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a b s t r a c t

Effective training is the key to minimizing the dangers of minimally invasive surgery (MIS). At present,
the assessment of laparoscopic skills relies on the expertise of senior surgeons. The judgment is typ-
ically based on and expressed in ordinal variables that can take values such as low, medium, high or
other comparable terms. This limited assessment, along with the lack of expert surgeons’ metacogni-
tive awareness of how the judgment process takes place, results in imprecise rules for the evaluation
of laparoscopic surgical skills. In this work, we present the knowledge elicitation process to model the
eywords:
uzzy logic
nowledge elicitation
embership functions
inimally invasive surgery (MIS)
bjective assessment
urgical training systems

performance metrics and the rules involved in the assessment of minimally invasive surgical skills. We
have implemented a scoring system for the evaluation of laparoscopic skills based on five performance
metrics capable of distinguishing between four proficiency levels while providing a quantitative score.
Our assessment model is based on fuzzy logic, so that it is easier to mimic the judgment that is already
performed by experienced surgeons. The presented framework was empirically validated using the per-
formance data of 38 subjects belonging to five groups: non-medical students, medical students with no
previous laparoscopic training, medical students with some training, residents, and expert surgeons.
. Introduction

Minimally invasive surgery (MIS) is a modern surgical technique
equiring small incisions or no incisions. It is performed with an
ndoscope and several long, thin instruments. The drawbacks asso-
iated with large incisions, operative blood loss and post-operative
ain are limited, and recovery time is shorter compared to tradi-
ional open surgery. Unfortunately, from a surgeon’s perspective,
aparoscopic surgery is more challenging than conventional surgery
ecause of the restricted vision, hand–eye coordination problems,

imited working space and lack of tactile sensation. These issues
ake MIS a difficult skill for medical students and residents to
aster.
To minimize the potential risks inherent in MIS, special training

rocesses must be performed to help students adapt to the new
urgical technique. When it comes time to evaluate students in
inimally invasive surgical skills, the apprenticeship model pre-
ails, as it is the most used method in medical schools around
he world. In this model, the trainer serves as both an observer
nd an evaluator while the trainee or student performs a surgi-
al exercise or procedure. In the apprenticeship model, the metrics
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used in the evaluation are typically recorded by expert surgeons
as linguistic variables that can take values such as low, medium,
high or other comparable terms. Then, the judgment process takes
place by following mental rules or guidelines to compare the val-
ues of the metrics with the expert’s standard criteria. The judgment
process is expressed by experts in a qualitative manner. This quali-
tative judgment can take the form of natural language statements,
if–then rules, textual descriptions of their assumptions in reaching
an answer, reasons for selecting or eliminating certain data and/or
information considered in the evaluation process [1].

This limited assessment along with the lack of expert surgeons
metacognitive awareness of how the judgment process takes place
results in imprecise rules for the evaluation of laparoscopic surgical
skills. The assessment by observation does not meet the validity and
reliability criteria necessary for any objective evaluation [2].

Moreover, the apprenticeship model is becoming increasingly
difficult to sustain. Because the requirement of basic skill increases
rapidly, traditional surgical education methods are not suitable for
MIS training. Using the operating room for teaching surgical skills
is impractical and raises cost-effectiveness and patient safety con-

cerns. In a similar way, using animals and cadavers have limitations
due to ethical issues, animal rights, high cost and low efficiency
[3].

Therefore, a key aspect is the development of methods for
training both residents and practicing surgeons as technology and

dx.doi.org/10.1016/j.asoc.2011.01.041
http://www.sciencedirect.com/science/journal/15684946
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ig. 1. Traditional VS. CAST assessment approach. CAST generates performance ass
o the trainee.

rocedures continue to evolve. The objective of this research is to
esign and realize a novel prototype that advances the state of
he art in surgical training, assessment, and guidance. The system
hould provide multiple training scenarios, a high fidelity train-
ng environment, repeatable, structured exercises, and objective
erformance assessment capabilities.

In answer to the field’s need, The Computer Assisted Surgical
raining System (CAST) [4] is being developed at The University of
rizona through collaboration between the Electrical and Computer
ngineering Department and The Arizona Simulation Technology and
ducation Center (ASTEC) at the College of Medicine. The objective
f the CAST system is to implement a simple and effective training
ethod to bridge the gap between existing training approaches

nd combining their advantages. We propose a knowledge-based
ensing system to provide training prior to surgery and possi-
le assistance in the operating room. Our design features the
mbedding of micro-sensors into the instruments employed for
imulation training. The detection and recording of the users’ oper-
tion permit our system not only to measure a trainee’s progress
n acquiring psychomotor skills and compare these data to nor-

ative databases, but also to evaluate instrument effectiveness in
educing errors. Fig. 1 contrasts the CAST System with the tradi-
ional approach. In the CAST system, the surgeon acts upon the
atient or simulator through instruments and receives visual and
orce feedback from the CAST both in the operating room and in
raining settings. Our approach implements a “hybrid” system in

hich joint optimization of actuation, sensing, and computing is
erformed within a closed loop.

A prototype system is being developed which is capable of high
delity motion tracking of surgical instruments and objective per-

ormance assessment analysis. The system represents the sensing
nt by processing motion tracking data while providing visual and haptic feedback

interface and the knowledge-based computer system. It consists
of a sensor fusion engine at the front-end and a knowledge based
inference system at the backend.

A pelvic-trainer (a covered box with several openings, one for
the laparoscope and the others for the surgical instruments) is
used to simulate the patient’s inner body. Each of the surgical
instruments employed during the training tasks has a microsensor
mounted on it to detect and record its movements in real time. The
data acquired from the sensors is time stamped with an x y z coor-
dinate that matches the position of the sensor relative to a global
orientation at that specific time. This time stamped data can be
computed to obtain performance metrics such as time, path length,
and continuity of movement [4].

Surgeons maneuver instruments to perform a variety of tasks.
During training, they need to gain a clear feel for what constitutes
safe and correct movement. Furthermore, during a surgical proce-
dure in the operation room, potentially harmful movements must
trigger an alarm if they cannot be prevented altogether. To achieve
this, we implement capabilities for objective performance assess-
ment and feedback. An overall score is computed upon completion
of the procedure. Context rules are constructed based on empiri-
cal expert knowledge about laparoscopic surgical processes; thus, a
single objective standard is difficult to define. To formulate a usable
standard, and to provide an accurate scoring method, a fuzzy logic
method is proposed. Initial experimental results are presented to
show the feasibility of the proposed method.
The organization of the paper is as follows. Section 2 briefly
surveys related work on performance assessment in MIS train-
ing. Section 3 presents underlying assumptions and defines the
problem. In Section 4, we describe the details of the perfor-
mance assessment method including fuzzy logic approach and
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Fig. 2. Basic compone

he knowledge elicitation process. In Section 5, we present the
mplementation of the method and the usability experiment result.
ection 6 discusses the features that leverage our framework to
rovide deliberate practice in a valid and reliable training envi-
onment. Section 7 concludes the paper and outlines directions for
uture work.

. Literature review

Any assessment method should be feasible, valid and reliable.
nfortunately, this is not the case when the assessment of laparo-

copic surgical skills is done by observation. “As the assessment
s global and not based on specific criteria, it is unreliable. As it
s influenced by the subjectivity of the observer it would possess
oor test–retest reliability and also be affected by poor interob-
erver reliability as even experienced senior surgeons have a high
egree of disagreement while rating the skills of a trainee” [16].

The development of methods to objectively evaluate surgical
kills range from checklists and global scores to complex virtual
eality based systems [5–9]. To model expert judgment we have
o design a standard method of evaluation capable of correlat-
ng with the opinion of experts while overcoming the obstacles
f poor test–retest reliability and subjectivity currently present in
he apprenticeship model [2,9].

Objective structure assessment of technical skills (OSATS) is a
ethodology consisting of six stations where residents and trainees

erform procedures such as placing sutures in a pad of synthetic
kin; joining two cut ends of bowel; and inserting an intercostal
atheter. The procedures are performed on live animals or bench
odels in fixed time periods. Staff surgeons observe the perfor-
ance of the trainees and evaluate them using a checklist and a

lobal scoring sheet. The checklist is a series of items that should
e marked by the staff surgeons in regards to the trainee’s per-
ormance during a task. Each task has a customized checklist.
xamples of items are: select appropriate instruments, correct nee-
le holding technique, suture spacing 3–5 mm, and knots placed to
ne side of the suture line. The global scoring sheet comprises eight
tems, each of which is marked from 1 to 5. The items assessed
nclude tissue handling skills, flow of operation, and familiarity

ith the technique. Examples of poor (score 1), average (score 3)
nd excellent performance (score 5) are given as guidelines for the
bserver. OSAT’s drawbacks are the resources and time involved
n getting several staff surgeons to observe the performance of
rainees. However, global and checklist scoring systems have been
reviously validated [5].
Minimally Invasive Surgical Trainer-Virtual Reality (MIST-VR)
s a popular commercial training simulator. Based on virtual real-
ty, the system is able to distinguish between novice, junior and
xperienced surgeons. MIST-VR is a “low fidelity” system which
ttempts to replicate the skills of laparoscopic operating but not
a fuzzy logic system.

the appearance (the virtual environment consists of a wire cage
in which various geometric objects may be manipulated with two
tools, each having 5 degrees of freedom). The final scores on MIST
are derived from weighted averages of performance metrics such
as: time to task completion, errors and economy of movement. The
main drawback of this system is the lack of haptic feedback and the
unfamiliarity of the trainees with a virtual environment [6].

Computer Enhanced Laparoscopic Training System (CELTS) is
capable of tracking the motion of two laparoscopic instruments
while the trainee performs a variety of surgical training tasks.
CELTS consists of a box-type video trainer platform that uses
conventional laparoscopic imaging equipment coupled with real
laparoscopic instruments that are placed through a Virtual Laparo-
scopic Interface. Using kinematics analysis theory, CELTS generates
five quantitative metrics: time to complete the task, depth per-
ception, path length of the instruments, motion smoothness and
response orientation. Using standard scores statistics, the perfor-
mances of trainees are compared to the performances of expert
surgeons and assigned a standardized overall score from 0 to 100
[7].

Blue Dragon is a system for acquiring the kinematics and the
dynamics of two endoscopic tools along with the visual view of the
surgical scene. Hidden Markov models based on haptic information
were proposed by Rosen et al. as a method to objectively evaluate
laparoscopic surgical skills. In their study, they generate quanti-
tative knowledge of the forces and torques (F/T) applied by the
surgeons on their instruments during minimally invasive surgery.
Through the use of modified surgical graspers containing embed-
ded sensors that are capable of measuring the F/T, they developed
a database of F/T signals. Statistical models of the F/T data allowed
them to characterize surgical skills. The methodology of decom-
posing the surgical task is based on a fully connected finite states
(28 states) Markov model where each state corresponds to a fun-
damental tool/tissue interaction based on the tool kinematics and
associated with unique F/T signatures [18].

A fuzzy logic approach to categorize minimally invasive surgical
skills has been designed and implemented by Hajshirmohammadi
et al. [9]. Using the commercial trainer MIST-VR they collected data
from an exercise performed by subjects with different MIS experi-
ence. Their work suggests formulating rules for MIS performance
assessment and defining proficiency levels from data patterns. Our
framework proposes that the assessment of MIS skills should also
be a function of the theoretical knowledge of what experienced
surgeons conceive as competitive performance.

A limitation shared by many of the above mentioned scoring
systems is that they rely on judgment criteria generated at an early

stage of the system’s design phase. They present no way to offset the
subjectivity inherited from relying solely on the performance data
of the selection subjects used during the system’s design phase.
Moreover, the judgment criteria are meant to remain intact over
time, making it difficult for a trainee who has reached the “expert”
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evel to keep improving. One of the key characteristics behind the
evelopment of an “expert” (in any field) is the engaging of trainees

n deliberate practice. Deliberate practice is defined by Ericsson
t al. [17] as the practice of tasks beyond the trainee’s current level
f competence and comfort. Practicing should be oriented toward
dvancing and not simply maintaining a standardized performance
f the task [17]. Therefore, any MIS scoring system should be able
o raise the criteria standards used in their assessments to avoid
he risk of leaving trainees in a performance plateau. Our work is
n effort to overcome these obstacles in the current performance
ssessment of MIS skills.

. Problem formulation

Simulations with computerized surgical training systems offer
n opportunity to teach and practice skills outside the operating
oom before attempting them on living patients. Technical skills
cquired on low-fidelity simulators can be transferred to improve
erformance on higher fidelity models such as live animals, cadav-
rs and, eventually live human patients [10].

Transfer of learning is the application of skills and knowl-
dge gained in one context being applied in another context. To
ffectively apply transfer of learning in surgical procedures it is
ecessary to abstract their essential constructs in developed mod-
ls that allow the trainees to perform abstract tasks. Hamstra
t al. [10] presented the theoretical basis for interpreting the effec-
iveness of low-fidelity models using the constructivism theory
hich assumes that “knowledge is constructed from collections of

tructures, which are essentially mental representations of infor-
ation.” When the right abstract tasks are selected for training,

he trainee learns to ignore the physical limitations of the training
latform and focus on the procedure, allowing for the suspension
f disbelief and the learning of transferable knowledge. We can
btain performance metrics from these abstract tasks to provide
eedback and for evaluation purposes. If the performance met-
ics are properly chosen and validated, technical ability can be
hen determined to demonstrate fitness to practice independently
10].

It is possible to design a series of tasks in low-fidelity simulators
uch as CAST that allow an effective transfer of knowledge. A sep-
rate issue is determining the proficiency level of a trainee using
hese abstract tasks. The key questions are: how we can measure
roficiency levels of minimally invasive surgery skills? If comput-
rized surgical training systems can compute performance metrics,
ow do we correlate these metrics’ values with proficiency levels?

The goal of this study was to perform the knowledge elicita-
ion process to formulate expert judgment for the assessment of
aparoscopic surgical skills. We designed a scoring system based
n fuzzy logic capable of distinguishing between four proficiency
evels while providing students with a quantitative score. This goal

as composed of the following objectives: (1) defining a set of
elevant performance metrics in the assessment of laparoscopic
urgical skills; (2) eliciting and generating membership functions
o model performance metrics; (3) eliciting a set of production rules
o model experts’ judgment; and (4) defining a set of proficiency
evels to categorize subjects. The scoring system can be used to
bjectively quantify competency in MIS skills.

. Performance assessment system design
.1. Theoretical fit between the fuzzy logic model and the
ssessment of laparoscopic skills model

Fuzzy logic is a multivalued logic initiated in 1965 by Zadeh
15] to form part of what is currently known as soft computing. In
uting 11 (2011) 3697–3708

contrast to traditional computing which strives for exactness and
full truth, soft computing techniques exploit the given tolerance of
imprecision, partial truth, and uncertainty for a particular problem.
Fuzzy logic provides the opportunity for modeling concepts and
dependencies that are inherently imprecisely defined.

In fuzzy sets, the membership value of an element x to a set A can
take values in the interval [0,1]. Fuzzy sets represent common sense
linguistic variables. The membership of the elements in fuzzy sets
is not mutually exclusive (i.e., element x may belong to fuzzy set A
at a certain degree but also to fuzzy set B at the same or a different
degree). The representation of a fuzzy set A in the universe U is
given by

A = {x, �A(x)|x ∈ A} (1)

where x is called a support value of A if �A(x) > 0 and �A(x) is the
membership function that defines how each point in the input
space is mapped to a membership value between 0 and 1.

Fuzzy sets are used in inference systems to map in a non-linear
way crisp inputs to crisp outputs by the application of production
rules. A basic fuzzy inference system has four elements: a fuzzifier,
an inference engine, a rule base and a defuzzifier, Fig. 2.

The core of a fuzzy inference system is the set of if–then rules
contained in the rule base also known as fuzzy rules that specify a
relationship between input and output fuzzy sets. Fuzzy rules take
the form of:

If A then B

where A is a proposition or collection of propositions that repre-
sent the antecedent and B is generally a proposition representing
the consequent. In order to interpret a fuzzy rule it is necessary
to evaluate its antecedent which involves fuzzifying its crisp input
and applying any necessary fuzzy operators (AND, OR, NOT). This is
known as the antecedent’s evaluation and is done by the system’s
fuzzifier. After the antecedent is evaluated the inference engine
applies the fuzzified input to the fuzzy rule through the implication
method to generate a fuzzy output or consequent. Each consequent
is multiplied by its rule weight. All consequents are aggregated
into one final output fuzzy set. Finally, the defuzzifier generates a
crisp number from the aggregated output applying a defuzzification
method [12].

Fig. 3 shows the inference process of two fuzzy rules that fired
to determine a proficiency level in MIS according to a given value
0.869 of the metric continuity of movement:

If continuity of movement is Moderate Positive.
Then proficiency level is Proficient.

If continuity of movement is Strong Positive.
Then proficiency level is Expert.

After the fuzzification of the value (0.869) corresponding to con-
tinuity of movement, its membership degree is determined to belong
to two fuzzy sets: Moderate Positive and Strong Positive. Therefore,
the two rules in Fig. 3 are triggered. The inference engine fires them
in parallel, generating two consequents in the form of fuzzy out-
puts with some membership degree to the Proficient proficiency
level and a greater membership degree to the Expert proficiency
level. These two fuzzy outputs were aggregated using a pointwise
summatory. Then, the defuzzification method was applied to obtain

the assessment score of 87.2.

There is a natural relationship between the laparoscopic skills
performance assessment model and the fuzzy logic model. Our
motivation to use fuzzy logic is summarized in the following
points.
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87.2).

There exists a lack of personal and interpersonal agreement
f expert surgeons on defining proficiency levels in laparoscopy
urgery. To explain this ambiguity in the proficiency levels defi-
ition, let us assume the range of values corresponding to a valid
erformance metric. This range is sorted from less desirable value
o most desirable value and divided into four crisp intervals: Nega-
ive, Weak Positive, Moderate Positive and Strong Positive (Fig. 4). If
e match proficiency levels such as Novice, Beginner, Proficient and

xpert with the intervals that characterize them, Negative, Weak
ositive, Moderate Positive and Strong Positive respectively, then
here exist values where it is not possible to define unambiguously
f they are characteristic of one proficiency level or another.

We use fuzzy sets to categorize those values that fall within the
oundary areas between two neighboring intervals characteristic
f different proficiency levels. Fuzzy logic works with non-crisp sets
here partial membership is possible. In other words, we can say

hat there exist subjects with performances containing the met-
ics’ values characteristic of two neighboring proficiency levels at
certain degree, e.g., a membership degree of 0.5 to the Beginner
roficiency level and a membership degree of 0.5 to the Proficient
roficiency level.

Fuzzy logic models imprecise dependencies based on natural
anguage. This simplifies the judgment knowledge elicitation pro-
ess since it is possible to interview expert surgeons in their own
erms, i.e., we can take the rules that they already use in the judg-
ent process and model them as fuzzy rules to work within an
nference system. We are building a scoring system using the expe-
ience of expert surgeons. We are basically taking what expert
urgeons know about the judgment process and designing an objec-
ive scoring system based on their knowledge.

Fig. 4. There are metric values for which the relationship to o
tinuity of movement which is used to derive a score for the performance assessment

4.2. Knowledge elicitation process

To learn more about the judgment criteria used in the assess-
ment of laparoscopic surgical skills, we started our elicitation
process through an open interview with an expert surgeon from
the University of Arizona Medical Center. Our expert used four lev-
els (Novice, Beginner, Proficient and Expert) to describe proficiency
in minimally invasive surgical skills.

We followed a four step procedure for the generation of mem-
bership functions:

1- Definition of linguistic variables.
2- Semantic decomposition of each variable.
3- Selection and application of the membership function elicitation

method.
4- Membership function generation.

4.2.1. Definition of linguistic variables
In this step we define the variables that will serve as input in our

fuzzy system. This can be achieved by open question interviews
with selected experts or based on previous research on the sub-
ject. If the latter is chosen, it is recommended to have an expert’s
opinion about the relevance of the selected variables before pro-
ceeding with the following steps. The definition of each variable
should include its range of values, i.e., the set of values that each

variable can possibly take.

Application: We defined five relevant metrics for a hand–eye
coordination task which were validated by an experienced surgeon:
time, movement economy ratio, movement direction profile, peak
speed width and continuity of movement.

ne and only one proficiency level cannot be established.
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ig. 5. Movement economy ratio is calculated by dividing the optimal path length
etween the targets A, B and C (shown in a solid line) by the path length drawn by
he trainee (shown as dashed line).

Time: The total time taken by the trainee to perform the task.

Desirable value: →0.
Less desirable value: →∞.

Movement economy ratio: This metric scales the movement track
ength. A task is divided into segments. Each segment is defined by
wo targets that have to be reached in sequential order. The move-

ent economy ratio is obtained by dividing the optimal path for
erforming the complete task by the addition of the path drawn by
he instrument’s tip while passing through the entire task’s targets
i.e., all the segments that comprised the task). Fig. 5 exemplifies
he movement economy ratio showing s trainee’s path, optimal path
nd segment concepts.

Desirable value: → 1.
Less desirable value: → 0.

e =
∑n

i=1LIi∑n
i=1LRi

(2)

here n is the total task’s segmentation number, i is the serial num-
er of each movement segmentation, LIi is the optimal path length
f segment i, LRi

is the trainee’s path length of segment i.
Movement direction profile: This metric quantifies the extent that

he instrument deviates in moving from target A to target B. It is
quivalent to the cosine of the angle formed by two vectors. The

rst vector has its origin in the starting target A with a magnitude
nd direction equal to the optimal path between the starting target
and the ending target B. The second vector has its origin at the

ext to last sample point taken by the position sensor mounted
n the instrument’s tip with a magnitude and direction equivalent

ig. 7. The terminal angle is measured from the vector described by the optimal path betw
o last sample point captured by the sensor mounted on the instrument.
Fig. 6. Movement direction profile quantifies the extent that the laparoscopic
instrument (dashed line) deviates from an optimal path (solid line) in moving from
target A to target B.

to the shortest path between that point and the last sample point
registered by the sensors (Fig. 6).

The movement direction profile (cosine of the angle) will be
equal to 1 when the instrument’s tip follows the direction of the
shortest path between starting target A and ending target B, −1
when the instrument’s tip follows a path in the opposite direction
of the shortest path, and 0 when the instrument’s tip follows a path
perpendicular to the shortest path. The closer the value is to 1, the
better the movement is rated.

The solid line in Fig. 7 represents the optimal path between point
A and point B. Last sample points are represented by the inner circle.
The outer circle represents next to last sample points [13].

Desirable value: 1.
Less desirable value: −1.

Peak speed width: The movement speed described by a laparo-
scopic instrument when moving between two targets by an
experienced surgeon goes rapidly from rest to a maximum speed
value, maintains that maximum (or a close enough) value until the
instrument is near to the target, and then returns to rest at the
target. An example of such speed graph is provided in Fig. 8

Peak speed width is obtained by dividing the speed wave’s peak
amplitude by two and calculating the ratio of the resulting areas
(Fig. 9). The peak speed width parameter depends on the wave’s
horizontal symmetry; waves closer to a trapezoidal shape like the
one in Fig. 8 reflect better movement control over the instrument
than jitter shapes such the one in Fig. 9. Therefore, their Peak speed

width value approaches one [13].

Desirable value: → 1.
Less desirable value: → 0.

een target A and target B (solid line), and the vector described by the last and next
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Fig. 10. The area under the speed wave (A) described by moving a laparoscopic
instrument between two targets is used to calculate the continuity of movement
metric.
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ig. 8. Speed wave of an experienced surgeon when moving a laparoscopic instru-
ent between two targets.

W = A

B
(3)

is the speed curve’s upper area and B is the speed curve’s lower
rea.

Continuity of movement: As before, assume that the instrument
ovement speed of an experienced surgeon goes rapidly from rest

o a maximum speed value, maintains that value until the instru-
ent is close to the target then returns to rest at the target (Fig. 8).

uch a speed curve should not present any troughs.
Continuity of movement is calculated by eliminating recursively

he speed’s graph troughs (Fig. 11) to obtain a modified graph and
hen calculating the ratio of both areas under the curves original
peed graph (Fig. 10) over modified speed graph (Fig. 12).

Desirable value: 1.
Less desirable value: → 0.

M = A
(4)
B

is the area under original speed curve and B is the area under
odified speed curve.
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ig. 9. Speed wave described by moving a laparoscopic instrument between two
argets. Peak speed width is obtained by calculating the ratio between the two areas
labeled as A and B) that result from dividing the speed wave’s peak amplitude by
wo.

Fig. 11. Troughs were eliminated recursively from the original speed wave to obtain
a more stable, smoother version.
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Fig. 12. A smoother modified speed graph exhibits a more desirable movement
derived from the trainee’s original performance. The area under this modified wave
(B) is calculated for the continuity of movement metric.



3704 M. Riojas et al. / Applied Soft Comp

Table 1
Fuzzy sets can be semantically decomposed by using different granularity levels.

Variable Level 1 Level 2 Level 3

Strong Positive Strong Positive Positive
Medium Positive Positive Medium
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est difference to generate the first membership function. In our
example for the metric continuity of movement, these points are
X
Weak Positive Medium Negative
Weak Negative Negative
Medium Negative Strong Negative
Strong Negative

.2.2. Semantic decomposition of each variable
A variable is decomposed into fuzzy terms. Each fuzzy term cor-

esponds to an interval of values that the variable may take. Values
elonging to the same fuzzy term share a linguistic meaning. Dif-
erent degrees of abstraction may be applied to a variable during
he semantic decomposition; this depends on the nature of the
roblem. The abstraction degree is determined by the experts and

s related to the granularity level they use when referring to the
ariable’s value in qualitative form. Table 1 shows three different
ranularity levels a variable may take.

Application: Each metric was decomposed into four fuzzy terms
hat characterize the performance of the given proficiency level as
ollows:

Strong Positive → Expert.
Moderate Positive → Proficient.
Weak Positive → Beginner.
Negative → Novice.

These fuzzy terms represent the input sets to our inference sys-
em.

.2.3. Selection and application of the membership function
licitation method

The goal of the elicitation method is to collect the necessary
nformation to generate membership functions. There exist several
licitation methods to choose from in the current literature e.g.,
olling, direct rating, interval estimation and transition interval
stimation [7,8]. Some elicitation methods are more appropriate
han others depending on the problem. Factors to consider when
hoosing an elicitation method are the number of experts involved
n the elicitation process and the interpretation given to the mem-
ership functions. However, it is our experience that often it is
ecessary to modify, combine or look for new ways of elicitation
epending on the available resources and the restrictions of the
roblem.

Application: Our elicitation method focuses on the transitional
oint x for which expert p can make no crisp distinction whether
roperty Ai does or does not apply. This is a modified version of the
licitation method introduced in [8] where an expert is asked for a
ransition interval.

A simple hypothetical example was used to define the pro-
ciency levels, the expert surgeon assumed an array of sorted
amples with 100 values collected from the performance of a selec-
ion of subjects with different laparoscopic surgical skills. The
xpert was asked what percentages belong to each proficiency
evel, to which he answered the following.

Expert: top 20%.
Proficient: 50–80%.
Beginner: 30–50%.

Novice: bottom 30%.

Given the above definition, our transitional points are located in
he positions 30, 50, and 80 in the sorted array. We cannot define
nambiguously if the values in these positions are characteristic
uting 11 (2011) 3697–3708

of one proficiency level or the other. Hence we chose them as the
points where the membership functions of two neighboring fuzzy
sets intersect at the degree of 0.5.

4.2.4. Membership function generation
The elicitation process provides the key points needed to gen-

erate membership functions. Most of the time the information
collected from different experts is averaged. It is also possible to
give some weight to the expert’s opinions according to their expe-
rience (e.g., number of performed procedures or working hours) or
proven competency in the field. Membership function generation
is straightforward and based on the information collected in the
elicitation phase.

Application: We generated membership functions consist-
ing of straight segments i.e., triangular and trapezoidal, also
known as polygonal membership functions. Polygonal member-
ship functions have several advantages as mentioned by Piegat
[14]:

1- A small amount of data is needed to define the membership
function.

2- It is easy to modify the parameters (modal values) of mem-
bership functions on the basis of measured values of the
input → output of a system.

3- It is possible to obtain an input → output mapping which is a
hyper surface consisting of linear segments.

4- Polygonal membership functions meet the condition of a parti-
tion of unity. The condition of a partition of unity restricts the
sum of memberships of each element x from the universe of
discourse to be equal to 1,

∑
h

�Ah
(x) ≡ 1, ∀x ∈ X (5)

where h is the number of the fuzzy set [14].
Our elicitation method provided us with the transitional points

where two membership functions intersect at the height of 0.5. We
use these points to calculate the rest of the critical points needed
to construct polygonal membership functions according to the fol-
lowing criteria:

1- We chose a triangular function over a trapezoidal when possible.
2- We encouraged vertical symmetry on non-outer membership

functions.
3- We satisfied the condition of a partition of unity.

Fig. 13 shows the membership functions defined for the metric
continuity of movement. In this example, the identified transitional
points were Beginner–Novice: 0.788045, Proficient–Beginner:
0.819006 and Expert–Proficient: 0.862335. We used these tran-
sitional points to generate the four membership functions that
describe the Negative, Weak Positive, Moderate Positive and Strong
Positive fuzzy sets.

4.3. Triangular functions

We chose the pair of transitional points (tp1, tp2) with the small-
Beginner–Novice: 0.788045 and Proficient–Beginner: 0.819006.
These two transitional points enclose the range of the most char-
acteristic values of the beginner proficiency level i.e., the Weak
Positive fuzzy set. Triangular curves depend on three parameters
given by:
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ig. 13. Membership functions defined for the metric continuity of movement. Trans
uch values equally belong to both neighboring sets (N = Negative, WP = Weak Posit

(x; a, b, c) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for x < a
x − a

b − a
for a ≤ x < b

c − x

c − b
for b ≤ x ≤ c

0 for x > c

(6)

Based on Eq. (2) we defined the three parameters to generate a
riangular membership functions these are the vertices a, b and c.
ertex b, which is the peak of the triangular function, is determined
y the middle point mp between the two transitional points:

p = tp2 − tp1
2

+ tp1 where : tp2 > tp1 (7)

Vertex a is equivalent to the point where the line that passes
hrough the points (mp, 1) and (tp1, 0.5) intersects with the mem-
ership degree of 0.

Vertex c is obtained in a similar way to vertex a: by calculating
he intersection with the membership degree equal to 0 of the line
hat passes through the points (mp, 1) and (tp2, 0.5). The resulting
riangular function for the Weak Positive set is f(0.7725, 0.8034,

0.8346).

.4. Trapezoidal functions

We gave priority to triangular functions over trapezoidal.
owever, triangular functions impose restrictions over their neigh-
oring membership functions if we want to satisfy the condition of
partition of unity, making it difficult to represent all of the fuzzy

ets as triangular shapes.
Continuing with our example using the metric continuity of

ovement, the triangular membership function describing the
eak Positive fuzzy set establishes restrictions over its neighbor-

ng membership functions. Therefore, trapezoidal functions are
equired to make the neighboring membership functions corre-
ponding to Negative and Moderate Positive fuzzy sets to have a
embership degree of 0 at the point where the already defined
eak Positive fuzzy set has a membership degree of 1 (i.e., at its
iddle point mp) as well as a membership degree of 0.5 where the

ransitional points have been identified.
Trapezoidal curves depend on four parameters and are given by:

(x; a, b, c, d) =

⎧⎪⎪⎪⎪⎪⎨
⎪

0 for x < a
x − a

b − a
for a ≤ x < b

1 for b ≤ x < c (8)
⎪⎪⎪⎪⎩
d − x

d − c
for c ≤ x < d

0 for d ≤ x

At this point, we already know one out of four parameters
equired to generate the trapezoidal membership function cor-
l points between neighboring fuzzy sets intersect at the degree of 0.5 meaning that
P = Moderate Positive and SP = Strong Positive).

responding to the Negative fuzzy set. We know that the vertex
d of the Negative fuzzy set should be equal to vertex b of the
Weak Positive fuzzy set (i.e., 0.8034) to satisfy the condition of
partition of unity, making the maximum membership point for
one fuzzy set (Weak Positive) represent the minimum member-
ship point of its neighbor (Negative). Vertex c of the Negative
membership function is equivalent to vertex a of the triangular
function of the Weak Positive fuzzy set (i.e., 0.7725). Finally, we
gave the same value to the vertices a and b because the Nega-
tive fuzzy set corresponds to the left outside membership function
of the continuity of movement variable. This means it has only
one neighbor to its right side (Weak Positive). We gave a and b
the minimum value shown in our samples i.e., 0.5761. The trape-
zoidal function for the Negative set is f(0.5761, 0.5761, 0.7725,

0.8034).
We encourage vertical symmetry of trapezoidal membership

functions when they are not right or left outside membership
functions such as the Moderate Positive. As in previous exam-
ples vertex a and b can be defined from the neighboring set
Weak Positive. The middle point mp between the two transi-
tional points that enclose the highest membership degrees of
the Moderate Positive is calculated using Eq. (9). These three
points define a half of a symmetrical trapezoid from where the
remaining vertex can be easily deduced. The trapezoidal func-
tion for the Moderate Positive set is f(0.8034, 0.8346, 0.8467,
0.8778).

5. Fuzzy inference system implementation and results

5.1. Framework

We design a hand–eye coordination task consisting of a tray
with 5 labeled pegs and a starting point (Fig. 14). The trainee
has to touch the tip of each peg with the tip of a 5 mm × 33 mm
MIS spatula with an unlimited time in the following order:
start → 0 → 1 → 0 → 2 → 0 → 3 → 0 → 4.

CAST emits a sound when the corresponding target has
been touched by the spatula’s tip. This auditory aid is used
by the trainee to recognize when a target has been reached
and therefore to continue executing the next movement in the
sequence.
We used MATLAB Fuzzy Logic Toolbox 2 [11] for the implemen-
tation of the scoring system. Fuzzy Logic Tool Box 2 is a collection
of functions built in the MATLAB numeric computing environ-
ment that provides tools to create and edit fuzzy inference systems
[10].
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ig. 14. Hand–eye coordination task composed by five pegs and a starting point.
ach peg has a different height. The tip of each peg corresponds to a different target
n the exercise.

.2. Scoring system implementation

The CAST Scoring System is a five input, one output Mamdani
uzzy model with 20 rules developed with the Matlab Fuzzy Logic
oolbox 2. The inference process is performed automatically by
ATLAB. However, this had to be programmed with some spec-

fications shown in Table 2.
MAMDANI fuzzy inference system: Considers a fuzzy output. In

he assessment model the outputs are fuzzy sets representing pro-
ciency levels: Novice, Beginner, Proficient and Expert.

MIN implication method: In this method, the output member-
hip function is truncated at the height corresponding to the rule’s
ntecedent computed degree.

SUM aggregation method: In this method, the aggregated output
uzzy subset is constructed by taking the pointwise sum over all of
he fuzzy subsets assigned to the output variable by the inference
ules.

CENTROID defuzzification method: In this method, the crisp value
f the output variable is computed by finding the center of gravity
f a continuous aggregated fuzzy set. The centroid yi of B is given
y:

′ =
∫

s
yi�B(y)dy∫
s

�B(y)dy

(9)

A Mamdani model lies at the core of the CAST scoring system.
he Mamdani type is one of the most frequently used fuzzy logic
tructures, characterized by handling rules with fuzzy consequents.
s opposed to other fuzzy models, such as Sugeno type, which han-
les crisp outputs, Mamdani systems demand processing a greater
omputational load to defuzzify consequents. Nevertheless, work-
ng with fuzzy consequents facilitates eliciting expert knowledge
n a more transparent and intuitive manner. Experts do not have to
rovide crisp values or a mathematical equation to describe outputs
or Mamdani systems.
CAST fuzzy system features membership function and output
ets with triangular and trapezoidal forms with a maximum degree
f membership of 1 and a minimum of 0. Rules were designed
y matching the fuzzy terms obtained in each variable’s seman-
ic decomposition (Negative, Weak Positive, Moderate Positive and

able 2
pecifications underlying the CAST assessment system.

Fuzzy inference system Mamdani

Implication method Min
Aggregation method Sum
Defuzzification method Centroid
Membership functions Triangular–trapezoidal [0, 1]
uting 11 (2011) 3697–3708

Strong Positive) with their corresponding proficiency level (Novice,
Beginner, Proficient and Expert). The rules’ antecedents have one
proposition formed by a variable (performance metric) and one
fuzzy term. The rules’ consequents have one proposition formed
by a variable (proficiency level) and one fuzzy term. A single-input,
single-output rule design was preferred because of the difficulty
experienced while trying to elicit rules from an expert surgeon that
involved more than one proposition in their antecedent and/or con-
sequent. The expert’s struggle to articulate rules with more than
one antecedent and consequent indicates that the judgment pro-
cess occurs considering one proposition at the time and this concept
is captured in our scoring system. The system’s rulebase consists of
a total of v × m rules where v is the number of variables, and m
is the number of proficiency levels. For example, for the variable
continuity of movement we have the following set of rules:

If continuity of movement is Strong Positive then Proficiency level
is expert.
If continuity of movement is Moderate Positive then Proficiency level
is proficient.
If continuity of movement is Weak Positive then Proficiency level is
beginner.
If continuity of movement is Negative then Proficiency level is
novice.

Each rule has an associated weight that can take values from 0 to
1. The weight determines the rule’s impact on the final score. For the
hand–eye coordination task previously described in Section 5, each
rule was provided with the same weight. The rule’s weight is related
to the variable’s degree of relevance. This degree of relevance was
determined by an expert surgeon and depends on the task being
evaluated since different tasks might require different abilities at
different levels.

The fuzzy output is composed by all the possible consequents
of the rules in our rule base i.e., the four proficiency levels Novice,
Beginner, Proficient and Expert (Fig. 15). We distributed the mem-
bership functions evenly on a range of values going from −33.33 to
133.32. We followed the same criteria for constructing the mem-
bership functions used in the construction of the input fuzzy sets
described in Section 4.2.

Although the fuzzy output sets range from −33.33 to 133.32, the
maximum score a subject might achieve is 99.99 and the minimum
is 0. This is due to the centroid defuzzification method.

5.3. Experimentation and results

A total of 38 subjects participated in this study. Subjects were
distributed in five groups according to their expertise in MIS,
17 non-medical students, 11 medical students without previ-
ous laparoscopic surgery training, 5 medical students with some
laparoscopic surgery training, 4 medical residents and 1 expert sur-
geon. The hand–eye coordination task presented in Section 5 was
performed 8 times by each subject. In total 304 samples were used
in this study. Subjects were asked to use only their dominant hand
(left or right) to perform each of eight trials. For each subject four
trials (odd trials) were used in the system’s knowledge base while
the other four (even trials) were used for testing purposes.

Subjects’ identification numbers were provided according to
the five groups of expertise: non-medical students were assigned
identification numbers within the range of [1000, 1999], medi-
cal students with no laparoscopic training [2000, 2999], medical

students with laparoscopic training [3000, 3999], residents [4000,
4999] and surgeons [5000, 5999].

Fig. 16 shows the average score per subject derived from the 4
trials selected for testing purposes. Groups are divided with dashed
vertical lines.
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Fig. 15. CAST output fuzzy sets depict four proficiency levels. Outputs are normalized such that holding a membership value of 1 in the novice or expert sets results in a
score of 0 and 100 respectively after defuzzification.
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ig. 16. Average score plot. Identification numbers were assigned to subjects accor

The average scores for each group are shown in Table 3. There is
clear pattern of increasing score according to each group’s level
f expertise.
. Discussion

The presented framework holds great potential as it shows
calability features in three key aspects for the constant improve-

able 3
ean score for each subjects’ group participating in our study.

Group Score

Non-medical students 41.7369
Medical students with NO MIS training 54.5209
Medical students with MIS training 62.3915
Residents 70.32374
Surgeons 87.8574
o their previous MIS training higher id’s correspond to greater previous training.

ment of an objective scoring system. Those three aspects are as
follows:

Integration of new experts’ knowledge: Contributions from other
expert surgeons can be easily integrated with the system if pro-
ficiency levels are defined as before, i.e., by asking, based on
performance data, what percentages from a selection of subjects
with different surgical skills belong to each proficiency level? For
example, if expert 1 defines novices as the bottom 30% and expert
2 defines novices as the bottom 40%, these two definitions can be
averaged to reconcile their difference.

Integration of new evaluation metrics: The integration of new per-
formance metrics can also be done in a straightforward manner.
The construction of membership functions can be derived from the
performance data already recorded on the system. If necessary, for

each new metric four new rules need to be added to the system’s
rule base with consequents that correspond to the four proficiency
levels previously defined in this work. This feature is relevant in
the cases of task dependent metrics where different tasks demand
to compute a different set of metrics.
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Integration of new performance data: The constant recording of
ubjects’ performance data and membership function regeneration
fter deployment gives the system the potential to be adaptable to
ts trainees’ pace of improvement or to new, higher skilled users.

e derived fuzzy membership functions through the location of
ransitional points between proficiency levels defined as percent-
ges. The locations of the transitional points change according to
he number of samples used for the generation of membership
unctions. The greater the number and diversity of the samples, the

ore accurate the system will be. To offset the subjectivity inher-
ted from relying solely on the data of the subjects used during the
ystem’s design phase, the samples of new subjects that exceed a
imit of a metric range (i.e., its maximum or minimum value regis-
ered in the system) should be considered for its integration with
he system knowledge base, and therefore, for the recalculation of
ew transitional points.

The scalability features of the presented elicitation method are
step forward toward a robust and objective system for the assess-
ent of laparoscopic surgical skills.

. Conclusions

This work demonstrates how to objectively measure proficiency
evels in minimal invasive surgical skills by computing motion
racking data and modeling expertise judgment as an inference sys-
em based on fuzzy logic. We conceive the MIS assessment process
s a function of two elements the abstract theoretical knowledge of
xperience surgeons of what constitute competitive performance
nd the performance data of subjects with a wide diversity of MIS
xperiences. The presented knowledge elicitation framework can
asily accommodate system’s enhancements in performance met-
ics, and expertise knowledge while rising assessment standards
ccording to trainees’ acquired skills.
This work also introduced a new performance metric continu-
ty of movement to the set of metrics employed in the assessment
f laparoscopic surgical skills. This metric can be used not only
n simple hand–eye coordination tasks but also in more complex
aparoscopic procedures.
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