Experimental frames for
distributed simulation architectures’

Jerzy W. Rozenblit
School of Engineering and Computer Science
Oakland University
Rochester, Michigan 48063

ABSTRACT

The paper considers the experimentation aspects
of the objectives-driven modelling methodology in the
context of distributed simulation. A concept of
expressing modelling objectives through the notion of
a experimental frame is discussed. A top-down frame
decomposition methodology is proposed. Such a
methodology results in an abstract distributed
simulator architecture that directly implements the
principle of model/experimental frame separation

(6,10) .
INTRODUCT I ON

Modelling and simulation designates a host of
activities associated with constructing models of real
world systems and simulating them on a computer. Such
activities wusually comprise the following stages:
system decomposition, model construction, model and
experimentation specification. In the paper we focus
on the exper imentation aspects of modelling
methodology. The purposes for which the simulation
study is undertaken are operationalized in the process
that results in a formal definition of an experimental
frame. We employ the DEVS (Discrete Event System)
formalism to define the structural representation of
an experimental frame as a coupling of a discrete

event generator, acceptor and transducer (10) .
Motivated by the foundations underlying the
objectives-driven modelling methodology as defined by
Zeigler, we define distributed exper imentation

paradigms and provide a means of top-down
decomposition of experimental frames and mapping of a
decomposed frame onto components of a distributed
simulator. This in turn leads to decentralization of
experimentation control in distributed simulation
systems.

OBJECTIVES-DRIVEN MODELLING METHODOLOGY

The conceptual basis for a methodology of model
construction in which the objectives of modelling play
the key and formally recognized role (therefore called
objectives-driven methodology) was laid down by
Zeigler (10).

We shall begin with theoretical foundations of
the objectives driven methodology. The basic process
in such a methodology is that of defining the
experimental frame i.e., a set of circumstances under
which a model or real system is to be observed and
experimented with. This process comprises the

* This research was supported by NSF grants MCS
8305168, "Theory of Discrete Event Models: Distributed
Simulation of Muitilevel Models'", and NSF grant DCR
8407230, "Distributed Simulation of Hierarchical,
Multilevel Models" during the author's tenure with
Wayne State University, Detroit, Michigan 48202.

14

following steps. The purposes (objectives) for which
the simulation study is undertaken lead to asking
specific questions about the system to be simulated.
This in turn requires that appropriate variables be
def ined so a modeller can answer these
guestions. Ultimately such a choice of variables is
reflected in experimental frames which aliso express
constraints on the trajectories of the chosen
variables. The constraints on observations and control
of an experiment should be in agreement with the
modelling objectives. A choice of relevant variables
constitutes the first important stage of experimental
frame specification. The next step is to categorize
the variables into input, output and run control
categories and place constraints on the time segments
of these variables. Formally, the experimental frame
specifies the following seven tuple:

EF=<T,I ,O,C,()l .QC,SU>

where T is a time base

| is the set of input variables

0 is the set of output variables

c is the set of run control variables

QI is the set of admissible input segments,
t.e. a subset of all time segments over the
crossproduct of the input variable ranges

Q. is the set of run control segments, i.e.
a subset of all time segments over the
crossproduct of the control variable ranges.
SU is a set of summary mappings

The 1/0 data space defined by the frame is the set of
all pairs of 1/0 segments:

0={(wsp) | we (T.X) , pe (T,Y) and dom () =dom {p) } .

where X and Y are input and output value sets,
respectively.

The reader is referred to (6,10) for detailed formal
definition of an experimental frame. We shall, however,
explain the concept of run control variables and
segments. In the case of experimentation on a real
system, there is no concept of initial state. Thus,
specifying the input segment in the frame is not
sufficient to determine the output of the
system. Since experimental frames should have an
interpretation for both the model and the real system,
we should provide a meaningful concept of restricting
the initial state for the model. The notion of run
control variables serves this purpose. Not only do the
run control variables initialize the experiments, they
also set up the conditions for <continuation and
termination. The set of initialization conditions
constitutes a subset of the control space called
INITIAL. Similarly, the subset of the <control space
defined by the termination conditions is called
TERMINAL. These two sets have the following impact on
the experimentation. An experiment starts with the
control wvariable wvalues in the INITIAL set and
terminates as soon as the TERMINAL subset s
entered. In other words, it is continued as long as

the values of the control variables stay in the subset
called CONTINUATION. Thus, we arrive at the definition
of the set of run control segments
OQe={plpr<t, t>-->2
and p(t.) e INITIAL u{t) ¢CONTINUATION for te[t.,t.)}.
where Z=crossproduct of the ranges of individual
control variables.

STRUCTURAL REALIZATION OF EXPERIMENTAL FRAMES

The concept of realization of any system is
concerned with providing the internal structural
description of the system given its external
behavioral 1/0 relation.

Zeigler (10) suggests that when realizing the
input segments' component of an experimental frame we
can engage in experimentation by generation or
acceptance. In the case of generation we realize the
set of admissible input segments by employing a
special class of a DEVS system, called generator. Such
a generator starts from a suitable initial state and
runs for a desired observation interval. In
experimentation by acceptance, we only collect data
from the real system that is of interest to us. Thus,
the /0 data space determined by the input segments'
acceptor is wusually a subset of the data space
available from the real system. We observe real
system's 1/0 pairs (uw,p) and accept such pairs if, and
only if, they belong to the data space D defined by
the frame.

The appropriate system for realization of run
control segments is again the acceptor. An acceptor
should be 1linked to a model in order to monitor the

run control segments QC. Iin the case of QC specified

by INITIAL and CONTINUATION subsets of the contro!
space Z, the acceptor can take the following special
form. Consider such a device receiving ¢ (T,Z)}) as
its input segment. In its initial state g it checks
whether the initial input value x{0) is in INITIAL. If
so, it immediately transits to state g, and stays

there as long as the current input value pkt) is in
CONTINUATION. Both 9 and q, are acceptance
states. If the initial input is not in |INITIAL the

system transits immediately from q, to a dead state
as it does likewise from as if an input value in

TERMINAL is received.

For gathering summary statistics we aim to use a
transducer. The DEVS transducer is defined as a
discrete event system with a designated initial
state. When started in such a state it maps its input
segments into output trajectories.

Having provided the framework for input/control
segments generation and/or acceptance we arrive at the
structural realization of an experimental frame as
illustrated in Figure 1.

The experimental frame E is realized by the
parallel coupling of the DEVS generator S , DEVS
acceptor S and DEVS transducer This®type of
realization allows for explicit separaEnon of models
and their related frames. The need for such a
separation stems from two reasons. First, it is
desirable to minimize the effort of model entities to
gather data about themseives. Secondly, the model-
based simulation methodology suggests the following
framework for simulation program development
(6,10). In order to support the modular design there
should be a model and experimental frame specification
modules, and an execution control module responsible
for selecting a finite set of all possible experiments

15

MODEL
input output
seg. seg.
cont.l seg.
Sg Sa St

Fig. 1 Realization of an Experimental Frame
to be executed by the computer. Building on the above
formalization of the experimental frame concepts, in
the ensuing sections we investigate the top-down frame

decomposition methodology and a
hierarchically specified experimental
distributed abstract simulator.

mapping of
frames onto a

HIERARCHICAL SPECIFICATION OF EXPERIMENTAL FRAMES

We shall base our considerations on the
foundations underlying specification of DEVS systems
in modular and hierarchical forms (10). Modular
construction refers to the specification of a model
and an interconnection of its components. Hierarchical
model specification results from modular construction
of component models to several levels of
recursion. Such a specification is based on a
composition tree in which the nodes are labelled by
component systems specifications, and couplings of,
and correspondences of, specifications at immediately
subordinate level. This tree concept is employed to
specify hierarchically constructed DEVS models. Such
models are then mapped onto a hierarchical
architecture of microprocessors (for details see
(2,12)). To facilitate simulation studies of
distributed systems it is necessary to provide an
appropriate specification of the experimentation
control.

Top-down Decomposition of Experimental Frames

In order to undertake a simulation study of a
distributed model we have to determine experimental
frames that reflect the objectives of the study and
perform the experiments accordingly. Thus, an
experimental frame module ought to be synthesized and
coupled with the abstract simulator of a
hierarchically specified distributed model as depicted

MO Model structure

Frame

S

G

simulator
Fig. 2 Centralized Experimentation Control in
Distributed System

%

in Figure 2.

Recall from the definition of the experimental
frame realization that each component of the system S
(i.e. generator, acceptor and transducer) is defineg

as a DEVS system and thus may be realized as a
hierarchical coupling of systems. At this point
several alternatives for experimentation control
arise. In the centralized architecture as illustrated
in Figure 2 the control is concentrated within the
master module while the network simulators are

responsible for execution of model component dynamics.

The coupling of the frame module § and the
abstract simulator are defined as fo%lows: the
generator S. originates the messages (x,t) that are
received by the root coordinator C. (for description
of the coordinator see (10,12)) as external events to
the model. The output statistics are gathered by
collecting the (y,t) message from the root
coordinator. This message defines an input signal to
the frame transducer S_. It carries the information
corresponding to the changes of output variables in
each subordinate DEVS component. (For the sake of
clarity we shall not employ a separate transducer to
process the output segments and produce summary
mappings. The extension that implements such a device
is straightforward).

control
abstract

The realization of experimentation
requires that the coordinator of each
simulator be extended as follows. Upon receipt of a
(x,t) or {x,t) signal a coordinator transmits (m,1t)
messages to its subordinates requesting that each
returns the message (c,t) corresponding to a change
(if any) of control variables' values of an associated
DEVS. The global message (c,t) is collected by the
root coordinator and processed by the frame acceptor
S, which determines whether the run segments
ITe within an admissible range.

control

Such a centralized
attractive since it

architecture may appear
involves a single experimental
frame module directty linked to the global
coordinator., However, the realization of the
components S, SA and S_ might be very complicated due
the compléxity of the functions that they
perform. Secondly, it is our objective to define a
hierarchical frame representation that can be mapped
onto a distributed simulator. The components of an
experimental frame should be distributed as well and

their ultimate software and/or hardware realization
can be constructed by appropriately linking off-the-
shelf elements. In fact the realization of the

experimentation in a similar context is discussed by
Dekker (the concept of a cosystem) and Oren (GEST
implementation of local frame segments) (1,5).

We proceed to establish the principles of top-
down decomposition of experimental frames. Let us
consider the aspect of input generation first. Assume
that the model M has two components M, and M,. in the
centralized mode of experimentation a generator G has
to be defined and coupled to M through its input
ports. Figure 3 depicts the above situation. In order
to realize G as a coupling of component, possibly less
complex, generators we have to identify the structure
of ' the input segments received by the model. In the
most general case we can assume that an input segment
is decomposed into mutually independent segments ¢
and ¢, that are applied directly to model components
M] and M, and the segment ¢_ which accounts for input
to their® coupling i.e. M.. In other words &

generates segments w=(w.,w.,w.). We decompose G into
generator G,, G, and G, and coufle them with the model
components accordifigly. The hierarchical

w1

wo

w2

S

Fig. 3 Decomposed Input Generator

specification of the input generator is given by the
following theorem:

Theorem 1. The parallel coupling of the DEVS generator
(4 ||G1||G2) is a hierarchical decomposition of the
DEQS generator G if it simulates G.

Proof: The parallel coupling of component generators
is a DEVS in a modular form (10) in which no component
is an influencee or an influencer of another
component. The simulation relation is defined as a
homomorphism between two DEVS systems. (For detailed
proof see (7)).

The physical realization of the above
decomposition can be achieved by applying the DEVS
projector to the global input segment » (2).

Notice that any model component may itself be
composed of submodels. Thus, the corresponding
generator is decomposed in the manner described
above. Such a process is carried out recursively down

to the leaf nodes of the model composition tree.

The decomposition process of the output
transducer is similar to that of the input generator.
The transducer T collects global output segments
p=(p ’p]’PZ) where , may represent correlated output
of tRe components M], M, while p, and p, @re mutually
independent, local oufput segments. Wé carry out the
decomposition of the output transducer as follows. T

is decomposed into TO, T‘ and T, that are coupled to

the model components "M ., M and M,, respectively
. 0 1 2

(Figure &4).

The realization of such a decomposition process
can be achieved by using the output DEVS abstracter

(2). The hierarchical specification of the output
T
P1
T
Po
Ty
P2
T2

Fig. & Decomposed Output Transducer

transducer is defined in the manner analogous to the
specification of the input generator.

Notice that the above specification establishes
observation frames at any two subsequent levels of the
system composition tree and that the process of
associating transducers with model components can be
carried out recursively down to the leaf nodes of the
tree.

The run <control acceptor A for the model M, is
decomposed in exactly the same way as the ou?put
transducer.

and A, monitor the
Egr gy and o ous,
checEs for acceptance

The component acceptors A., A
run contro] trajectories
respectively. Conceptually, A

of the global run control segment pertaining to M
while the components acceptors monitor the contro
segments local to M and M,. Once again this

establishes the specification framework for any two
subsequent levels of the composition tree and this
process is recursive with respect to the number of
levels in the tree. The hierarchical specification of
the run control acceptor is analogous to the
specification of the transducer.

Having provided the framework for the top-down
decomposition of input, output and run control
components of an experimental frame we assert that the
hierarchical specification of the experimental frame
is given by the following proposition.

Proposition

Let a hierarchical DEVS structure be given by the
composition tree Tree(S,C,M)=<T,m>, where S is the set
of DEVS models, C={C|C=<D,{Ia}, {Za}>}, where C is a

coupling scheme consisting of an indexing set B, an
indexed family of subsets of D and an indexed family
of functions; M is a set of DEVS isomorphisms (10). A
coupling scheme C consists of an indexing set, an
indexed family of subsets of D (the potential
influencee sets), and an indexed family of functions
(the potential output transtation sets).

We define the associated experimental frame
composition tree as the following tuple:

ExpTree (E,C,M)=<T',m'>

where T' s a finite tree, m' is a mapping, the node

labelling of T' subject to constraints:

m': interior_nodes(T')->E x C x D

m': leaf_nodes (T') ->E

m' assigns to each interior node (including the root)
a triple consisting of a frame specification, a
coupling scheme C for coupling the frame

specifications at a node and the successors of the
node, and the correspondence D for comparing the frame
specification with the resultant of the coupling of

its components. The leaves receive only the atomic
frame specifications which are not further
decomposable. D is a set of correspondences underlying
the morphisms in M, in particular the frame

derivability relations (6,10). The experimental frame
composition tree is depicted in Figure 5.

The «coupling scheme C is defined as a
composition of frame components i.e. generators,
transducers and acceptors. Since the frame components
are DEVS systems, the coupling can be carried out by
using the DEVS specification in the modular form

paralilel

17

E=Coupling(El,EO,Eq)

529 Fo1 ©Egg "Egp

- S. system spec. at level i

- Ei frame spec. at level i

Fig. 5 Experimental frame Composition Tree

(10). The resulting frame composition tree is
structurally isomorphic with the model tree. This fact
facilitates the mapping of a hierarchical frame
specification onto the abstract hierarchical
simulator. The ultimate purpose of such a combined
mode/frame distributed architecture is to realize it
on a network of microprocessors. In fact a study of
this subject is under way and 1is presented in the
companion paper (3).

MAPPING HIERARCHICAL SPECIFICATION OF
FRAMES ONTO THE ABSTRACT SIMULATOR

EXPERIMENTAL

The design of a
decentralized frame specification
corresponding abstract distributed simulator
satisfy the following requirements:

methodology for mapping the
onto the

should

1.) The coupling of the simulator and frame must be
closed i.e. must result in an abstract simulator.

2.) The degree of decentralization of experimentation
should be maximal. In other words, a means of
assigning an experimental frame local to each
model component should be provided.

3.) The overhead generated by the mapping should be
minimal, i.e. the degree of parallelism achieved
by the hierarchical architecture of the simulator
without the frame components should not decrease
below a certain level of satisfaction.

Motivated by the above specified guidelines we
suggest the following procedure for establishing the
frame/abstract simulator mapping.

At the level [of the model composition tree, a
DEVS simulator of a model component must now simulate
the model with a pertinent experimental frame. Recall
that the frame components are defined as DEVS systems

and thus can be simulated by an abstract simulator as
well. However, coordination is required between the
simulators of the model, generator, acceptor and
transducer. To provide for such a coordination we
introduce the concept of a model/frame coupler
(MFC) . An MFC is a coordinator (as defined in the
abstract simulator (2,10,12})) which performs the
following functions. At the level local to its frame
and model (i.e. level () it sends the (%,t) message
to the frame generator. This message results in an

internal transition of the generator and a message
(y,t) being output by the generator. This (y,t)
message is sent back to the model/frame coupler and

forwarded directly as an external event (x,t) to the
simulator of the model component. The MFC also
forwards a local (y,t) message generated by the model
simulator, to the local frame transducer and a (c,t)

message to the local acceptor, respectively. Notice, coordinator. It transmits the generator's outputs as

that both the transducer and acceptor are passive external event messages to the coordinator C It also

DEVS systems (10). This significantly simplifies the receives the global (y,t) output and (c, 9) control

design of the MFC since it has to schedule the messages. These messages are sent to the transducer

internal transitions of only one active component i.e. and acceptor, respectively.

the generator. The coupler serves also as a

communication port with the parent coordinator It is easy to notice that the mapping of a

specified at level (-] of the simulator hierarchy. lts hierarchically specified frame onto a distributed

function as an i/o port consists in transducing the simulator (if defined in the above terms) can be

(#,t), (x,t), (o,t) and (m,t) signals to(from) the carried out recursively.

parent coordinator from(to) the simulator of the model

component at the subordinate level. At this point we should examine the proposed

coupling and determine to what extent it is consistent

To exemplify the discussion let us consider the with the requirements that we specified at the

simulator presented in Figure 6. (Figure 2 illustrates beginning of this section.

the model structure). The coupler MFC, coordinates the

the simulator of the model component M and The mapping results in an abstract simulator that

corresponding simulators of G,, T and AL It correctly simulates the combined modei/frame DEVS. To

broadcasts messages (%,t) to the generator which verify this, observe that the components of frames are

responds by producing an output signal (y,t). This simulated by the DEVS simulators and that the model/

output signal is in turn transduced by MFC. to the frame couplers are coordinators. The correctness of

simulator M . The coupler collects the messages (y,t) the DEVS simulator and coordinator has been proven in

and (c,t) from M, and transduces them to T] and A, (10) . (For detailed proof of the correctness of the

respectively. The composition of MFC M., G,, T, and mapping see (7))

constitutes the simulator for the component M. with
i{s corresponding experimental frame E denoted as
M]EE . The simutator M_&E_ is realized in the same
manner. Both simulators® are coupled by the standard
(in the sense of Zeigler's definition) coordinator C
The role of MFC's in the coupling is restricted
serving as input/output ports to the combined model/
frame simulators They simply transduce the messages
between and M and M Notice, however, that in
spite of tRe fact that C, i§ the root coordinator it
is still necessary to simulate the mode]l M. and its

Since a means for coupling of an experimental
frame to a model component at any Jlevel of the
hierarchy are provided, it 1is apparent that the
?' maximum decentralization of the experimentation can

° be achieved. We have not established yet to what
extent the mapping of frames onto the abstract
simulator effects the degree of parallelism provided
by the simulator's architecture. It should be noted,
however, that the communication between a model and
its frame is restricted to lateral exchanges of

frame E To achieve that an MFC is created to
coordnnate the actions of the similators M G message? through the ,MFCI Further study of the
and A, . This model/frame coupler is linked to the roo? properties of the coupling is currently under way (7).

Mo &E

of MFC Jo—

'____ o/
M&(E | 8E,)
Co
Ml&E1 MZ&EZ
MFC, MEC,

G A T
0 Gl A | Ty Gy | | My | | 4, T, 0 0

Fig. 6 Abstract Simulator of Distributed
Model with Experimental Frames.

18

An alternative approach to realization of the
frame/simulator mapping is based on the same principle
of behavior. The frame components are embodied in the
coordinators at each level. Namely, each coordinator
is augmented with the functions performed thus far by
the model/frame coupler at the level subordinate to
that coordinator. Such a realization decreases the
global number of coordinators wused at the cost of
increased complexity of each wunit. The performance
measures of both architectures are still being
investigated (2,7,11).

EXECUTION CONTROL IN THE DISTRIBUTED ABSTRACT
SIMULATOR

Recall that the third component, after model and
experimental frame specifications, to a simulation
program is the execution control module (10). This
module is responsible for selecting the finite set of
all possible simulation runs that are to be executed
on the model with its frame. To start a simulation run
the execution control module has to set the initial
state of the model and the initial states of the frame
components i.e. generators, acceptors and transducers,
and initiate the execution of model/frame
simulators. To terminate an experiment the module must
determine whether the global termination condition
holds. The final states of the acceptors monitoring
the model run control trajectories are observed and
the termination condition is evaluated based on the
values of these states.

We propose that the execution control module for
the distributed abstract simulator be realized as a
unit providing a user interface, simulation data base,
model data base, and simulator as illustrated in
Figure 7. To initiate a simulation run the modeller
should set the simulator into a desired state using

{ MFC)

the user interface. This process should be supported
by the knowledge concerning the range set of
variables, the minimal state variable sets and the
intervariable relations constraining the values which
may be simultaneously assigned to the state variables
(10) . The mode) data base should contain this type of
information and ought to be accessible to the user via
the interface.

During the simulation run the control module
should monitor the state of acceptors and determine
whether the experimentation is to be continued or
terminated. The conditions for continuation or
termination may be determined by the modeller when the
acceptors are defined, or alternatively, the final
states of the acceptors may be parametrized and are to
be instantiated via the control module at the
beginning of the run.

Another problem arises in case the modeller wants
to continue the simulation run after it has been
terminated so as to produce the same trajectory as
would have been produced if the run had not been
interrupted. The simulator is set in the same state

that it was in at the time of termination. This can be

achieved by retrieving the pertinent information about
the state of the simulator from the simulation data
base. In our future research we shatll develop methods
for interactive parameter exploration in distributed
simulators based on the approach outlined by Zeigler
in (10).

CONCLUS | ONS

This paper has proposed a methodology for
specification of experimental frames in hierarchically
specified distributed discrete event systems. The
approach consolidates efforts to provide a unified

o

CO—

f MFC ?
G M IA

|

communication bus

simulation
data
base

user interface

Fig. 7 Experimentation Control in
Distributed Simulator

«)

framework for simulation of distributed systems. While

many of the presented concepts are still of a
propositional nature, they are being further
investigated. We shall seek to determine the
performance measures of the frame/simulator coupling
and further develop the concept of the execution
control module. The implications to procedural and
hardware realizations of the presented concepts will
also be investigated.
ACKNOWLEDGMENTS
| wish to thank Prof. Bernard P. Zeigler for
inspiration and many helpful discussions along the
way .
REFERENCES
1. Dekker L., !'"Concepts for An Advanced Parallel
Simulation Architecture'", in Simulation and
Model-Based Methodologies: An Integrative
View, Springer-Verlag, New York 1984,
2. Concepcion A., "Distributed Simulation on
Multiprocessors: Specification, Design, and

Architecture", Doct. Diss. Dept. of Computer
Science, MWayne State University., Detroit,
Michigan, 1984,

3. Concepcion A., '"Mapping distributed Simuiators onto
the Hierarchical Multi-Bus Multiprocessor
Architecture", Proc. of Distributed Simulation

1985, San Diego, 1985.

Systems'", in
in Modelling and Simulation, Academic
London, 1982.

L, Oren T.!., "Computer Aided Modelling
Progress
Press,

20

5. Oren T.f., "GEST - A Modelling and Simulation
Language Based on System Theoretic Concepts',
in Simulation and Model-Based Methodclogies:
An Integrative View, Springer-Verlag, New York

1984

6. Rozenblit J.W., "EXP - A

Experimental Frame

Software Tool for
Specification in Discrete
Event Modelling and Simulation'", in Proc. of
the 1984 Summer Computer Simulation
Conference, pp. 967-971, Boston 1984,

7. Rozenblit J.W., "Realization of Experimental Frames
in Multi-Objective Simulation Model ling'",
Doct. Diss., Dept. of Computer Science, Wayne
State Univ., Detroit, Michigan. (in
preparation) .

8. Zeigler B.P. "Structures for Model Based Simulation
Systems', in Simulation and Model-Based
Methodology: An integrative View, Springer-
Verlag, New York, 1984,

9. Zeigler B.P. "Modelling and Simulation Methodology:

State of The Art and Promising Directions',
Simulation of Systems '79, North Holland,
Amsterdam, 1980 pp. 819-835.

10. Zeigler B.P., "Multifacetted Modelling and
Discrete Event Simulation', Academic Press
London, 1984,

11. Zeigler B.P. and Baik D.K. '"Performance and
Parallelism Efficiency in Hierarchical

Simulators" (in preparation).

12. Zeiglter B.P., "Discrete Event Formalism for Model
Based Distributed Simulation', Proc. of
Distributed Simulation 1985, San Diego, 1985.

