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ABSTRACT 

The paper discusses work in developing a prototype of an 
intelligent software environment to support system design and 
simulation activities. Knowledge-Based System Design and 
Multifacetted Modelling are foundational basis for the 
develoument. The Dauer brieflv mesents the basic tenets of the 
under$ing methodoiogies. 0 ihkn describes the current state 
of the Implementation. 

1. ELEMENTS OF KNOWLEDGE-BASED DESIGN AND 
SIMULATION 

Despite great strides in development of computational tools 
such as high performance workstations intended to help to 
cope with the rising complexi 

x remains error prone. Given t 
of designs, the design process 

e often severe constraints im- 
posed by cost, knvironmental impacts, safety regulations, etc., 
It is a fact of life that designers are forced to make com- 
promises that would not be necessary in an ideal world. 
Simulation is increa:jingly recognized as a useful tool in assess- 
ing the quality of sub-optimal design choices and arriving at ac- 
ceptable trade-offs. 

Our research aims to develop and implement a methodol- 
ogy of design in which design models can be synthesized and 
tested within a number of objectives, requirements, and con- 
straints. This framework, termed knowledge-based system 
design and simulation, is presented in detail in (Rozenblit and 
Zeigler, 1985, 1988; Rozenblit, 1985). Here, we summarize its 
basic tenets. 

Design objectives (understood here in a broader context 
that includes requirements and constraints impinging the 
design process) drive three fundamental processes in the 
methodology: first,, the facilitate the construction, retrieval, 
and manipulation of esign entity structures (Rozenblit and B 
Zeieler 1986. 1988’). The desien entitv structure is based on a 
tre&ike’gribh tha’t encompa&es the,boundaries, decomposi- 
tions and taxonomic relationships that have been perceived for 
the system being modelled. An entity signifies a conceptual 
part of the system which has been identified as a component in 
one or more decompositions. Each such decomposition is 
called an asoect. Thus entities and aspects are thought of as 
components’and decompositions, resiectively. In ad&ion to 
decompositions, there are relations termed specializations. A 
speciahzation relation facilitates representation of variants for 
an entity. Called specialized entities, such variants inherit 
properties of an entity to which they are related by the 
specialization relation. 

As 
Coup mg constraints restrict the way in which components F 

ects can have coupling constraints attached to them. 

(represented by entities) identified in decompositions (repre- 
sented by aspects) can be joined together. 

In addition to coupling constraints, there are selection con- 
straints in the system entity structure. Selection constraints are 
associated with specializations of an entity. They restrict the 
way in which its subentities may replace it in the process of 
model construction. Synthesis constraints restrict ways in en- 
tities selected from specializations may me configured to re 
resent the structure of the system bemg designed (Rozenb It f - 
et. al., 1986, Rozenblit and Huimg 1987). In Section 2, we shall 
focus on the process that employs the production rule for- 
malism to support automatic selection of entities and synthesis 
of a design mode1 structure. We call this process constraints- 
driven model structure generation. 

The design objectives also serve as a basis for the specifica- 
tion of the genenc observation 
(Zeigler, 1984a, Rozenblit am P 

antes and experimental frames 
Zeigler, 1988). Generic frame 

consist of input, output, and summary generic variable types. 
The variable 

T 
es express performance mdices associated with 

a given model mg objective. Experimental frames are instan- 
tiated generic frames wherein variable types are associated 
with model components and execution run conditions are 
defined in experiment initialization, continuation, and termina- 
tion sets (Zelgler, 1984a). They are employed to evaluate per- 
formance of design models. 

To perform the evaluation a simulation environment is in- 
voked. A software shell called DEVS-Scheme is used as the 
simulation engine. DEVS-Scheme (Zeigler 1986, 1987a) is a 
knowledge-based simulation environment for modelling and 
design tliat facilitates construction of families of modeli in a 
form easily reusable by retrieval from a mode1 base. The en- 
vironment surmorts construction of hierarchical discrete event 
models and ii -written in the PC-Scheme language which runs 
on IBM compatible microcomputers and on the Texas Instru- 
ments Ex lorer. 

R DEVS-SC 
Model specification and retrieval in the 

eme simulation environment is mediated by a 
knowledge representation component designed using the sys- 
tem entity structuring concepts. A user prunes the entity struc- 
ture obtaining a reduced structure that specifies a hierarchical 
composition Gee. U 
system searches IT 

on invoking the trafisform procedure, the 
t e model base for model components 

soecified in the model comuosition tree and svnthesizes the 
de&red mode1 by coupling’them together in g hierarchical 
manner. The result is a discrete event simulation model ex- 

F 
ressed in DEVS-Scheme which is ready to be executed to per- 
orm simulation studies. 

The basic organization of software supporting our 
framework is depicted in Figure 1. In the ensuing sections, we 
provide details concerning both the model structure genera- 
tion and DEVS-Scheme simulation engine. 

2. MODEL STRUCTURE GENERATION 

In this section we focus on the process that employs the 
pro+tion rule formalism to sup 
entItles from taxonomic relations 

ort automatic selection of 
Ii* ups and synthesis of struc- 

tures underlying the simulation models. 
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Figure 1 Organization of Software under Development. 

Selection rules are associated with the entities whereas the 
synthesis rules are attached to the aspects of the domain entity 
structure. Each rule set can be regarded as a module. There- 
fore the entire rule base is constructed in a hierarchical manner 
imposed by the entity structure. We believe such a hierarchical 
structure is necessary to increase the efficiency of pruning in 
systems with a large number of rules. 

To reduce the number of links between modules in the 
hierarchically organized rule base, we allow for multiple ac- 
tions (conclusions) in the rule syntax. To reduce the number of 
modules, we connect the premises with the lo 
“and”. The template rule syntax has the following 4 

ical “or” or 
orm: 

if object-attribute-l = value-l and/or 
object-attribute;! = value-2 and/or 

. . . . . . . . . 

. . , . . . . . . 
object-attribute-n = value-n 

then conclusion-l = value-l (cfl) and 
conclusion;! = value-2 (cf2) and 

. . . . . I . . . . . 

The process consists in specifying the system entity structure 
for a given modelling problem. Then, a knowledge base that con- 
tains rules for selection and configuration of the entities is con- 
structed. The modeller invokes the inference engine which, 
through a series of queries based on the constraint rules, allows 
him/her to consult on an appropriate structure for the modelling 
problem at hand. The result is a recommendation for a model 
corn 

ii 
osition tree (Zeigler, 1984a). The composition tree is used 

byD VS-Schemeenvironmenttoretrievemodelsfromthemodel 
base. The retrieved models are automatically linked in a hierar- 
chical manner according to the coupling constraints. Figure 2 il- 
lustratesthemodelstructure enerationprocessintherule-based 
shell called MODSYN (MO d el Synthesizer). 

We now proceed to briefly describe MODSYN. The basic 
system’s components are the knowledge base and the inferenc- 
ing shell. 

Knowledge Base Construction 

The process of knowledge base construction begins with set- 
ting up the system entity structure for the model being con- 
structed. At the present time we use previously developed 
tools for entity structuring (ESP4 - Entity Structuring Program 
(Zeigler et. al., 1980)). The system entity structure is a basis for 
what we term a concepfud network. This is a declarative repre- 
sentation of modelling domain objects. 

The production rule formalism is used to express modelling 
objectives, constraints, and requirements. Domain experts 
provide knowledge about admissible choices of design com- 
ponents and therr combinations, design data regarding ex- 
pected performance given a 
A detailed example of a 

artmular component choice, etc. 
ru e base for a local area network P 

design problem is given in (Rozenblit and Huang 1987). 

TO prune the system entity structure, we generate the fol- 
lowing rule sets: 

Selection rule set: each selection rule stands for a choice of 
an entity in a specialization. 

Synthesis rule set: after selection rules have been applied to 
the entity structure, synthesis rules ensure proper configura- 
tion of the selected entities. They also coordinate the actions of 
the seIection rules. Certainty factors are are employed to indi- 
cate the applicability of the rules. 

where cfl,cf2,..., are certainty factors whose values range 
from 0 which stands for no recommendation, to 1 which 
denotes a strong recommendation. 

Inference Engine Design 

MODSYN shell has been implemented in Turbo Prolog and 
runs on IBM PC compatible machines. The inference engine 
uses the strategy of “generate and test”, i.e., it takes the imtial 
data from the user and the hypothesis generated by the 
knowledge base to prune the search space tree. In other words, 
the engine attempts to match the data with the information 
contained in the knowledge base. If the data match, the engine 
climbs up the tree, trying to prove the next hypothesis. We use 
aspect ordering in order to eliminate aspects not desirable in 
the model we are constructing, and s 
pruning to select unique entitles for t g 

ecialization-oriented 
e model composition 

trees. For a complete description of the shell we refer the 
reader to Huang (1987). 

Figure 2 Model Structure Generation in MODSYS. 
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We have completed testing the shell and are currentlry port- 
ing it to a Scheme environment. This will provide a front end 
model processing capabilities for simulation in DEVS-Scheme. 

3. HIERARCHICAL MODEL CONSTRUCTION IN 
DEW-SCHEME ENVIRONMENT 

DEVS-Scheme Environment -- 

The Discrete Event System Specification (DE,VS) for- 
malism introduced by Zeigler (1976) provides a means of 
specifying a mathematical object called a system. Basically, a 
system has a time base, inputs, states, and outputs, and func- 
tlons for determining next states and outputs given current 
states and inputs (Zeigler, 1984h). 

The DEVS formalism underlies DEVS-Scheme. a general 
purpose environment for constructing hierarchic& &Crete 
event models Ueieler. 1987a). DEVS-Scheme is written in the 
PC-Scheme ianiuage which runs on DOS compatible 
microcomputers and under a Scheme interpreter for the Texas 
Instruments Explorer. DEVS-Scheme is implemented as a 
shell that sits upon PC-Scheme in such a way that all of the un- 
derlyin 
guage t! 

Lisp-based and objected oriented programming lan- 
eatures are available to the user. The result is a 

powerful basis for combining AI and simulation techniques. 

The architecture of the DEVS-Scheme simulation system is 
derived from the abstract simulator concepts (Zeigler, 1984a) 
associated with the hierarchical, modular DEVS formahsm. 
Since such a scheme is naturally unplemented by multiproces- 
sor architectures, models developed in DEVS-Scheme are 
readilv transDortable to distributed simulation systems 
design&d accoiding to such principles. Finally, since structure 
descriptions in DEWS-Scheme are accessible to run-time 
modification, the environment provides a convenient basis for 
develooment of learning or evolutionary models which adapt 
or chakge their own internal structure. - 

DEVS-Scheme i:s rincipaly coded in SCOOPS, the object- 
oriented superset of F C-Scheme. All classes in DEVS-Scheme 
are subclasses of the universal class entities which provides 
tools for manipulating objects in these classes (these objects 
are hereafter called entities). The inheritance mechanism en- 
sures that such general facilities need only be defined once and 
for all. Entities of a desired class may be constructed using a 
method mk-ent and destroyed using a method destroy. More 
specifically, mk-ent makes the entity and places it in the list of 
members of the given class, Esr; destroy removes the entity from 
this Iist. Every entity has a name, assigned to it upon creation. 

Models and ~~xessors. the main subclasses of entities. 
provide the bask constructs needed for modelling and simulai 
tion. Models is further specialized into the major classes 
atomic-models and coupled-mode& which in turn are spedal- 
ized into more specific cases, a 
tinued indefinitelv as the user bm ds UD a soecific model base. 7 

recess which may be con- 

Class processors, bn the other hand, his thiee specializations: 
simulators, co-ordinators, and root-co-ordinators, which serve to 
handle all the simulation needs. Detail description of the class 
hierarchy in DEVS-Scheme is available in (Kim, 1988). 

Hierarchical Model Construction 

The DEVS-Scheme environment rovides layer of objects 
and methods which may be used to ac r leve more powerful fea- 
tures. In paticular, a second layer, ESP-Scheme, 
system entity structure to synthesize and organize 
models called the model base. Complete description of 
Scheme is beyond the scope of this paper. Details are available 
in (Zeigler, 1987b; Kim, 1988; Kim et. al. 1988). 

r- WBASE ---, 

“t-l”t-*t” mid-*te. 

L 
I ti.-+lp.Pc~ u*.-c.ll”,W I . . ..I. 

- ESP-SCHEME 

SCHEW-scm 

Figure 3 DEVS-Scheme Modeling /Simulation Environment. 

The knowledge base framework shown in Figure 3 is intended 
to be generative in nature, i.e., it should be a compact repre- 
sentation scheme which can be unfolded to generate the family 
of all possible models s 
model base. The user, w il 

nthesizable from components in the 
ether human or artificml, should be a 

goal-directed agent which can interrogate the knowledge base 
and s 
ly re r 

thesize a model using pruning operations that ultimate- 
uce the structure to a composition tree. 

As shown in Figure 3, model objects expressed in DEVS- 
Scheme must reside in working memory in order to be simu- 
lated. Such an object can be reconstructed from disk file 
definitions by direct evaluation (the only possibility for atornic- 
models) or by applying the transform function to a pruned en- 
tity structure in working memory. The pruned enti 

r 
structure 

is m turn obtained b pruning an entity structure, se ecting one 
possibility from who e family sparmed by the structure. r 

As it traverses the pruned entity structure, transform calls 
upon a retrieval process to search for a model of the current 
entitv. If one is found. it is used and transformation of the en- 
tity sbbtree is aborted: Retrieve looks for a mode1 first in work- 
ing memory. then in model definition files, and finally. 

r&ided F th>i the entity is a leaf, in pruned-e&y structu% 
lies. The latter mode requires an invokation of transform 

which is executed in a separate Scheme environment so as not 
to interfere with the parent environment (see Kim, 1988 for 
greater detail). 

Man&+ation of Complex Hierarchical Structures 

Since models in DEVS-Scheme mav be comnlex. hierarchi- 
cal structures special attention has bken paid to ieplicating 
such structures. To test the methods for creating copies of 
models we employ a novel approach: we implemenied a paral- 
lel set of methods for checkmg isomorphism between models. 
The criteria for correct coovine are formalized in the 
isormphism methods. For a co$ng-method to be valid, a copy 
of a model must be isomorphic to the original as determined 
by the isomorphism test. 
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As we have seen above. isomorohic copies of existinr! models 
are needed to conveniently con&&t complex coupled-models. 
DEVS-Scheme provides two main alternatives for creating such 
comes. The first method. make-new. when sent to a model creates 
an’isomorphic copy of the original which is an instance of the 
same class as the ori 

a digraph-models, and t 
inal. The primary classes (atomic-models, 
e specializations of kernel-mod&) require 

their own versions of the make-new method since each has fea- 
tures that are uni 

1 
ue to itself. (Sub-classes of these 

fl 
rimary clas- 

ses,iftheydonota dadditionalstructure,caninheritt emake-new 
method from the primary class.) Since coupled-mod& instances 
arehierarchicalinstructure,themake-newmethodmustberecur- 
sive in the sense that components at each level must replicate 
themselves with their own make-new methods. 

4. CONCLUSIONS 

This paper further extends our research into the methodol- 
ogy of model development and simulation. We have aug- 
mented system entity structure pruning algorithms with a 
rule-based process for selecting and synthesizing model ObJects 
representing model components. This process 1s driven by the 
modelling project’s requirements and constraints. Therefore, 
we are now able to assist the modeller in choosing and proper- 
ly configuring the model components. 

Implementation of the DEVS hierarchical, modular for- 
malism in DEVS-Scheme has ooened UD a wealth of DOS- 
sibilities for investigating methodologyrbased suppo;t of 
modelling and simulation. The symbol manipulation and ob- 
ject-oriented facilities of Scheme make it relatively easy to 
code complex structures and operations on them. Since 
Scheme. (as is its parent, LISP) is a “language to develop lan- 
guagfs In, ” an environment can be evolved m which tools are 
readrly developed and integrated. As the range of loos dis- 
cussed here indicates, we have found Scheme to be an excel- 
lent medium for tool development. In contrast a compiled 
language can not as easily support such environment evolution. 

The second method. make-ckzss. when sent to a model, 
creates a class definition with the ori 

? 
inal model as template. 

Instances created in such a class wt 1 be isomorphic to the 
original. However, in contrast to the effect of make-new? such 
instances are members of a different class than the original. 
For example, for an atomic-model m, consider the following: 

send m make-class ‘ms) 
mk-ent ms ‘n). 

The first command will create a class named ms whose in- 
stances are isomorphic to m. The second will create an in- 
stance of ms called-n. Note however, that m is an member of 
atomic-models while n is a member of class ms. Method make- 
new may be em Ioyed whenever an isomorphic copy of a 
model is desire If . Method make-class must be employed in 
order to establish a class to serve as the kernel class for an in- 
stance of kernel-models. For example, to create an instance of 
broadcast-models to contain corn 
existing model m, we require a c ass with m as template. Note P 

onents all isomorphic to an 

that we can create different instances of such kernel-models 
each having a different class, but all classes having m as 
tern late. For example, two networks of IBM PCs may be 
mo B eled as distinct instances of broadcast-models, as in: 

I 

send m ibm-pc make-class ‘ibm-pcls 
send m ibm-pc make-class ‘ibm-pc2s 
make-broadcast ibm-pcls 

1 

make-broadcast ibm-pc2s 1 . 

The last two commands create the distinct broadcast 
models, br-IBM-PClS and br-IBM-PClS respectively. In an 
exam 
linke If 

le application, these two broadcast models may be 
together as components in a di 

IF 
aph-model to represent 

gate-way connected local area networ s. 

In 
fi mode 

eneral, there may be any number of instances of kernel- 
having “isomorphic” classes, i.e., classes whose instances 

are all isomo 
members of 

hit to each other. Operation of the method make- 
% mel-models (referred to above) can now be ex- 

plained. Consider the following: 

The first command makes a hypercube-model hc-MS with 
kernel class ms and init-cell an instance of ms (using mk-ent). 
The second command causes the sequence: 

1 

send inn-cell make-new ‘Co 
send init-cell make-new ‘cl 
send it-m-cell make-new ‘c2 i 

which creates objects CO, cl, and c2 each isomorphic to init-cell 
(hence to each other) and belonging to the same class as iuit- 
cell, namely the kernel class 111s. Detail algorithms for testing 
model isomorphism are available in (kim, 1988). 

Another development in integrating the environment is cur- 
rently under way. Rozenblit and Hu (1988) are developing pro- 
cedures for automatic experimental frame eneration from a 
repository of basic frame frame base. Such 
procedures will be employed 
design models. 
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