
Proceedings of the 1988 Winter Simulation Conference
M. Abrams, P. Haigh, and J. Comfort (eds.)

Towards an implementation of a knowledge-based
system design and simulation environment

Jerzy W. Rozenbl.it, Tag Gon Kim, and Bernard P. Zeigler

Department of Electrical and Computer Engjneering
University of Arizona

Tucson, AZ 85721

ABSTRACT

The paper discusses work in developing a prototype of an
intelligent software environment to support system design and
simulation activities. Knowledge-Based System Design and
Multifacetted Modelling are foundational basis for the
develoument. The Dauer brieflv mesents the basic tenets of the
under$ing methodoiogies. 0 ihkn describes the current state
of the Implementation.

1. ELEMENTS OF KNOWLEDGE-BASED DESIGN AND
SIMULATION

Despite great strides in development of computational tools
such as high performance workstations intended to help to
cope with the rising complexi

x remains error prone. Given t
of designs, the design process

e often severe constraints im-
posed by cost, knvironmental impacts, safety regulations, etc.,
It is a fact of life that designers are forced to make com-
promises that would not be necessary in an ideal world.
Simulation is increa:jingly recognized as a useful tool in assess-
ing the quality of sub-optimal design choices and arriving at ac-
ceptable trade-offs.

Our research aims to develop and implement a methodol-
ogy of design in which design models can be synthesized and
tested within a number of objectives, requirements, and con-
straints. This framework, termed knowledge-based system
design and simulation, is presented in detail in (Rozenblit and
Zeigler, 1985, 1988; Rozenblit, 1985). Here, we summarize its
basic tenets.

Design objectives (understood here in a broader context
that includes requirements and constraints impinging the
design process) drive three fundamental processes in the
methodology: first,, the facilitate the construction, retrieval,
and manipulation of esign entity structures (Rozenblit and B
Zeieler 1986. 1988’). The desien entitv structure is based on a
tre&ike’gribh tha’t encompa&es the,boundaries, decomposi-
tions and taxonomic relationships that have been perceived for
the system being modelled. An entity signifies a conceptual
part of the system which has been identified as a component in
one or more decompositions. Each such decomposition is
called an asoect. Thus entities and aspects are thought of as
components’and decompositions, resiectively. In ad&ion to
decompositions, there are relations termed specializations. A
speciahzation relation facilitates representation of variants for
an entity. Called specialized entities, such variants inherit
properties of an entity to which they are related by the
specialization relation.

As
Coup mg constraints restrict the way in which components F

ects can have coupling constraints attached to them.

(represented by entities) identified in decompositions (repre-
sented by aspects) can be joined together.

In addition to coupling constraints, there are selection con-
straints in the system entity structure. Selection constraints are
associated with specializations of an entity. They restrict the
way in which its subentities may replace it in the process of
model construction. Synthesis constraints restrict ways in en-
tities selected from specializations may me configured to re
resent the structure of the system bemg designed (Rozenb It f -
et. al., 1986, Rozenblit and Huimg 1987). In Section 2, we shall
focus on the process that employs the production rule for-
malism to support automatic selection of entities and synthesis
of a design mode1 structure. We call this process constraints-
driven model structure generation.

The design objectives also serve as a basis for the specifica-
tion of the genenc observation
(Zeigler, 1984a, Rozenblit am P

antes and experimental frames
Zeigler, 1988). Generic frame

consist of input, output, and summary generic variable types.
The variable

T
es express performance mdices associated with

a given model mg objective. Experimental frames are instan-
tiated generic frames wherein variable types are associated
with model components and execution run conditions are
defined in experiment initialization, continuation, and termina-
tion sets (Zelgler, 1984a). They are employed to evaluate per-
formance of design models.

To perform the evaluation a simulation environment is in-
voked. A software shell called DEVS-Scheme is used as the
simulation engine. DEVS-Scheme (Zeigler 1986, 1987a) is a
knowledge-based simulation environment for modelling and
design tliat facilitates construction of families of modeli in a
form easily reusable by retrieval from a mode1 base. The en-
vironment surmorts construction of hierarchical discrete event
models and ii -written in the PC-Scheme language which runs
on IBM compatible microcomputers and on the Texas Instru-
ments Ex lorer.

R DEVS-SC
Model specification and retrieval in the

eme simulation environment is mediated by a
knowledge representation component designed using the sys-
tem entity structuring concepts. A user prunes the entity struc-
ture obtaining a reduced structure that specifies a hierarchical
composition Gee. U
system searches IT

on invoking the trafisform procedure, the
t e model base for model components

soecified in the model comuosition tree and svnthesizes the
de&red mode1 by coupling’them together in g hierarchical
manner. The result is a discrete event simulation model ex-

F
ressed in DEVS-Scheme which is ready to be executed to per-
orm simulation studies.

The basic organization of software supporting our
framework is depicted in Figure 1. In the ensuing sections, we
provide details concerning both the model structure genera-
tion and DEVS-Scheme simulation engine.

2. MODEL STRUCTURE GENERATION

In this section we focus on the process that employs the
pro+tion rule formalism to sup
entItles from taxonomic relations

ort automatic selection of
Ii* ups and synthesis of struc-

tures underlying the simulation models.

226

Ew-4 IPASCAL)

r Esp-LMEi
1

Entity Structure C Runar

- structure
Lwga Entity structure uanansment

- mvJne --J-
nodal Integration

IIEVS-SCHEME 1

Hlmrarchlcal. llcdulw’
Olscrste Event

Yodallinm and Slluhtlon
Envirnnmsnt

Figure 1 Organization of Software under Development.

Selection rules are associated with the entities whereas the
synthesis rules are attached to the aspects of the domain entity
structure. Each rule set can be regarded as a module. There-
fore the entire rule base is constructed in a hierarchical manner
imposed by the entity structure. We believe such a hierarchical
structure is necessary to increase the efficiency of pruning in
systems with a large number of rules.

To reduce the number of links between modules in the
hierarchically organized rule base, we allow for multiple ac-
tions (conclusions) in the rule syntax. To reduce the number of
modules, we connect the premises with the lo
“and”. The template rule syntax has the following 4

ical “or” or
orm:

if object-attribute-l = value-l and/or
object-attribute;! = value-2 and/or

.

. . ,
object-attribute-n = value-n

then conclusion-l = value-l (cfl) and
conclusion;! = value-2 (cf2) and

. I

The process consists in specifying the system entity structure
for a given modelling problem. Then, a knowledge base that con-
tains rules for selection and configuration of the entities is con-
structed. The modeller invokes the inference engine which,
through a series of queries based on the constraint rules, allows
him/her to consult on an appropriate structure for the modelling
problem at hand. The result is a recommendation for a model
corn

ii
osition tree (Zeigler, 1984a). The composition tree is used

byD VS-Schemeenvironmenttoretrievemodelsfromthemodel
base. The retrieved models are automatically linked in a hierar-
chical manner according to the coupling constraints. Figure 2 il-
lustratesthemodelstructure enerationprocessintherule-based
shell called MODSYN (MO d el Synthesizer).

We now proceed to briefly describe MODSYN. The basic
system’s components are the knowledge base and the inferenc-
ing shell.

Knowledge Base Construction

The process of knowledge base construction begins with set-
ting up the system entity structure for the model being con-
structed. At the present time we use previously developed
tools for entity structuring (ESP4 - Entity Structuring Program
(Zeigler et. al., 1980)). The system entity structure is a basis for
what we term a concepfud network. This is a declarative repre-
sentation of modelling domain objects.

The production rule formalism is used to express modelling
objectives, constraints, and requirements. Domain experts
provide knowledge about admissible choices of design com-
ponents and therr combinations, design data regarding ex-
pected performance given a
A detailed example of a

artmular component choice, etc.
ru e base for a local area network P

design problem is given in (Rozenblit and Huang 1987).

TO prune the system entity structure, we generate the fol-
lowing rule sets:

Selection rule set: each selection rule stands for a choice of
an entity in a specialization.

Synthesis rule set: after selection rules have been applied to
the entity structure, synthesis rules ensure proper configura-
tion of the selected entities. They also coordinate the actions of
the seIection rules. Certainty factors are are employed to indi-
cate the applicability of the rules.

where cfl,cf2,..., are certainty factors whose values range
from 0 which stands for no recommendation, to 1 which
denotes a strong recommendation.

Inference Engine Design

MODSYN shell has been implemented in Turbo Prolog and
runs on IBM PC compatible machines. The inference engine
uses the strategy of “generate and test”, i.e., it takes the imtial
data from the user and the hypothesis generated by the
knowledge base to prune the search space tree. In other words,
the engine attempts to match the data with the information
contained in the knowledge base. If the data match, the engine
climbs up the tree, trying to prove the next hypothesis. We use
aspect ordering in order to eliminate aspects not desirable in
the model we are constructing, and s
pruning to select unique entitles for t g

ecialization-oriented
e model composition

trees. For a complete description of the shell we refer the
reader to Huang (1987).

Figure 2 Model Structure Generation in MODSYS.

227

We have completed testing the shell and are currentlry port-
ing it to a Scheme environment. This will provide a front end
model processing capabilities for simulation in DEVS-Scheme.

3. HIERARCHICAL MODEL CONSTRUCTION IN
DEW-SCHEME ENVIRONMENT

DEVS-Scheme Environment --

The Discrete Event System Specification (DE,VS) for-
malism introduced by Zeigler (1976) provides a means of
specifying a mathematical object called a system. Basically, a
system has a time base, inputs, states, and outputs, and func-
tlons for determining next states and outputs given current
states and inputs (Zeigler, 1984h).

The DEVS formalism underlies DEVS-Scheme. a general
purpose environment for constructing hierarchic& &Crete
event models Ueieler. 1987a). DEVS-Scheme is written in the
PC-Scheme ianiuage which runs on DOS compatible
microcomputers and under a Scheme interpreter for the Texas
Instruments Explorer. DEVS-Scheme is implemented as a
shell that sits upon PC-Scheme in such a way that all of the un-
derlyin
guage t!

Lisp-based and objected oriented programming lan-
eatures are available to the user. The result is a

powerful basis for combining AI and simulation techniques.

The architecture of the DEVS-Scheme simulation system is
derived from the abstract simulator concepts (Zeigler, 1984a)
associated with the hierarchical, modular DEVS formahsm.
Since such a scheme is naturally unplemented by multiproces-
sor architectures, models developed in DEVS-Scheme are
readilv transDortable to distributed simulation systems
design&d accoiding to such principles. Finally, since structure
descriptions in DEWS-Scheme are accessible to run-time
modification, the environment provides a convenient basis for
develooment of learning or evolutionary models which adapt
or chakge their own internal structure. -

DEVS-Scheme i:s rincipaly coded in SCOOPS, the object-
oriented superset of F C-Scheme. All classes in DEVS-Scheme
are subclasses of the universal class entities which provides
tools for manipulating objects in these classes (these objects
are hereafter called entities). The inheritance mechanism en-
sures that such general facilities need only be defined once and
for all. Entities of a desired class may be constructed using a
method mk-ent and destroyed using a method destroy. More
specifically, mk-ent makes the entity and places it in the list of
members of the given class, Esr; destroy removes the entity from
this Iist. Every entity has a name, assigned to it upon creation.

Models and ~~xessors. the main subclasses of entities.
provide the bask constructs needed for modelling and simulai
tion. Models is further specialized into the major classes
atomic-models and coupled-mode& which in turn are spedal-
ized into more specific cases, a
tinued indefinitelv as the user bm ds UD a soecific model base. 7

recess which may be con-

Class processors, bn the other hand, his thiee specializations:
simulators, co-ordinators, and root-co-ordinators, which serve to
handle all the simulation needs. Detail description of the class
hierarchy in DEVS-Scheme is available in (Kim, 1988).

Hierarchical Model Construction

The DEVS-Scheme environment rovides layer of objects
and methods which may be used to ac r leve more powerful fea-
tures. In paticular, a second layer, ESP-Scheme,
system entity structure to synthesize and organize
models called the model base. Complete description of
Scheme is beyond the scope of this paper. Details are available
in (Zeigler, 1987b; Kim, 1988; Kim et. al. 1988).

r- WBASE ---,

“t-l”t-*t” mid-*te.

L
I ti.-+lp.Pc~ u*.-c.ll”,W II.

- ESP-SCHEME

SCHEW-scm

Figure 3 DEVS-Scheme Modeling /Simulation Environment.

The knowledge base framework shown in Figure 3 is intended
to be generative in nature, i.e., it should be a compact repre-
sentation scheme which can be unfolded to generate the family
of all possible models s
model base. The user, w il

nthesizable from components in the
ether human or artificml, should be a

goal-directed agent which can interrogate the knowledge base
and s
ly re r

thesize a model using pruning operations that ultimate-
uce the structure to a composition tree.

As shown in Figure 3, model objects expressed in DEVS-
Scheme must reside in working memory in order to be simu-
lated. Such an object can be reconstructed from disk file
definitions by direct evaluation (the only possibility for atornic-
models) or by applying the transform function to a pruned en-
tity structure in working memory. The pruned enti

r
structure

is m turn obtained b pruning an entity structure, se ecting one
possibility from who e family sparmed by the structure. r

As it traverses the pruned entity structure, transform calls
upon a retrieval process to search for a model of the current
entitv. If one is found. it is used and transformation of the en-
tity sbbtree is aborted: Retrieve looks for a mode1 first in work-
ing memory. then in model definition files, and finally.

r&ided F th>i the entity is a leaf, in pruned-e&y structu%
lies. The latter mode requires an invokation of transform

which is executed in a separate Scheme environment so as not
to interfere with the parent environment (see Kim, 1988 for
greater detail).

Man&+ation of Complex Hierarchical Structures

Since models in DEVS-Scheme mav be comnlex. hierarchi-
cal structures special attention has bken paid to ieplicating
such structures. To test the methods for creating copies of
models we employ a novel approach: we implemenied a paral-
lel set of methods for checkmg isomorphism between models.
The criteria for correct coovine are formalized in the
isormphism methods. For a co$ng-method to be valid, a copy
of a model must be isomorphic to the original as determined
by the isomorphism test.

228

As we have seen above. isomorohic copies of existinr! models
are needed to conveniently con&&t complex coupled-models.
DEVS-Scheme provides two main alternatives for creating such
comes. The first method. make-new. when sent to a model creates
an’isomorphic copy of the original which is an instance of the
same class as the ori

a digraph-models, and t
inal. The primary classes (atomic-models,
e specializations of kernel-mod&) require

their own versions of the make-new method since each has fea-
tures that are uni

1
ue to itself. (Sub-classes of these

fl
rimary clas-

ses,iftheydonota dadditionalstructure,caninheritt emake-new
method from the primary class.) Since coupled-mod& instances
arehierarchicalinstructure,themake-newmethodmustberecur-
sive in the sense that components at each level must replicate
themselves with their own make-new methods.

4. CONCLUSIONS

This paper further extends our research into the methodol-
ogy of model development and simulation. We have aug-
mented system entity structure pruning algorithms with a
rule-based process for selecting and synthesizing model ObJects
representing model components. This process 1s driven by the
modelling project’s requirements and constraints. Therefore,
we are now able to assist the modeller in choosing and proper-
ly configuring the model components.

Implementation of the DEVS hierarchical, modular for-
malism in DEVS-Scheme has ooened UD a wealth of DOS-
sibilities for investigating methodologyrbased suppo;t of
modelling and simulation. The symbol manipulation and ob-
ject-oriented facilities of Scheme make it relatively easy to
code complex structures and operations on them. Since
Scheme. (as is its parent, LISP) is a “language to develop lan-
guagfs In, ” an environment can be evolved m which tools are
readrly developed and integrated. As the range of loos dis-
cussed here indicates, we have found Scheme to be an excel-
lent medium for tool development. In contrast a compiled
language can not as easily support such environment evolution.

The second method. make-ckzss. when sent to a model,
creates a class definition with the ori

?
inal model as template.

Instances created in such a class wt 1 be isomorphic to the
original. However, in contrast to the effect of make-new? such
instances are members of a different class than the original.
For example, for an atomic-model m, consider the following:

send m make-class ‘ms)
mk-ent ms ‘n).

The first command will create a class named ms whose in-
stances are isomorphic to m. The second will create an in-
stance of ms called-n. Note however, that m is an member of
atomic-models while n is a member of class ms. Method make-
new may be em Ioyed whenever an isomorphic copy of a
model is desire If . Method make-class must be employed in
order to establish a class to serve as the kernel class for an in-
stance of kernel-models. For example, to create an instance of
broadcast-models to contain corn
existing model m, we require a c ass with m as template. Note P

onents all isomorphic to an

that we can create different instances of such kernel-models
each having a different class, but all classes having m as
tern late. For example, two networks of IBM PCs may be
mo B eled as distinct instances of broadcast-models, as in:

I

send m ibm-pc make-class ‘ibm-pcls
send m ibm-pc make-class ‘ibm-pc2s
make-broadcast ibm-pcls

1

make-broadcast ibm-pc2s 1 .

The last two commands create the distinct broadcast
models, br-IBM-PClS and br-IBM-PClS respectively. In an
exam
linke If

le application, these two broadcast models may be
together as components in a di

IF
aph-model to represent

gate-way connected local area networ s.

In
fi mode

eneral, there may be any number of instances of kernel-
having “isomorphic” classes, i.e., classes whose instances

are all isomo
members of

hit to each other. Operation of the method make-
% mel-models (referred to above) can now be ex-

plained. Consider the following:

The first command makes a hypercube-model hc-MS with
kernel class ms and init-cell an instance of ms (using mk-ent).
The second command causes the sequence:

1

send inn-cell make-new ‘Co
send init-cell make-new ‘cl
send it-m-cell make-new ‘c2 i

which creates objects CO, cl, and c2 each isomorphic to init-cell
(hence to each other) and belonging to the same class as iuit-
cell, namely the kernel class 111s. Detail algorithms for testing
model isomorphism are available in (kim, 1988).

Another development in integrating the environment is cur-
rently under way. Rozenblit and Hu (1988) are developing pro-
cedures for automatic experimental frame eneration from a
repository of basic frame frame base. Such
procedures will be employed
design models.

REFERENCES

Huan
P

Y.M., (1987) “Building an Expert System Shell for
Mode Synthesis in Logic Programming,” M.S. thesis, Dept. of
Electrical and Computer Engineering, The University of
Arizona, Tucson, AZ

Kim, Tag Gon (1988), “A Knowledge-Based Environment for
Hierarchical Modelling and Simulation”. Doctoral Disserta-
tion, University of Ariz&a, Tucson.

Kim, Ta
“Entity d

Gon, Guoqing Zhang, Bernard P. Zeigler (1988),
tructure Management of Continuous Simulation

Models”, in Proc. Summer Sim. Con&, Seattle, 1988.

Nilsson, N-J., (1980) Principles of Artificial Ztie@Inece,Tioga,
Palo Alto, CA.

Rozenblit, J-W., Zeigler, B.P., (1985) “Concepts for
Knowledge-Based System Design Environments,” Proc. of the
1985 winter Simukztzon Conference, San Francisco, CA.

Rozenblit, J.W., Zeigler, B.P. (1987) “Desi
Concepts,” in Encyclopedia of Robotics, John

n and Modelling
%iley, N.Y.

Rozenblit, J.W., Zeigler, B.P., (1986) “Entity-Based Structures
for Model and Experimental Frame Construction,” in Modell-
ing and Simulation in Artificial Intelligence Era (ed. M.S. Elzas
et. al.) North Holland, Amsterdam.

Rozenblit, J.W. (1986) “A Conceptual Basis for Integrated,
Model-Based System Design,” Technical Report, Dept. of
Electrical and Computer Engineering, Universtty of Arizona,
Tucson, January 1986.

Winston, P.H., (1984) Artificial Intelligence, Addison-Wesley,
Reading, MA.

229

Zeigler, B.P., Belogus D., Bolshoi, A, (1980) “ESP - An Inter-
active Tool for System Structuring,” Proc. of the 1980 Europeru?
Meeting on Cybernetics and Systems Research, Hemisphere
Press.

Zeigler, B.P. (1976), 77zeory of Modellin and Simulation,
Wiley, NY. (Reissued by Krieger Pub. 8 o., Malabar, FL.
1985).

Zeigler, B.P. (1984a) Multifacetted Modelling and Discrete
Event Swnulation, Academic Press, London.

Zeigler? B.P.(1984b) “S
Simulatron Models,” IIE %

stern-Theoretic Representation of
ramaction, March, pp. 19-34.

Zeiglerr B.P. (1987a), “Hierarchical, Modular Discrete Event
Modelhng in an Object Oriented Environment,” Simulation .I
Vol. 49:5, pp. 219-230.

Zeigler, B. P. (1987b). “Knowledge Representation from
Minsky to Newton and Beyond,” Applied Artijicial Intelligence,
vol.1 87-107, Hemisphere Pub. Co.

Jerzy W. Rozenblit is an assistant professor in the Electrical
and Computer Engineerin
Arizona.Hereceived hisPh.

Department at The University of
5. . in Computer Science from Wayne

State University in Detroit, in 1985. HIS research interests are in
the areas of modelling and simulation, system design, and artifi-
cial intelligence. He is a member of ACM, IEEE Computer
Society, and The Society for Computer Simulation.

Jerzy W. Rozenblit
Dept. of Electr. and Computer Engr.
The University of Arizona
Tucson, Arizona 85721
(602)621-6177

Tag Gon Kim is a research engineer at the Environmental
Research Lab of the University of Arizona. From 1980 to 1983,
he has been a faculty in the Department of Electronics and
Communication Engineering at the National Fisheries Univer-
sity of Pusan, Korea. His research interests are in the areas of
AI, modelling and simulation, computer architectures, and ex-

ert s
Fl. K

stem based real-time control system design. He received
IS P . D. in Computer Engineering from the University of

Arizona. He is a member of IEEE, ACM, and SCS.

Tag Gon Kim
ERLab, The University of Arizona
2601 E., Airport Dr.
Tucson, AZ 85706
(602)741-1990

Bernard P. Zeigler is a professor of Computer Engineer at the
University of Arizona. He is the author of Multifacetted
Modelling and Discrete Event Simulation, Academic Press,
1984, and Theory of Modelling and Simulation, John Wiley,
1976. His research interests include artificial intelligence, dis-
tributed simulation, and expert system for simulation
methodology.

Bernard P. Zeigle r
Dept. of Eiectr. and Computer Engr.
The University of Arizona
Tucson, AZ 85721.
(602)621-2108

230

