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ABSTRACT 

The paper sets up a conceptua I framework for 
constructing knowledge-based, computer-aided 
environments for system design. The framework is based 
on the formal structures underlying the expert system 
design methodology being developed by Zeigler [18], 
name 1 y that of the system entity structure and 
experimental frame. The system entity formalism is 
emp I oyed to structure the family of design 
configurations. The rules for design model synthesis 
are generated by pruning the design entity structure 
with respect to generic experimental frames [I33 that 
represent the design objectives. This leads to a 
methodology for design of system design envirohments 
which recognizes three primary relationships of the 
application domain that must be modelled: the 
decomposition hierarchy (of the system being 
des i gned) , the taxonomi c structure (determining the 
design alternatives), and the coup l i ng constraints 
(restricting the combinations in which components can 

be synthesized into the target system). 

I. SYSTEM DESIGN AND IIODELLING ENTERPRISE 1 SYNERGIES --- 

The process of design is a transformation of a 
designer’s ideas and expertise into a concrete 
implementation. This process is driven by the design 
requirements provided by the client and the available 
technology. The growing complexity of sys terns being 
designed has strongly influenced research efforts in 
constructing computerized support environments for 
assistance in the design process [4,5,11,12,15]. 

Our primary goal in this paper is to embed system 
design within the multifacetted modelling framework 
[1,8,16,171 and thus provide a systematic design 
methodology supper ted by adequate forma I 
structures. We shall argue that such an approach is 
amenable to computerization and direct application of 
expert systems and Al techniques. As i I lustrated in 
Figure 1, system design is brought into the 
multifacetted framework, with the design process being 
supported by the modelling and simulation techniques, 
in the following contexts: 

a.) Model 1 ing is a creative act of individuals using 
basic problem-solving techniques, building 
conceptual mode I s based on knowledge and 
perception of reality, requirements and objectives 
of the modelling project. Thus, considering models 
as design “blueprints” we establish a direct 
relationship with the modelling enterprise. 

b.) By providing mechanisms for model decomposition, 
hierarchical specification and aggregation of 
partial models. the multifacetted modelling fully 
responds to the needs of the design of large scale 
Systems. 

c.) By providing a spectrum of performance evaluation 

d.) 
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methods including the trade-off measurements and 
evaluation of multi-level, multi-component, 
hierarchically specified models, our framework 
al lows the designer to describe the attributes of 
designs in comparative measures. This I eads 
eventually to the choice of the best design with 
respect to performance measures under 
consideration. 

The representation schemes offered by the 
multifacetted methodology are well structured and 
have formalized operations that can exploit such 
structures. This significantly reduces the effort 
of designing expert environments for a given 
problem domain. 

With the above i SSUeS in mind, we shal I present 
concepts for constructing knowledge-based design 
environments. The two key forma I objects in our 
approach are the system entity structure and the 
aeneric experimental frame. The entity structure is 
based on a tree-like graph encompassing the system 
boundaries and decompositions that have been conceived 
for the system. As we shall describe it in detail in 
Section 3 the entity structure formal ism is a 
knowledge representation scheme that facilitates 
expressing the decomposition hierarchy, the taxonomy 
of the objects it represents, and the coup1 i ng 
constraints on the ways in which system components 
identified in the decompos i t i on hierarchy can be 
coupled together. 

The generic experimental frame is a structure that 
represents a set of design objectives in the form of 
standard variable types. Such standard variable types 
express measures of input/output performance, 
utilization of resources, reliability assessments etc. 

In outline, these two structures play the following 
role in our design framework: 

,t the system entity structure is a basic means of 
organizing a family of possible configurations of the 
system being designed. 

-5 the objectives and requirements of the design 
project i nduce appropriate generic experimental 
frames. 

zr the design entity structure is pruned with respect 
to the generic frames. This results in a family of 
design configurations that conform to the design 
objectives. 

a* the pruned substructures sewe as skeletons for 
generating rules for synthesis of design models. 

* resulting models are evaluated in respective 
experimental frames and the best design models are 
chosen on the basis of such evaluations. 

We shall provide a detailed exposition of this 
approach in the ensuing sections. However, let us 
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Fig. 1 System Design in the Multifacetted 
Modelling Framework 

first briefly characterize the major steps of the 
design process as we perceive it in the context of 
this paper. 

2. CHARACTERIZATION OF THE DESIGN PROCESS _-_--- 

The term system design will denote in OUT framework 

the use of modelling and simulation techniques to 
evaluate the proposed operation of the system that is 

being designed. As opposed to system analysis where 
the model is derived from an existing real object or 
phenomenon, in system design the model comes first as 
a set of “blueprints” from which the system will be 

bui Id, implemented or deployed [2,19,20]. The 
blueprints might take several forms. They could be 
simple descriptions, a set of equations or a complex 
computer program. The task of system design viewed in 
this perspecl: ive is to create and study models of 
designs before they are physically implemented. 

To character:ze the design process we adopt the 
results of our previous studies [12] which we 
summarize as follows: the design procedure is a series 
of successive rsf i nements comprising two types of 
design activities. The first type concerns the 
transitions between the so-called design levels. The 

second type deFines a set design actions associated 
with a given design level. The design levels are 
successive refinements of the decomposition of the 
system under consideration. The first, and thus the 
most abstract level, is defined by the behavioral 
description ot the system. Subsequently, the next 

levels are def i ned by decompos i ng the system into 
modules, and applying the decompositions to such 

modu 1 es unti I the subsystems are not further 
decomposable. Thus, the atomic system comp;;znts are 
represented at the lowest level of destgn 

hierarchy; 
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Fig. 2 Representation of Taxonomic Relations 
in the System Entity Structure 

wi 111 each Ides i gn level we associate a set of 
horizontal activities such as: requ i rements 
specificatioh, system functional specifications, 
modal I i ng, evaluation and choice of design 
alternatives v i a simulation studies. The design 
sholjld proceed along both axes of the above 
characterization. The designer should be able to 
derive complete specifications at and design models at 
each level, he should be able to validate and verify 
the resulting system and its alternatives with the 
hel p of analytical and/or simulation 
tools. Transitions between the design levels must be 
possible and easy to perform. 

A ‘detailed I ook into al I the facets of the design 
process verifies the need for high-level tools to 
support the design activities at al 1 levels and 
phases. The architectures for such tools have been 
studied are presented in the 1 i terature 
[3,6,7]. However, the proposed solutions lack an 
underlying theoretical framework that permits a 
uniform treatment of design at different levels by 
providing concepts 1 ike structure and behavior, and 
allows for individuality of detail at each level. 

The above orthogonal characterization of the design 
process has been successfully applied to define 
hardware design support systems 112,153. While we do 
not attempt to further refine the definition of 
design, nor describe all its phases in detail, we 
shall show how the modelling techniques and its formal 
objects can support the expert design environments. 

3. ENTITY STRUCTURING FOR REPRESENTATION OF DESIGN - 
HIERARCHIES 

In this section we present the formal concepts for 
representing and integrating the possible design 
alternatives that may be conceived for a given 
project. We argue that the system entity structure 
should be an underlying object used in the 
construction of the expert system design environments. 

TO appropl-iately represent the family of design 
structures we need a structure that embodies knowledge 
about the following three relationships: 
decomposition, taxonomy, and coup1 ing. By knowing 
about decomposition we mean that the structure has 
schemes for representing the manner in which an object 
is decomposed into components, and can operate on, and 
can communicate about such schemes. 

BY taxonomic knowledge, we mean a representation for 
the kinds OF variants that are possible for an object, 
i.e., how they can categorized and sub-classified. 
For example the structure could know that 
transmissions are automatic or manual, and that the 
latter can be of the four-speed or five-speed variety. 

Our pr imarv objective is to construct models of the 
system being designed in order to evaluate them with 
the help of simulation studies and select the best 
design alternative. To construct a model, the 
components of a decomposition must be coupled 
together. Thus, the third kind of knowledge that our 
structure .Eor representing the design architectures 
should have is that of couplinq relationships. 

The methodology for constructing an expert system 
design environments will base itself on codifying 
appropriate decompositions, taxonom i c and coup1 i ng 
relations. In other words we seek to model the 
expert’s knowledge about the design domain by finding 
pertinent decompos i t ions of the domain, the possible 
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variants that can fit within these decompositions, and 
the constraints on how the components of the 
decompositions can be coupled together. This will 
constitute the so-called declarative know1 edge 
base. Beyond this, we should provide the procedural 
knowledge base in the form of production rules which 
can be used to manipulate the elements in the design 
domain. 

The rationale behind such an approach is two fold. In 
the first place, we identify the decomposition, 
taxonomic, and coupling representation as knowledge 
which enables the structure to communicate about its 
objects. But more that that, we propose that the 
rules themselves can be much better designed once good 
representations for the above relations have been 
identified. There are several reasons for advancing 
this proposition. We shall show that large segments of 
rules can be generated almost automatically from the 
know1 edge structures: in the absence of such 
structures these rules would have to be generated one- 
by-one in an often ad hoc manner. To the extent that 
most of the rules can be generated automatically, we 
can then focus our attention 0” the 
exceptions. Ultimately, rule development shou 1 d then 
reduce to the creative effort required to deal with 
the irreducible idiosyncracies of the problem domain. 

The formal object that meets the requirements 
stipulated above is the system entity structure whose 
definition follows. 

Definition (Be\ogus [I], Zeigler [18]). 

A system entity structure is a labeled tree with 
attached variable types. When a variable type V is 
attached to an item occurrence I, this signifies that 
a variable 1-v may be used to describe the i tern 
occurrence I. The structure satisfies the axioms of: 

* alternation entity/aspect 
,: entity/specialization 
* strict hierarchy 
* inheritance: birth, life 
+ multiple entity 

and allows for the following operations: 

* naming scheme 
A generation of distribution 

/aggregation relations 
4: transformations to taxonomy free form 
fi pruning 
* attachment of constraints to aspects 

For a more detailed formal treatment of the system 
entity structure we refer the reader to [17]. Here we 
shall indicate how the discussed know1 edge 
representation scheme is realized by the structure. 

We begin by characterizing the taxonomi c 
representation scheme. An entity may have severa I 
specializations; each specialization may have several 
entities. The original entity is called a genera I 
type relative to the entities belonging to a 
specialization, which are called special types. Since 
each such entity may have several specializations, a 
hierarchical structure results, which is called a 
taxonomy. 

Figure 2. depicts the entity structure in which the 
ent i ty BRAKES has been given two specializations, 
control-type and construction-type. A salient feature 
is the alternation property which requires that 

entities and specializations alternate along any path 
from,root to leaves. Specializations have independent 

existence just as entities do. A specialization may 
occur in more than one location: whenever it occurs it 
carries with it all its attributes and 
substructures. Of course it may not be meaningful to 
attach a particular specialization to a particular 
entity. 

Hierarchical decomposition is in many ways analogous 
to the specialization hierarchy just discussed. The 
alternation property now requires alternation of 
entities and aspects. An aspect is a mode of 
decombosition for an entitv iust as a soecialization 

I < 

is a mode of classification for it. There may be 
several ways of decomposing an object just as there 
may be several ways of classifying it. Formally, 
aspects and specializations are quite alike in their 
behavior (but not in their interpretation): they each 
alternate with entities, but cannot be hung from each 
other. A special type of decomposition called a 
multiple decomposition facilitates flexible 
representation of multiple entities whose number in a 
system may vary. Specializations of a” entity can be 
mapped into corresponding aspects of its multiple 
entity. Such transformations are discussed extensively 
in [17,183. 

Our approach to expressing the coupling constraints is 
as follows: we apply the mappi “g to remove the 
specializations to obtain a” entity structure 
containing only entities and aspects. Now we imagine 
that we are synthesizing models by working our way 
down the entity structure selecting a single aspect 
for each ent i ty and zero or more entities for each 
aspect. Such a process is called pruning of the entity 
structure. We shall describe it in detail in the next 
section. The coupling constraints we wish to express 
must then be associated with aspects since they 
represent the decompositions from which we shall 
choose when pruning. MOreOVer. we must associate a 
constraint with an aspect which scopes al 1 the 
entities that are involved in that constraint. What 
is more, this aspect should be minimal in the sense 
that there is no other aspect that I ies below it in 

the entity structure which also scopes al 1 the 
entities involved in the constraint. 

4. ENTITY STRUCTURE PRUNING FOR GENERATION E DESIGN 
- - w STRUCTURES 

We are now ready to discuss the two most essential 
concepts in our proposed design framework. The first 
concept concerns the generic frame-based pruning of 
the system entity structure. 

As we have already pointed out the first and crucial 

step in the design process is to determine the set of 
all possible configurations of the system being 
designed. The system entity structure is the basic 
means of organizing such a fami ly. The entities 
represent system components while aspects allow the 
designer to form various alternatives for 
decompositions of components. Thus, the system entity 
structure is a set of substructures from which design 
models can be constructed. To select such 
substructures we mu5 t meaningfully prune the entity 
structure. 

Recall that our design framework requires that the 
design models (or more precisely, the structures that 
are used to construct them) accommodate the design 
objectives and requirements. The generic experimental 
frame which we shall define formally shortly, serves 
as a means of expressing such objectives. Thus, by 
pruning the system entity structure with respect to 
generic frames we derive the following benefits: 

225 



1.) In terms of the contribution to the design process 

a.) a generic frame extracts only those 
substructures which conform to the design 
objectives. Thus, a number of design 
alternatives may be disregarded a!; not 
applicable or not realizable for a given 
problem. 

b.) partial mode 1 s of the design can be formulated 
and evaluated. This may significantly reduce the 
complexity which would arise if we had to deal 
with the overal 1 design model. The generic 
frame ccncept may thus be viewed as an object 
that partitions the system entity structure into 
design-objective related categories. 

c.) the evaluation of design models constructed from 
the pruned substructures is performed in 
corresponding experimental frames. Such frames 
are generated by instantiating the generic 
frames used to prune the system entity 
structure. Hence, an automatic evaluation 
procedures could be employed in the design 
process. (For details see [11,13]) 

2.1 In terms Of facilitating the pruning process 
itself, generic frames automatically determine: 

a.) the aspects that are selected for each entity 

b.) the depl:h of the pruning process 

c.) the descriptive variables of components 

Having presented the benefits afforded by the generic 
frame concep’: let us now give its formal definition 
and define the procedure to prune the design entity 
structure. 

A.1 Generic observation frame - -A- - 

The concept of the generic experimental frame has been 
originally developed for the purpose of generating the 
experimental <Frames in simulation [131. The generic 
frame is de.’ i ned by means of unqualified generic 
variable type!; that correspond to the objectives of a 
simulation study. 

In system design context it is enough to restrict the 
generic frame to the so-called generic observation 
frame which we define as follows: 

GOF={IG, OGI 

where I G denotes the set of generic input variable 
types, and OG is the set of generic output variable 
types. 

By defining the generic observation frame in the above 
manner we 1 imi t its role to representing the 
behavioral ,aspects of design objectives and 
requirements. If we were to construct models of 
designs based on the structures pruned in the generic 

observation frames we could only implement the 
behavioral specifications of designs. There are also 
object i ves that concern the structural aspects of the 
project under consideration. Therefore, as we shall 
see in the next section, it will be necessary to 
augment the design model construction with a process 
that we terln synthes i s rule generation in order to 
realize the structural constraints. 

Let us however return to the pruning procedure and 
define how a generic observation frame generates all 
the system entity substructures that accommodate 
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bcehavioral design objectives. 

4.2 Observation frame-based pruning of the design --- -- 
e=al struc’ture -- 

Given the generic observation frame we seek to extract 
all ‘the substruct.ures that accommodate the input and 
output variable types present in that frame. 

Let “GOF 
denote the set of input and output variable types that 
belong to thse generic frame GOF. A copy of this set 
called CVGOF is created to control the pruning. The 

frame based pruning can be defined by the following 
algorithm: 

Procedure Prune (Ej , CVGOF, VGOF) : 

{ This procedure prunes the system entity structure 
and returns 

the model structures that accommodate the generic 
observation 
frame GOF. Multiple occurrences of a frame variable 
type are 
permitted in the model structure } 

begin 

for each aspect Ai c Ej do 

for each entity Ek s Ai do 

begin 
CVGOF := CVGOF - bk ) where v k f VGoF (is a 

frame variable type). and vk is present in the 

entity Ek {update the current set of frame 

variables by subtracting the types al ready 
present in the entity substructure} 
Attach Ek with all its variables as a child of 

TE : and attach the coupling constraint of the 

ascect A; to TE, { TE; denotes the root of the 

current substru:ture o; the model structure 1 
If at least one entity at the current level 
contains a variable type which is present in 

“GOF 
then mark this level in the model 

structure as the last level at which frame 
var i ables are present 

end; 
for each E, 6 Ai such that Ek has aspects do 

if 

Prune (Ek, CVGoF , VGoF) ; 

CVGoF is empty then 

begin 
create a copy of the current model structure 
without the last level entities {this copy 
wi I I serve as a basis for pruning in the next 
aspect A;+,) ; 

store the current model structure TE,. however 

eliminate all the entities that appiar below 
the level marked as the last level with frame 
variable type occurrence; 

end ; 
Update the current model structure TE, by cutting 

off the last level entities { the eitities in the 
next aspect may now be attached to this current 
tree] ; 

end: 
end: {of Prune] 

We have not specified at which level of the system 
.entity structure the pruning should begin. This allows 
the modeller for a flexible choice of the model 
boundaries. We should indicate however that due to 
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a.) in the system entity structure choose the entity 

the model YOU intend to 

ty will label the root of the 

Ei that represents 

evaluate (this enti 
model structure TEi). 

b.) create a dummy entity 
a dummy aspect DA 

DE. 

DE (with no variables) with 
in which Ei is a subentity of 

c.) call Prune(DE. CVGDF, “GOF) ; 
After the procedure has been executed we have to 
eliminate DE from all the model structures. Notice 
that the purpose of CVGOF is merely to check whether 

the currently traced substructure has already 
accommodated the generic frame or not. 

recursion based on the entities the procedure must be 
initially called as follows: 

We have already indicated that the procedure Prune 
generates a set of design model structures in the form 
of decomposition trees [171 f Each such structure 
accommodates the generic observation frame GDF and 
const i tutes a skeleton for a hierarchical mode I 
construction. 

5. ENTITY STRUCTURE-BASED SYNTHESIS RULE WRITING 

The pruning process described in the foregoing section 
restricts the space of possibilities for selection of 
components and couplings that can be used to realize 
the system being designed. Thus we can assume that 
design may now be reduced to the synthesis problem. 
Synthesis involves putting together a system from a 
known and fixed set of components in a fairby weI\- 
prescribed manner. I” the synthesis problem, we are 
modelling a rather restricted design process, one 
amenable to automation by extracting concepts and 
procedures from experts’ know1 edge and exper i ence, 
augmenting them and molding them into a coherent set 
of rules. The rule development methodolog2I that we 
propose for such a modelling enterprise is as follows: 

* Restrict the design domain by pruning the design 
entity structure in respective generic observation 
frames. 

* Examine the resulting substructures and their 
constraints. Try to convert as many constraint 
relations as possible into the active form, i.e. into 
rules that can satisfy them. For those that cannot be 
converted into such rules write rules that wi 11 test 
them for satisfaction. 

a* Write additional rules, modify existing ones, to 
coordinate the actions of the rules (done in 
conjunct ion with the selected conf 1 ict resolution 
strategy). 

We shall proceed to discuss this methodology in 
greater detail. 

5.1 Types of Constraints and Their Conversion E 
Active Form 

In a synthesis problem, several kinds of constraints 

may come into play. Objectives-derived constraints 
formulate the objectives that we have in mind for a 
specific system being synthesized. For example it must 
be able to achieve certain levels of performance, 
exceed certain levels of accuracy, etc. In addition to 

such specific design objectives, industry wide, or 
governmentally imposed, standards place performance 
constraints that all products of the kind being built 
must satisfy. Standards may have been put into place 
to assure a minimum level of safety or to facilitate 
interchangability of parts constructed by different 

manufacturers. Resource constraints arise from the 
fact that resources available to construct the system 
may be limited and costly. Resources may be 
replenishable, such as electric power or non- 
replenishable such as construction 
material. Generally, we want to minimize the use of 
the resources, and most definitely, we cannot al low 
the synthesis process to use more of a non- 
replenishable resource that is available. Natural 
constraints arise from the limitations imposed by the 
laws of nature. Syntactic constraints relate to the 
order in which components may be coupled together: 
they may be imposed arbitrarily to reduce the space of 
possible configurations or may be formulated to ensure 
satisfaction of more fundamental performance, natural 
or other constraints. 

Assuming that the synthesis problem is appropriate for 
expert system design, there are known actions that can 
be taken to try to satisfy the performance constraints 
derived from the objectives and imposed 
standards. Indeed, an expert’s procedural knowledge 
represents efficient procedures that are likely to 
achieve the goals and subgoals that arise in 
attempting to meet the performance requirements. The 
pruning process described in the previous section is 
an example of such an action. However, meeting the 
requirements is subject to the given resource, natural 
and syntactic constraints. Thus, we see a second k i nd 
of constraint classification emerging: some 
constraints are convertable to active form ---I i.e.. they 
can be converted into act ions intended to satisfy 

them. Other constraints are inherently passive, they 
do not motivate or guide action, they sit there 
demanding satisfaction. The question that now begs to 
be addressed is: assuming that it is possible, how can 
we convert a constraint to active form? We conceive 
of the synthesis problem as a search through the 
search space, the set of al I pruned design 
structures. These are candidates for solution to the 
problem. Our set of rules wi 11 take us from an 
initial state in this space to a goal state. The 
search should proceed by generating successive 
candidate structures in an efficient manner. 

We can assume that for each active constraint we have 
a means of generating such candidates to test against 

the constraint. Cal) such an operator NEXT-IN-Ci. 

The passive constraints have no corresponding 
operators and thus we C3” only test for their 
satisfaction. Failure causes backtracking if a state 
has been reached for which none of the operators can 
be applied. Instead of applying an operator and then 
testing if it has consumed more than what remains of 
an available resource, we can try to inhibit the 
application of operators that would bring about the 
resource depletion. 

Let Con be a constraint that we wish to pretest. An 
operator, NEXT-IN Ci will map a state s into the 
region satisfyrng Con if, and only if, 
Con(NEXT-IN-Ci (5)) I To al low the operator to be 
appl i ed safely we need to define applicability 
predicate, Ai such that: 

Ai (s) if, and only if, Con(NEXT-IN-Ci (s)) 

Thus the canonical rule scheme for the synthes i s 

problem takes the form of Figure 3. 

227 



RC If C satisfied on (state) 
then Output (state) as the solution 

Rl If Cl is not satisfied 
Al is satisfied 
then state:=NEXT-IN-Cltstate) 

. . . . . . . 

Ri If Ci is not satisfied 
Ai is satisfied 
then state:=NEXT-IN-ticstate) 

Rn If Cn is not satisfied 
An is satisfied 
then state:=NEXT-IN-Cicstate) 

Fig. 3 The canonical rule scheme 
for the synthesis problem 

Hav i ng presented the formal structures for 
constructing the expert design environment let us 
gather the strands up and propose an architecture for 
such a system. 

6. EXPERT ENVIRONMENT FOR DESIGN MODEL DEVELOPMENT ---- 

Given the aforementioned structures and procedures for 
pruning and rule generation we propose an expert 
system architecture for support of automatic 
development of design models. 

As depicted in Figure 4. the data base of design 
objectives specifications is one of the major 
components Of the system. The objectives drive three 

P Candidate 
Behavioral Model struct. 

-w 
Pruning structures Pruning 
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processes in our framework: retr ieva I and/or 
cons t rut t i on of the design ent i ty structure, 
definition of generic observation frames, and 
generat ion of rules for model synthesis. The purpose 
0f the system illustrated in Figure 4. is to analyze 
a “Cl integrate the relationships concerning the 
objec.tives specification base, the generic observation 
frame base, and the design entity structure. Such an 
integration should result in design models and 
uit,imately in the formulation of an appropr i ate 
simulation experiment for a problem at hand [13]. 
This represents a great potential for the application 
of expert systems technology [g, lb]. 

ILet. us summarize how such a system should operate. The 
behavioral aspects of the design objectives are 
expressed in terms of generic observation 
*Tames. Pruning the design entity structure in 
corresponding observation frames results in 
substructures conforming to the behavioral objectives. 

The substructures are then tested for satisfaction of 
syrlthesis rules that are derived from the des i gn 
structural constraints as presented in Section 
5. Both, behavioral and structural pruning applied to 
the design entity structure should result in design 
structures that we term candidates for hierarchical 
mode 1 construction. The term candidates implies that 
some checks for consistency and admissibility (in the 
sense of conformance to the objectives ) should be 
performed a t this stage. If the candidate is 
inadmissible or no candidates can be obtained by 
pruning, the process should be reiterated with 
possible user intervention. The kinds of 
i ntervent i ons we suggest are modifications or 
retrieval of the new system entity structure, 
enhancement of the generic experimental frame or 
modif ication of synthesis rules. The system should 
,ronstruct design models for the structures generated 
as a result of behavioral and structural pruning 
empl Oy i ng the multifacetted mode I construction 
methodology [IT]. 

Let us now illustrate the concepts under discussion by 
presenting a simple example. 

7. EXAMPLE ‘- AUTOMOTIVE DESIGN 

Model Construe 

Assume that an automotive company is designing a new 
model of a passenger car whose fuel efficiency meets 
the stand.ards imposed by the Department of 
Transportation. In the first stage of development, a 
design entity structure representing possible 
configuratiN0ns for a car is proposed. Such an entity 
structure can take the form depicted in Figure 5. For 
the sake 3f brevity we present a rather simplified 
version of a car design structure with only three 
aspects that is: Physical Decomposition, Sew i ce 
Aspect, and Utility Specialization. Notice, that the 
Physical Decomposition Aspect of CAR can be hung from 
the entities Passenger Car and Truck (in Utility 
Specialization) in place of the 90w symbol (Figure 5). 

Simulation 

Fig. 4 Architecture for Expert System 
Design Environment 

Given the entity structure we are now ready to derive 
generic observation frames. Notice that such a frame 
is expl ici tly stipulated in the given behavioral 
requirement i.e., the gasoline consumption aspect of 
the design. An appropriate generic set of variables 
that defines the frame is given below: 

Generic Observation Frame: Gasoline Consumption 

Input variables: 
fuel level 
speed 
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CAB -speed, distance traveled 

I 
acceleration, load, weight 

Service Aspect Utility Specialization Physical Decomposition 

I I I I 1 I I I I I I 
Mainten. Tools Parts Passenger Truck Engine -horse Body Brakes Fuel Elect. Cooling Heat 
Schedule Cal- 

*** , II .,yower 1 -%L~~~i,ht 
Supply System System A/C 

*** System 
- fuel level 

Internal Electrical Steam 

Combustion 
,, ape;~i;acement , 

4 - cycle 

ph. dec. 

I I I 
-number Cylinders Pistons Crank- Cylinders Pistons Valves Crankshaft 

Ill III 
shaft 

III 
-number 

III III 

Cylinder Piston Cylinder Piston Valve 

-compression - compression 
ratio ratio 

Fig. 5 System Entity Structure for the Car Design Problem 

acceleration 
load 
horse power 
displacement 
compression ratio 
wind resistance factor 
weight 

Output variables: 
fuel level 
distance traveled 

Pruning the design entity structure of Figure 5. with 
respect to the frame “Gasoline Consumption” wi I I 
result in the substructures of the Utility 
Specialization and Physical Decomposition 
aspect. Service aspect will be d i sregarded as 
irrelevant. At the lower level of the hierarchy both 
Electrical and Steam engines will be pruned out as 
they have no variable types present in our observation 
frame. To I imi t the design to a passenger car we 
restrict the design class by selecting the Passenger 
Car specialization. Another constraint that further 
limits the design space is a standard constraint 
imposed by Dept. of Transportation that prohibits the 
use of 2 - cycle engines in passenger cars. Thus, the 
pruned entity structure takes the form of Figure 6. 

Secondly, it will be necessary to synthesize an engine 
with enough power to set the car in motion. We assume 
that in order to increase the engine’s power we can 
add cylinders in pairs. However, the number of 
cylinders cannot exceed 8. Adding a pair of cylinders 
also increases the volume of the engine i.e.: 

ENGINE-VOLUME = CYLINDER.VOLUHE * CYLINDERS.NUMBER 

The constraints associated with the physical 
decomoosition of the entitv Passenger Car can be 
formulated as follows: 

1.) BODY .VOLUHE >= ENCINE.VOLUME 

2.) ENGINE.POWER >= BODY-WEIGHT + 
3.) BODY.VOLUME c= MAXlHUM.VOLUME 

car) 

+ PASSENGERS.VOLUME 

MAXIfiUM.LOAD 
(for a 6 passenger 

The constraints associated with 
have the form: 

the Eng i ne synthes i s 

The general car design problem is now reduced to the 
synthesis of a passenger car with a 4 - cycle internal 
combustion engine. Let us formulate structural 
constraints and cower t them into a production rule 
scheme. 

4.) CYLINDERS must be coupled in pairs 
either in line or across 
from each other 

5.) CYLINDERS-NUMBER f 12.81 

In our formulation we shall synthesize a very coarse To convert the constraints to production rules we 
model of a car. We shall simply assume that a car implement the canonical scheme given by Figure 3. As 

results from a coupling of an engine and a body. The 
following factors play a major role in the synthesis 
process: first, we are restricting the number of 
passengers to 6. The measures of load and weight are 
then given by the relations: below: 

LOAD = LOAD.FACTOR * PASSENGERS.VOLUME 
BODY.WEIGHT= WEICHT.FACTOR Jr BOOY.VOLURE 
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CAR 

II 
PASSENGER CAR 

r-3 
Engine Body Brakes Fuel Sys. Elec. Cool. Heat. 

II 
sys. sys. sys. 

Internal Combustion 

II 

4 - cycle 

A I I 
Cylinders Pistons Valves Crankshaft 

Ill Ill 111 
Cylinder Piston Valve 

Fig. TV Pruned Entity Structure for the Car 
Design Problem 

in the general approach rule RC is the global 
constraint checker. Rules Rtl and RC2 are implemented 
as local constraint satisfiers for constraints 1 and 
2. Note, that the resource constraints 3 and 5 have 
been formulated as pretests for applicability of the 
rules. The production rule scheme is presented below: 

RC if ENGINE.POWER >= BDDY.WElCHT + MAXlMUM.LOAD 
BODY.VOLUME >= ENGINE.VOLUME+ 
PASSENCERS.VOLUME 

then Print “Car Completed” 

RCl if BODY.VOLUWE Q MAXIMUM.VOLUtiE - 1 UNIT 
BOOY.VOLUME < ENCINE.VOLUBE + PASSENCERS.VOLUNE 

then expand BODY.VOLlJME by 1 UNIT 
update BODY.WEIGHT 

RC2 if a pair of CYLINDERS is available 
ENGINE.POWER < BODY.WEIGHT + MAXIMUH.LOAD 

then add this pair of CYLINOERS to the ENGINE 
update ENGINE.VOLUME 

Fig. 7 Production Rule Model for 
t.he Car Synthesis Problem 
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After a candidat.e structure that satisfies al I the 
constraints has, been found a design model of the car 
should be constructed and the observation frame 
“Gasol i ne Consumpt ion” should be refined to an 
experimental frame Cl31. Then, the model can be 
evaluated via simulation experiments as shown in 
Figure 8. 

8. SUMMARY 

We have attelnpted to outline a foundation on which the 
organization of the design process can be based. We 
envision a computer-aided expert design environment 
which internally represents the entity structures and 
generic observation frames, and has a means for 
dynamically manipulating these structures. The means 
are based on the procedures discussed 

Fig. 8 Simulation Study for 
Design Evaluation 

above. Implementation of such a package, in al I its 
generality, may be a long way off. However, specific 
parts of it, have already been implemented [lo,211 and 
efforts are under way to further advance the theory of 
knowledge-based system design t12,18l. 
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