are the horizontal activi-
ties that have been specified above.

Although an attempt to refine the definition of design fur-
ther is not made, nor a description of all its phases, how the
multifaceted modeling with its formal objects can unify the
design activities and support the construction of environments
for expert system design is shown.

ENTITY STRUCTURE AND EXPERIMENTAL FRAME-BASED
DESIGN MODEL DEVELOPMENT

This section presents a framework that operationalizes the
system entity structure and the experimental frame concept
into a systematic design framework. First, the choice of the
system entity structure as the underlying object in our design
methodology is justified.

Recall that the entity structure represents the following
relations:

314 DESIGN AND MODELING CONCEPTS

Decomposition hierarchy of the system being designed. This
enables the direct representation of the design levels
as discussed earlier.

Taxonomy. This relationship (captured by the specialization
aspects) facilitates the classification of design compo-
nents and constitutes a means of expressing various de-
sign alternatives.

Coupling caonstraints on the possible ways in which compo-
nents identified in decompositions/specializations can be
coupled. This enables the use of the system entity struc-
ture as a basis for the hierarchical design model con-
struction.

Again, it is emphasized that the entity structure is the
basic means for organizing the family of possible design
configurations (structures, architectures). It also serves as a
skeleton for the hierarchical design model construction.

It is equally important to understand the role of the experi-
mental frame concept in the design process. The role of frames
is twofold. First, an experimental frame is a means of repre-
senting the performance measures associated with the behav-
ioral aspects of design objectives. Subsequently, the frame is
used in a simulation experiment performed to evaluate the
merits of a design model. There is, however, a second impor-
tant role of the frame concept. A generic form of an experimen-
tal frame is employed in the design framework to delimit the
design model space given by the system entity structure.

Generic Experimental Frames

A generic experimental frame type represents a general class
from which experimental frame specifications can be derived.
A generic frame is defined by unqualified generic variable
types that correspond to the objectives for which the design
study is undertaken.

Design objectives are associated with performance indexes
that allow for a final judgment of the design models. A generic
frame GEF is defined as the following structure induced by
the performance index pi:

GEFy; = {IG,0G,W¢1,SU,Wsy}

where GEF,,; denotes a generic experimental frame for
performance index pi and

IG is the set of generic input variable types for pi
OG is the set of generic output variable types for pi
Wig is the set of generic input segment types for pi
SU is the set of summary variables

Wsy is the set of standard summary mappings

To illustrate how a generic experimental frame can be defined,
let us return to the space station example discussed earlier.
Suppose a frame is to be defined that represents the questions
concerning the measures associated with the adaptive robot
(or computer) architectures perceived for the station (see
Fig. 3).

There are two basic measures to be considered. The first
one is concerned with the performance measures that are task-
oriented, eg, throughput, task transit time, volume of tasks
in the system, etc. The other concerns the organization itself,

je, to collect data on the structural properties of the organiza-

tion.
The following generic frame for the evaluation of tree-based

adaptive organizations is proposed:

Generic Frame: Adaptability

{This template 1s intended to generate experimental frame
for collecting observations in adaptive, tree-based organiza-
tions}

Generic Input Variables
Task.arrival with range {task identifiers, task type}

Generic Input Segment

Task.workload—a discrete event segment with varying inter-
arrival rate (eg, high, low) and/or varying task types

{One of the objectives of the frame is to observe adaptation
patterns to changes in the input segment}

Generic Qutput Variables

Task.departure with range task identifiers, task types
Number of tasks being processed

Total number of coordinator-type components in the adaptive
organization at any given time

Total number of functional-type components in the adaptive
organization at any given time

Depth of the tree at any given time

Degree of the tree at any given time

Balance factors (for any or all the nodes)

Number of subordinates for coordinator-type components

Summary Variables

Departure/arrival rate ratio

Average task.transit time

Total number of tasks processed over the observation interval
Average number of components of the organization
Average number of coordinators

Average number of functional components

Number of coordinators/functional components ratio
Average depth of the tree

Maximum depth of the organization tree

Minimum depth of the organization tree

Other examples of generic experimental frame types for
various performance criteria are presented in Ref. 30.

The Entity Structure-based Generation of Design Model
Structures

Due to the multiplicity of aspects and specializations, the de-
sign entity structure offers a spectrum of design alternatives.
The procedures that limit the set of design configurations by
extracting only those substructures that conform to the design
objectives are presented now. Called pruning, this extraction
process is based on the following scheme. Assume that ab
entity structure has been transformed into a structure with
no specializations. Then, imagine that the structure is tra-

versed by selecting a single aspect for each entity and zero
or more entities for each aspect. All selected entities carry
their attributes with them. Also, the coupling constraint of
the selected aspect is attached to the entity to which this aspect
belongs.

The above process results in decomposition trees (1) that
represent hierarchical decompositions of design models into
components (design model structures). The process that ex-
tracts the model structures from the design entity structure
is called pruning.

By pruning the system entity structure with respect to ge-
neric frames, the following benefits are obtained:

1. In terms of the contribution to the design process:

a. ageneric frame extracts only those substructures that
conform to the design objectives. Thus, a number of de-
sign alternatives may be disregarded as not applicable
or not realizable for a given problem.

b. partial models of the design can be formulated and
evaluated. This may significantly reduce the complexity
which would arise dealing with the overall design model.
The generic frame may thus be viewed as an object that
partitions the system entity structure into design-objec-
tive related classes.

c. The evaluation of design models constructed from the
pruned substructures is performed in corresponding ex-
perimental frames. Such frames are generated by instan-
tiating the generic frames used to prune the system en-
tity structure. Hence, automatic evaluation procedures
could be employed in the design process.

2. Interms of facilitating the pruning process itself, generic
frames automatically determine:

a. The aspects that are selected for each entity.
b. The depth of the pruning process.
c. The descriptive variables of components.

Pruning Algorithms This section presents a suite of pruning

algorithms for generating design model structures and begins
with the definition of the procedure Prune for pruning pure
efltity structures, ie, structures in which no specialization rela-
tions occur. For entity structures in which specializations are
Present, procedures for mapping such structures into a set of
pure entity structures are provided. The procedure Prune is
then applied to the set of pure structures, and relevant design
model structures are generated as a result of pruning.
) In presenting the algorithms, the concept of a nondetermin-
istic algorithm is employed, ie, the algorithms are allowed to
tontain operations whose outcome is not uniquely defined but
limited to a specified set of possibilities. In the case of pruning
Pure entity structures, the purpose of the nondeterministic
version of the algorithm is to provide a definition for a set of
all structures that the deterministic version should produce
to be correct.

The case of pruning the specialized entity structures is more
complex. The choice of a nondeterministic algorithm is justified
In that there is no deterministic procedure that generates the
solution in polynomial time.

For the pruning process, it is enough to restrict the generic
€xperimental frame to the generic observation frame (5) ie,

DESIGN AND MODELING CONCEPTS 315

GOF = {IG, 0G}

where IG denotes the set of generic input variable types and
OG the set of generic output variable types. By defining the
observation frame as above, its role is restricted to represent-
ing behavioral aspects of design objectives. There are also ob-
jectives that constrain the structural aspects of the project
under consideration. Therefore, in order to realize the stru-
tural constraints, it will be necessary to augment the design
model development with a process termed synthesis rule gener-
ation.

Return to the pruning procedure and define how a generic
observation frame generates the design model structures that
accommodate behavioral design objectives. Given the generic
observation frame, all the substructures that have all the input
and output variable types present in that frame are extracted.

First, a nondeterministic version of such a procedure is
defined. Assume that the function choose selects an aspect
for an entity. The algorithm presented in Figure 5 returns a
nondeterministically selected decomposition tree that accom-
modates the generic frame in which the pruning proceeds.

The deterministic version of procedure Prune is based on
the depth first tree traversal. In this procedure, every entity
in each aspect is searched for occurrences of variable types
that are present in the generic observation frame. The entities
are attached to the model decomposition tree as the search
progresses. At the same time, the algorithm calls itself recur-
sively for each entity being searched. The complete determinis-
tic pruning procedure is given in Figure 6.

To initialize the pruning process, the steps given below
are followed:

1. In the system entity structure, choose the entity E; that
represents the model to be evaluated (this entity will
label the root of the model structure TE;}.

2. Create a dummy entity DE (with no variables) with a
dummy aspect DA in which E; is a subentity of DE.

3. Call Prune (DE, CVgop, Veor)

After the procedure has been executed, DE must be elimi-
nated from all the model structures.

The procedure Prune generates a set of design model struc-
tures in the form of decomposition trees. Each such structure
accommodates the generic observation frame GOF and consti-
tutes a skeleton for a hierarchical model construction. Figure
7 illustrates the results of pruning of the system entity struc-
ture with respect to frame GOF.

The limitation of the procedure is that it operates only on
pure entity structures, ie, those that do not have specializa-
tions. One possible way of dealing with the problem is to map
the entity structure that contains specializations into a pure
structure using the multiple decomposition concept and the
transformation discussed in System Design and Modeling,
Synergies. Then the procedure Prune can be applied to the
pure structure. However, this approach greatly increases the
size of the entity structure and forces the use of multiple enti-
ties. This may not be well justified in some design problems.
Therefore, the Prune procedure is extended to operate on en-
tity structures that contain specializations.

For the new algorithm, first it is assumed that if there is

316 DESIGN AND MODELING CONCEPTS

Nondeterministic Prune(E;, CVgor, Yeor)
E; — root of the pure entity structure
CVgor — set of variables of the geperic frame GOF
this set is used to check if all the frame variables
are present in the pruned substructure initially
CVeor = Veor
Veor set of input and output variable types of GOF
failure — signals an unsuccessful completion
success — signals a successful completion

begin
A; := choose(E;);
for each Ey € A; do

begin
attach E, with all its variables as a child of TE;;
attach coupling constraint of aspect A; to TE;
{ TE; denotes the node corresponding to E; in the model
structure }
Prune(Ey, CVgor, Vaor)

end;

for each node in decomposition tree TE; do
begin { verify correctness of choice }
visit node;
if vy € Vgor then CVgor := CVgor ~ Vi;
{ the attached variable types vi that belong to the
generic frame GOF are marked as have been found in
the model structure }
end; { of for each node }
if CVgor is not empty then failure
{ the substructure does not have all the variables present
in the frame }

output Decomposition Tree TE;;

{ the tree TE; is a model structure that accommodates the
frame GOF }

success;

end. { of Nondeterministic Prune }
Figure 5. Nondeterministic prune algorithm.

more than one specialization at any given level in the entity
structure, such specializations are hung from one another to
reduce their number fo one at this level. This operation is
illustrated in Figure 8.

Secondly, if a general entity that has a specialization is a
component in a multiple decomposition of a multiple entity,
then the specialization is mapped into the decomposition as-
pect according to the rules presented earlier. Given these as-
sumptions the extended pruning process is defined.

As depicted in Figure 9, the extended procedure employs
three basic modules. The Move module removes all aspects
from each level of the design entity structures where speciali-
zations occur. The aspects with their full substructures are
hung from the entities of the specialization. This is in agree-
ment with the inheritance property that states that the spe-

cialized entities inherit the attributes and substructures of

the general entity. The algorithm that performs this function
is illustrated in Figure 10.

The Move module returns an entity structure that at any
given level has either aspects or a specialization. Given such
an entity structure, a set of pure entity structures is generated

Procedure Prune(E;, CVgor, Vior); {Deterministic}

{ This procedure prunes the pure system entity structure and
returns the model structures that accommodate the generic
observation frame GOF. Multiple occurrences of a frame
variable type are permitted in the model structures}

begin
for each aspect A; e E; do
begin

for each entity Ey € A; do
begin
attach Ey with all its variables as a child of TE;;

{ TE; denotes the root of the model structure being
built }

CVeor :=CVgor — Vi;

{ update the current set CVgor by subtracting the
variable types vy such that vy € Vgor and vy is
attached to E }

if By has at least one variable type present in Veor

then mark this level in the model structure as the last
level at which variable types present in the
frame have been found;

end; { of for each entity . . .}
attach the coupling constraint of the aspect A; to TE;

for each Ey € A; such that E, has aspects do
Prune (Ey, CVGOFy VGOF);
if Cgor is empty {ie, the frame is accommodated }
then
begin
create a copy of the current model structure rooted
by TE;;

{ this copy will serve as a basis for model structure
construction in the next aspect A;+1}

output the current model structure rooted by TE;
without the entities that appear below the level
marked as the last level with frame variable type
occurrence;

end; {of if }

update the current structure TE; by cutting off the last
level entities;

{ thus prepare the structure for pruning in the next
aspect }

end; { of for each aspect . . . }

end. {of prune}
Figure 6. Deterministic prune algorithm.

by substituting the specialized entities in place of the gen,en.d
ones. This process is called Split. Notice that a determinist¢
algorithm to perform the split would have to generate all the
combinations of pure entity structures resulting from

E11 E12 E13
| _—v4

E21 E22 E23
—~v2 —v3 —vl
—v4

E31 E32 |ES1 E52/ E41.E42 E43

-vl,v2 —v3
Ne—"
El
Ell E12 E13
E51 E52

tuting the specialized entities into the general ones. Thus,
the problem is computationally hard. Instead, a nondetermin-
istic algorithm that employs the choose function for selecting
one specialized entity from a set of entities in a given speciali-
zation relation is proposed (Fig. 11).

The last module, Prune-Set, employs the deterministic pro-
cedure Prune (see Fig. 12).

To illustrate how the extended pruning process works, con-
sider a substructure of the space station design entity struc-
ture, depicted in Figure 13. This substructure has both aspects
and specializations. The components aspect of the entity Ser-
vice Organization is first moved down and attached as an as-
pect to the specialized entities Adaptive and Nonadaptive Or-
ganization. This results in a structure shown in Figure 14.
The same process is applied again to the specialized entities

— >

S1 S2
All Al2 A21 A22
A
Is:
All Al2

" S2 " S2
A21 A22 A21 A22

Fpigu}-e 8. Preparing the entity structure with specializations for

DESIGN AND MODELING CONCEPTS 317

GOF ={v1,v2, v3, v4]

El

E21 E22 Figure 7. Pruning of the system entity
structure in the generic frame type GOF
and resulting structures for model con-

struction.

of Adaptive Organization; the result is depicted in Figure 15.
Consequently, an entity structure in which at any level there
are either specializations or aspects (never both) is obtained.
Finally, the structure is split into pure entity structures with
the specialized entities in place of the general ones.

The extended pruning with respect to the generic frame
“Adaptability,” applied to the station design entity structure,
results in the model structures depicted in Figures 16a and
16b, respectively.

DESIGN MODEL SYNTHESIS

The pruning process described in the foregoing section restricts
the space of possibilities for selection of components and cou-

1

MQVE

Entity structure with aspects moved
down to specialized entities

SPLIT

Set of pura entity structures

PRUNE-SET

Design decomposition trees

|

Figure 9. Diagram of extended pruning procedure,

318 DESIGN AND MODELING CONCEPTS

Procedure Move(E;);
{ this module moves all the aspects and variables down to
the specialized entities }

begin
if E; has a specialization §

begin
for each aspect A, € E; do

begin
for each entity Ey € S do

begin
copy all the variables of E; to Ey;
attach A; with its full substructure and variables as
an aspect of Ey;
end;
delete A, from aspects of E;;
end;

for each entity Ey € S do
Move(E,);
end
else
begin
for each aspect A, ¢ E;
for each entity Ey € A;
call Move(E,)
end;
end. { of Move }

Figure 10. The Move algorithm.

plings that can be used to realize the system being designed.
Thus, it is assumed that the design can now be equivalent to
the synthesis of a design model based on the pruned structures
and the structural constraints imposed by the project require-

Nondeterministic SpliEj, ES);
ES — entity structure with specializations

begin
if E; has aspects then
begin
for each aspect A; € E; do
for each entity Ey € A; do
Split(Ey, ES);

end
else

if E; has a specialization then

begin
choose(E;) { an entity in this specialization I3
replace E; with E;;
cut off all the other entities in this
specialization (including their substructures)
from the system entity structure ES;
Split(E;, ES),

end;
end. { of Split}

Figure 11. Nondeterministic algorithm split,

Procedure Prune—Set{{E;}, CVgor, Veor);
{ this procedure prunes all the pure entity structures that
result from algorithm Split }

begin
for all the pure structures E; do
call Prune(E,, CVGOF: VGOF);
{ invoke the procedure Prune to generate a
set of design decomposition trees }
end. { of Prune—Set }

Figure 12, Algorithm Prune_ Set.

ments. The following synthesis rule development methodology
is proposed:

* Restrict the design domain by pruning the design entity
structure in respective generic observation frames.

+ Examine the resulting substructures and their con-
straints. Try to convert as many constraint relations as
possible into the active from, ie, into rules that can satisfy
them. For those that cannot be converted into such rules,
write rules that will test them for satisfaction.

* Write additional rules and modify existing ones to coordi-
nate the actions of the rules (done in conjunction with
the selected conflict resolution strategy).

In the following section, a canonical rule scheme for the
synthesis problem is presented. See Ref. 30 for a detailed expe-
sition of this methodology.

The constraints imposed by the design requirements can
be classified into two basic categories: convertable to active
form, ie, they can be converted into actions intended to satisfy
them, and passive. The passive constraints do not guide or
motivate any action. They do require satisfaction.

The synthesis problem is conceived as a search through
the set of all pruned structures. These are candidates for the
solution to the problem.

Assume that for each active constraint, a means of generat-
ing such candidates to test against the constraint is present.
Call such an operator NEXT__IN__Ci.

Space station

Automation aspect
Service Workstations
arganization
Components aspecti

| l

Nonadaptive Adaptive

Nonhierarchical

Robots

Functional Executive Hierarchical

Figure 13. Substructure of the space station entity structure with

. specializations.

Space station

| |
| l

Service Workstations
organization
Nonadaptive Adaptive
Robots Robots
Hierarchical
Functional Executive Functional Executive

The passive constraints have no corresponding operators
and thus can only be tested for their satisfaction. Failure
causes backtracking if a state has been reached for which
none of the operators can be applied. Instead of applying an
operator and then testing if it has consumed more than what
remains of an available resource, the application of operators
that would bring about the resource depletion is inhibited.

Con is a constraint that should be pretested. An operator,
NEXT._IN__Ci, will map a state s into the region satisfying
Con if, and only if, Con (NEXT__IN__Ci (s)). To allow the
operator to be applied safely, it is necessary to define applica-
bility predicate, Ai such that

Ai(s) if, and only if, Con(NEXT__IN__Ci (s))

Thus, a canonical rule scheme for a synthesis problem takes
the following form:

Space station
|
I
Service Workstations
organization
|
Nonadaptive Adaptive
L
Robots Hierarchical Nonhie]archical
Functional » Executive Robots Robots
| |
l | |
Functional Executive Functional Executive

Figare 15. Design entity structure without specializations and ap-
8ects present at the same level down any path.

DESIGN AND MODELING CONCEPTS 319

Nonhierarchical

Figure 14. Moving down the aspect of service or-
ganization to its specialized entities.

If C satisfied on (state)
then Output (state) as the solution

Rl IfCl is not satisfied

Al is satisfied

then state :=NEXT__IN__C1 (state)
Ri IfCi is not satisfied

Al is satisfied

then state :=NEXT__IN__Ci (state)
Rn IfCn is not satisfied
An is satisfied
then state :=NEXT__IN__Cn (state)

To illustrate how the above scheme can be applied in model
synthesis, use the space station example introduced in Formal
Framework for Model-Based System Design. Recall that prun-
ing the space station design entity structure of Figure 3 with
respect to generic frame “Adaptability” results in the struc-
tures depicted in Figures 16a and 16b, respectively. Consider
the synthesis of the station’s model with regard to the automa-
tion aspect. For the design model structure of Figure 16, the
following constraints are defined:

For the automation aspect of the entity station:

1. TOTAL.ROBOTS.OQOUTPUT >= TOTAL.STA-
TION.WORK LOAD
2. COMPLEXITY.OF.ROBOT.ORGANIZATION <=
MAXIMUM.COMPLEXITY
For the entity robots:

3. NUMBER.OF.ROBOTS IN [1, MAXIMUM).

The first constraint specifies that the robot organization
should attain a level of productivity high enough to satisfy
the station’s work loads. The second constraint is imposed
on the level of complexity of the organization. (Different mea-
sures of complexity are given in the frame Adaptability.) The
third constraint says simply that the number of robots may
not exceed a total number of robots available. This constraint
can be further refined to apply to functional and executive
robots. Similarly, more detailed constraints on the complexity

320 DESIGN AND MODELING CONCEPTS

Space station

Adaptive, hierarchical Workstations

service organization

Robots

Functionai Executive

(€))

Space station

Hire/fire
processor architecture

Software Monitors Interfaces

Processors

Functionat
processors

Coordinators

(b)

Figure 16. (a) Pruned model structure for space station design, auto-
mation aspect. (b) Pruned model structure, control aspect.

of the organization may be imposed once the reorganization
schemes are known.

These constraints are converted into a production rule
scheme according to the canonical form. Rule RC is the global
constraint checker. Rules RC1 and RC2 are implemented as
local constraint satisfiers.

RCif TOTAL.ROBOTS.QUTPUT >= TOTAL.STATION.WORK
LOAD
COMPLEXITY.OF. ROBOT.ORGANIZATION <= MAXI-
MUM.COMPLEXITY

then “STATION COMPLETED”

RC1if ROBOT.AVAILABLE
TOTAL.ROBOTS.OUTPUT < TOTAL.STATION.WORK
LOAD

then HIRE THIS ROBOT
-update COMPLEXITY.OF. ROBOT.ORGANIZATION

RC2if REORGANIZATION IS FEASIBLE (with respect to
restructuring policy)
COMPLEXITY.OF . ROBOT.ORGANIZATION >
MAXIMUM.COMPLEXITY

then
REORGANIZE THE ROBOTS
UPDATE TOTAL.ROBOTS.QUTPUT

After candidate structures that satisfy all the constraints
have been found, design models of the station should be con-
structed and evaluated through simulation, The methodology
for the model and experimental construction is discussed in
detail in Refs. 7 and 30.

ENVIRONMENT FOR INTEGRATED, MODEL-BASED
SYSTEM DESIGN

It has been our contention thoroughout the foregoing sections
that the system entity structure and the concept of generic
frame type constitute the knowledge that can support auto-
matic construction of design models and experimental frames.
To explain the argument, the following architecture for an
expert system design environment is proposed. As illustrated
in Figure 17, the data base of design objectives is one of the
major components in the system. It must be well understood
that the design objectives drive three fundamental processes
in the methodology: first, the retrieval and/or construction of
the design entity structure. (Naturally, the designer desires
to obtain a family of design representations for a given set of
objectives.) Secondly, the objectives serve as a basis for the
specification of generic observation frames. Finally, the struc-
tural aspects of design generate a set of rules for the design
model synthesis.

— OBJECIILE_S-/—L

. . f
Design entity Base of
synthesis
structures rules
Behavioral Structural
pruning Candidates synthesis
for design
model
structures
m
2
Experimental Design model
frame definition construction

| l

Simulation
program

Base of
standard
generators
acceptors
transducers

development

Figure 17. Integrated environment for system design support-

The ultimate purpose of the system depicted in Figure 17
is to analyze and integrate the relationships concerning the
objectives specification base, the generic observation frame
base, and the design entity structure. Such an integration
should result in the formulation of design models and simula-
tion experiments for a problem at hand.

The behavioral aspects of the design objectives are ex-
pressed in terms of generic observation frames. Pruning the
design entity structure in corresponding observation frames
results in substructures conforming to the behavioral objec-
tives.

The substructures are then tested for satisfaction of synthe-
sis rules that are derived from the design structural con-
straints as presented in Design Model Synthesis. Both behav-
joral and structural pruning applied to the design entity
structure should result in design structures that are candi-
dates for hierarchical model construction. The term candidates
implies that some checks for consistency and admissibility
(in the sense of conformance to the objectives) should be per-
formed at this stage. If the candidate is inadmissible or no
candidates can be obtained by pruning, the process should
be reiterated with possible user intervention. The kinds of
interventions suggested are modifications or retrieval of the
new system entity structure, enhancement of the generic ex-
perimental frame, or modification of synthesis rules. The sys-
tem should construct design models for the structures gener-
ated as a result of behavioral and structural synthesis
employing the multifacetted model construction methodology
presented earlier and in Ref. 1.

The design models should be evaluated through extensive
simulation studies in experimental frames induced by the ge-
neric frame types. A detailed exposition concerning this aspect
of design is presented in Ref. 30.

SUMMARY

In presenting the model-based system design methodology,
the main focus is on two major aspects of the design process,
the design model development and specification of experimental
tircumstances for design simulation.

Based on the formal concepts of the system entity structure
and experimental frame, a framework for objectives-driven
design model generation has been developed. In this frame-
work, the behavioral aspects of design objectives are reflected
in the generic frame types, which are prestructures for the
experimental frames. The generic experimental frame types
Serve as a basic means of extracting model structures conform-
ing to the behavioral objectives from the design entity struc-
ture. Effective pruning procedures have been developed to per-
form this task. The procedures have been further refined to
extract model composition trees from the design entity struc-
tures in which specialization relations occur.

The structural aspects of the design objectives represented

a set of constraints have been shown to drive the process
called model synthesis effectively. A canonical production rule
scheme has been given for generating model synthesis rules.

These concepts are of a propositional nature. It is stressed
that an attempt has been made to lay a foundation on which
adesign process can be based. A computer-aided expert design
environment that internally represents the entity structures

DESIGN AND MODELING CONCEPTS 321

and generic frames and has means for dynamically manipulat-
ing these structures has been envisoned. Implementation of
such a package, in all its generality, may be a long way off.
However, efforts are under way to advance the design meth-
odologies further.

BIBLIOGRAPHY

1. B. P. Zeigler, Multifacetted Modeling and Discrete Event Simula-
tion, Academic Press, Inc., New York, 1984.

2. M. S. Elzas, “The Use of Structured Design Methodology to Im-
prove Realism in National Economic Planning,” in H. Wedder,
ed., Model Adequacy, Pergamon Press, Ltd., Oxford, UK, 1982.

3. T. I Oren, “Computer Aided Modeling Systems,” in F. E. Cellier,
ed., Progress in Modeling Simulation, Academic Press, Inc., New
York, 1982.

4. D. P. Siewiorek, D. Giuse, W. P. Birmingham, Proposal for Re-
search on DEMETER: A Design Methodology and Environment,
Carnegie-Mellon University, Pittsburgh, Pa., Jan. 1983.

5. J. W. Rozenblit and B, P, Zeigler, “Concepts for Knowledge-Based
System Design Environments,” Proceedings of the 1985 Winter
Simulation Conference, San Francisco, Dec. 1985,

6. T. L. Oren, B. P. Zeigler, “Concepts for Advanced Simulation Sys-
tems,” Simulation, 32(3), 69-82 (1979).

7. J. W. Rozenblit and B. P. Zeigler, “Entity-Based Structures for
Model and Experimental Frame Construction,” in M. S. Elzas and
co-workers, eds., Knowledge-Based Modeling and Simulation
Methodologies, North Holland Publishing Co., Amsterdam, 1986.

8. W. A, Wymore, A Mathematical Theory of Systems Engincering—
The Elements, John Wiley & Sons, Inc., New York, 1967.

9. W. A, Wymore, Systems Engineering Methodology for Interdisci-
plinary Teams, John Wiley & Sons, Inc., New York, 1976,

10. M. Asimov, Introduction to Design, Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1980.

11. J. C. Enos and R. L. van Tilburg, “Software Design,” in R. W.
Jensen and C. C. Tonies, eds., Software Engineering, Prentice-
Hall, Inc., Englewood Cliffs, N.J., 1979.

12. G. Nadler, “An Assessment of Systems Methodology and Design,”
Proceedings of The International Conference of The Society for
General Systems Research, Los Angeles, May 1985,

13. J. W. Rozenblit, “Experimental Frames for Distributed Simulation
Architectures,” Proceedings of the 1985 SCS Multiconference, San
Diego, Jan. 1985,

14. M. Gonauser and A. Sauer, “Needs for High-Level Design Tools,”
Proceedings of the 1983 IEEE Conference on Computer Design,
IEEE, New York.

15. J. W. Rozenblit, Structures for a Model-Based System Design Envi-
ronment, Technical Report, Siemens AG, Munich, 1984 (internal
distribution).

16. M. Gonauser, R. Kober, and W. Wenderoth, A Methodology for
Design of Digital Systems and Requirements for a Computer Aided
System Design Environment, IFIP WG 10.0, Sept. 1983,

17. R. Kober and W. Wenderoth, “Problems and Practical Experience
in High-Level Design,” in Ref. 14.

18. D. Belogus, “Multifacetted Modeling and Simulation: A Software
Engineering Implementation,” Doctoral Dissertation, Weizmann
Institute of Science, Rehovot, Israel, 1985,

19. R. E. Shannon, R. Mayer, and H. H. Adelsberger, “Expert Systems
and Simulation,” Simulation, 44(6) (June 1985),

20. B. P. Zeigler, Y. V. Reddy, and T. 1. Oren, Knowledge Representa-
tion in Simulation Environments, Academic Press, Inc., New York,
in preparation.

322 DESIGN AND MODELING CONCEPTS

21. B. P. Zeigler, “Knowledge Representation from Newton to Minsky
and Beyond,” Applied Artificial Intelligence 1, 87-107, (1987).

22. B. P. Zeigler, D. Belogus, and A. Bolshoi, “ESP—An Interactive
Tool for System Structuring,” Proceedings of the 1980 European
Meeting on Cybernetics and Systems Research, Hemisphere Press,
Washington, D.C., 1980.

23. B. P. Zeigler and R. G. Reynolds, “Towards a Theory of Adaptive
Computer Architectures,” Proceedings of the Distributed and Par-
allel Computation Conference, Denver, May 1985.

24. 8. A. Gregory, The Design Method, Butterworth Publishers, Ltd.,
London, 1966.

25. H. D. Hall, A Methodology for Systems Engineering, Van Nostrand
Publishing Co., New York, 1972.

26. A. P. Sage, Methodology for Large Scale Systems, McGraw-Hill,
Inc., New York, 1977.

27. W. A. Wymore, A Mathematical Theory of Systems Design, Techni-
cal Report, University of Arizona, Tucson, Ariz., 1980.

28. M. D. Mesarovic, D. Macko, and Y. Takahara, Theory of Hierar-
chical, Multilevel System, Academic Press, Inc., New York, 1970.

29, P. P. Fasang and M. Whelan, “A Perspective on the Levels of
Methodologies in Digital System Design,” in Ref. 14.

30. J. W. Rozenblit, “A Conceptual Basis for Model-Based System
Design,” Doctoral Dissertation, Wayne State University, Detroit,
Mich., 1985,

General References

D. K. Baik, “Performance Evaluation of Hierarchical Simulators: Dis-
tributed Model Transformation and Mapping,” Doctoral Disserta-
tion, Dept. of Computer Science, Wayne State University, Detroit,
Mich., 1986.

A. Concepcion, “Distributed Simulation on Multiprocessors: Specifica-
tion, Design, and Architecture,” Doctoral Dissertation, Dept. of
Computer Science, Wayne State University, Detroit, Mich., 1985.

L. Dekker, “Concepts for An Advanced Parallel Simulation Architec-
ture,” in T. I. Oren, B. P. Zeigler, and M. S. Elzas, eds., Simulation
and Model-Based Methodologies: An Integrative View, Springer-
Verlag, New York, 1984.

J. R. Dixon, Design Engineering: Inventness, Analysis and Decision
Making, McGraw-Hill, Inc., New York, 1966,

A. Javor, Proposals on the Structure of Simulation Systems,” in A
Javor, ed., Discrete Simulation and Related Fields, North-Holland
Publishing Co., Amsterdam 1982.

R. E. Kalman, P. L. Falb, and M. A. Arbib, Topics in Mathematical
Systems Theory, McGraw-Hill, Inc., New York, 1969.

T. 1. Oren, “GEST—A Modeling and Simulation Language Based on
System Theoretic Concepts,” in T. 1. Oren, B. P. Zeigler, and
M. 8. Elzas, eds., Simulation and Model-Based Methodologies: An
Integrative View, Springer-Verlag, New York, 1984.

R. Prather, Discrete Mathematical Structures for Computer Science,
Houghton Mifflin Publishing Co., Boston, 1976.

Y. V. Reddy, M. S. Fox, and N. Husain, “Automating the Analysis of
Simulations in KBS,” in Ref. 13.

J. W. Rozenblit, “EXP—A Software Tool for Experimental Frame Spec-
ification in Discrete Event Modeling and Simulation,” in Proceed-
ings of the 1984 Summer Computer Simulation Conference, Boston,
1984, pp. 967-971.

R. H. Sprague and E. D. Carlscn, Buidling Effecting Decision Support
Systems, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1982.

P. H. Winston, Artificial Intelligence, Addison-Wesley Publishing Co.,
Inc., Reding, Mass., 1984,

B. P. Zeigler, “Structures for Model Based Simulation Systems” in
T. L. Oren, B. P. Zeigler, and M. S. Elzas, eds., Simulation and
Model-Based Methodology: An Integrative View, Springer-Verlag,
New York, 1984.

DESIRABILITY OF ROBOTS
ANt Mrran

University of Cincinnati
Cincinnati, Ohio

INTRODUCTION

The need to strive for higher productivity is perpetual. Reduc-
tion in production costs and greater competition in the interna-
tional market are two main concerns behind the move of many
manufacturers to automate their existing facilities. New tech-
nologies, such as FMS, CAD/CAM, and Robotics, are rapidly
being implemented in medium and high volume manufactur-
ing. Robots, which are the key supportive elements in auto-
mated factories and stand-alone manufacturing cells, are dom-
inating such functions as welding, painting, and loading/
unloading.

When first developed, robots were expected to replace work-
ers only in hazardous environments. However, robots have
also begun replacing workers in monotonous, highly repetitive,
and unstimulating tasks. Existing statistics on robot growth
indicate a tremendous increase in the U.S. robot population.
With improved capabilities and lower costs, the market could
expand to as many as 200,000 units per year (1). By 199,
the world robot population is expected to reach 1 million. The
potential market for robots in the United States alone is antici-
pated to be about 400,000 units per year by that time (2).

Even though new technology has historically created more
jobs and led to higher productivity, initial introduction of auto-
mation has caused, or is expected to cause, significant displace-
ment (3). In the long run, however, the commercial use of
robots is expected to follow this historical trend, although some
evidence does raise doubt about a rosy future.

Several different sources forecast that wide-scale usage of
robots will lead to worker displacement (see also Human m-
PACTS; EMPLOYMENT, IMPACT). According to one study (4), ap-
proximately 100,000 jobs may be lost in the U.S. auto industry
alone in the 1980s. The Robot Institute of America of the Soci-
ety of Manufacturing Engineers estimates that 440,000 work-
ers will be displaced by the end of this century and that only
20,000 of these may expect to find another job through attrition
or retraining (5). For example, only one fifth of employees
laid off by the U.S. auto industries in 1979 has returned to
work. A study supported by the Congressional Budget Office
(6) predicted a displacement figure of 1 million by the early
1980s. The study conducted by the Ad Hoc Committee on Tri-
ple Revolution (7) predicts that the employment displacemet
from automation would be so great that it would be necessary
for the federal government to provide generous and costly in-
come supports to a large fraction of the work force. Even
though the last two studies may be politically motivated, they
do not contradict the findings of the others mentioned. On

