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ABSTRACT

Optimal path planning and re-planning are essential requirements for efficient robotic and laparoscopy sur-
gical education as they guide instruments through the operating field. Ensuring collision free paths and
training under uncertainty, with limited dependence on an expert surgeon’s assistance, are key aspects to
be considered. In this paper, a hybrid path planning method is introduced to assist in surgical training that
combines offline and online approaches for trajectory generation. The proposed offline-online path planner
integrates features of offline approaches that guarantee safe navigation with real-time re-planning capability
of online planners. It reduces memory storage requirements of the trajectories for online path planning, by
more effectively saving them as segments, catering to the portability of the surgical systems. The efficacy of
the proposed approach is demonstrated in a simulated training environment for hand-eye coordination tasks
on the Computer Assisted Surgical Trainer (CAST) platform.

Keywords: path planner, simulated surgical training, offline and online.

1 INTRODUCTION

Minimally Invasive Surgery (MIS) (which is often referred to as laparoscopic surgery) is a procedure in
which long, thin instruments are inserted through small incisions in the body, while visualizing the operative
field on a display monitor. Typical challenges of MIS procedures include a restricted field of vision, hand-
eye coordination difficulty, lack of depth perception, and limited flexibility of laparoscopic instruments. For
these reasons, much research has been done to develop effective, intelligent training techniques to improve
laparoscopy skills of practicing surgeons and trainees. A variety of surgical training systems have been
proposed and developed to serve as the underlying practice platforms (Ordonez and et. al. 2007)(Pham
et al. 2004)(Stylopoulos et al. 2004)(Derossis et al. 1998). Computer-aided, intelligent surgical training
is a novel direction of research in the current age of robotically assisted laparoscopic surgery. In our work,
we aim to provide continuous visual guidance on optimal, collision-free navigation paths with minimum
supervision of an expert surgeon to improve the outcome of surgical training(Derossis et al. 1998).

The Computer Assisted Surgical Trainer (CAST) (Derossis, Fried, Abrahamowicz, Sigman, Barkun, and
Meakins 1998)(Rozenblit 2014)(Rozenblit 2012) as shown in Fig. 1, is a training system that provides the
above capabilities along with precise assessment metrics, intuitive visual assistance and haptic guidance for
the execution of surgical training tasks. The central component of CAST is the optimal motion planning
method (optMIS) (Nikodem et al. 2012)(Napalkova et al. 2014). However, this offline strategy generates
strictly fixed paths in static environments with poor computational performance (both memory and time-
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Figure 1: The Computer Assisted Surgical Trainer with the hand-eye coordination “block world” task.
The left and right instruments follow the optimal path generated by the hybrid offline-online path planner
rendered on the monitor.

wise). Hence, our work derives from this initial surgical movement planner which generates offline, shortest,
collision-free trajectories for instruments in a training environment.

We posit that surgical path planners should dynamically update the path, for instance, to reinforce proper
reactions to unanticipated complications (e.g., bleeding). Current state of the art online path planning al-
gorithms (Geraerts and Overmars 2004)(LaValle and Kuffner 2001) as applied to surgical trainers, do not
assure collision avoidance during rapid re-planning especially under strict timing constraints (in an unfore-
seen medical emergency), nor do they take into account potential memory storage requirements for storing
pre-computed roadmaps (Yershov and LaValle 2011)(Torres, Baykal, and Alterovitz 2014). Memory (and
computation speed in cases of rapid re-planning needs) requirement is envisioned to be a key consideration
in path generation, especially in portable surgical trainers (like CAST) and mobile robotics, in general. This
is attributed to laparoscopic instruments having multiple degrees of freedom operating in a 3D space along
with several constraints to be considered for collision avoidance. This motivates the work presented here.

In what follows, we present a hybrid, flexible offline-online path planner with safety assurance and reduced
memory demands for surgical training systems. Safety-assurance refers to the guarantee of collision-free
navigation in the work space even during dynamic re-planning. We also mathematically model the optimal
segment length for consistent memory savings. The proposed approach is intended to improve training
capability by incorporating quick dynamic re-planning while assuring collision avoidance. The wider aspect
of this approach, optMIS, has been presented and validated in (Napalkova et al. 2014). We evaluate our path
planner in a simulated environment on a hand-eye coordination training task in a “block world” environment
for the CAST (see Fig. 1).

2 RELATED WORK

Motion and path planning has been a subject of substantial research in the past few decades. Discrete,
combinatorial and sampling based path planning algorithms are widely utilized in the community (LaValle
2006). Sampling based algorithms are especially powerful for offline planning as they probe the config-
uration space for obstacles with an independent collision detection unit. Sampling based algorithms have
been developed for large state space dimensions and dynamic, cluttered and unpredictable environments
(LaValle 2006). For such environments the performance cost and computation time is high, thus, variants
of these algorithms were introduced in (Ichnowski and Alterovitz 2012)(Yershov and LaValle 2011)(Salz-
man and Halperin 2016) that improve those metrics. Discrete combinatorial algorithms are effective as the
state space is static and predictable while being exact, since they find (or fail to find) a path for a given
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problem instance. Probablistic Roadmaps (PRM) (Kavraki et al. 1996) are appropriate in this reference,
where a roadmap of the state space is created and a path is queried from this roadmap. Popular search
methods such as A\ast , D\ast and Dijkstra’s are used to query the constructed roadmap/graph (Bennewitz and
Burgard 2000)(Yershov and LaValle 2011)(Stentz 1994). Our offline path planner i.e. optMIS is based on
PRM, tailored to the constraints of CAST with an additional smoothing algorithm to result in near-optimal
collision-free smooth trajectories.

Motion/path planning for medicine and surgery have critical requirements of safety (obstacle avoidance)
and precision. The approach to planning in such domains is based on (van den Berg, Ferguson , and Kuffner
2006), where a priori information of the environment, including static and dynamic elements are taken into
account (offline) and continuous improvements to the initial trajectory are made, based on the agent and
environmental changes (online). Offshoots of this core approach have been validated and demonstrated in
simulated medical and surgical environments in (Torres, Baykal, and Alterovitz 2014)(Sun and Alterovitz
2014)(Berenson, Abbeel, and Goldberg 2012). Our hybrid path planner is influenced by these approaches.

Storage is a prohibitive factor in portable surgical training systems like CAST. It is desirable to store several
paths for several training scenarios in such systems. Most of the references mentioned do not consider
storage requirements for their roadmaps. (Shaharabani et al. 2013)(Dobson and Bekris 2014) propose
algorithms to reduce the size of path planning roadmaps. However, these algorithms applied in the context
of surgical training will result in loss of coverage, connectivity and quality. In addition, these methods
require collision checking during sparsification of the roadmap impeding performance. Our proposed path
planner reduces storage requirements while retaining coverage of the state space, improving connectivity,
maintaining path quality and requiring no additional collision checking.

In the remainder of this paper, we discuss the details of the hybrid offline-online path planner and model the
segmentation of roadmap to reduce memory requirements. We evaluate an implementation for a simulated
hand-eye co-ordination laparoscopic training task in CAST and conclude with a discussion of future work.

3 PROPOSED APPROACH

Our approach of the hybrid offline-online path planner is divided into three main phases: (a) offline path
planning, (b) repository of segmented paths, and (c) online path planning, as shown in Fig. 2. The following

Figure 2: Diagram of the Offline-Online approach.
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Figure 3: Representation of optimal paths with its segmented pathmap.

expands the background stages i.e. offline path planning and repository of segmented paths for the online
path planner.

3.1 Offline path planner

We adopt the offline path planner implemented in (Napalkova et al. 2014) named optMIS that robustly
generates optimal paths for the laparoscopic instruments, provided the input of a 3D training model. In
OptMIS, Delaunay triangulation algorithm splits the 3D space into tetrahedrons to derive the search space
C \prime for path planning. Given the initial and goal point, Dijkstra’s algorithm finds the shortest path. Cubic
splines smooth the shortest paths with a brute-force collision check with all the obstacles present in the
space, which is essential in the medical context. The resulting optimal paths are generated as an array of
3D points. However, generating optimal paths for a moderately sized 3D model as in Fig. 1, is significantly
slow and hence, improved algorithms were incorporated for faster performance. To limit the scope of the
paper, we do not delve into these algorithms. We choose points of interest based on the training space and
task to be performed. These points can be selected by the surgeon/trainee or can be randomly generated
in the search space roadmap. The instrument tip is assumed to be a sphere of diameter wtip (width of the
instrument tip). Thus points of interest can be chosen with a tolerance distance of up to wtip. The array of
paths \bfP is constructed from the improved optMIS using the points of interest \bfp as the input. Enumerative
paths are computed between all points in \bfp resulting in

\bigl( 
N\bfp 

2

\bigr) 
paths in \bfP , whereN\bfp is the total number of

points of interest chosen. \bfP is assured to consist of collision-free and hence, safe paths as the offline path
planner has been formally verified in (Napalkova et al. 2014).

3.2 Repository of segmented paths

To store the generated trajectories \bfP efficiently, we segment the paths and find common segments. Only
a single copy of the common segments found are stored along with the unique segments, embedding the
neighbor information of the segments to maintain generated paths. As \bfP \in C \prime , especially in medical
scenarios where C \prime is restricted, the probability of finding common paths is high; which is an opportunity
to reduce memory requirements. A leeway of wtip to find aligning common segments is considered as it
is a reasonable assumption in laparoscopic surgical training. This compresses the original path roadmap to
what we call a segmented pathmap. The segmented pathmap has three main purposes: 1. it reduces the
amount of memory required for storage without loss of information, 2. it expands search space connectivity
by allowing finer re-planning without the need for additional computation, and 3. the search space can
be easily scaled for other training tasks or scenarios. As illustrated in Fig. 3, we see that the connectivity
increases, as there are many more possible paths from the segment pathmap as compared to just a repository
of paths, which implies more training scenarios for a surgical trainee.
The memory savings factor m can be given by:

m =
\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{h} (\bfP )

| \BbbS | 
,where \BbbS is the segmented pathmap (1)
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The segment size ns is the key factor in obtaining an increased m. The details of the mathematical formu-
lation to deduce an optimal ns is detailed in Section 4.

4 OPTIMAL SEGMENT SIZE DEDUCTION

We consider left and right hand laparoscopic instruments in a 3D environment space C with obstacle space
O (such as the one shown in Fig. 1). The free space Cfree that avoids collisions of the instruments with the
obstacles is defined as Cfree = C  - O . Based on (Feng et al. 2009), in surgical training systems the actual
task training space C \prime is bound around the obstacle space such that C \prime \subseteq Cfree \cup O .

4.1 Repository of path segments

Points of interest, \bfp , are chosen based on the task to be performed in the training environment and are bound
in the space C \prime . Let the total number of points of interest be N\bfp , then, the total number of paths generated
by offline path planning is NP =

\bigl( 
N\bfp 

2

\bigr) 
and represented by the array of paths

\bfP = [\ttP 1, . . . , \ttP NP
] . (2)

Each path \ttP i is an array of 3D points [p1x,y,z , . . . , plx,y,z ], where l represents the total number of points in a
path. The paths are divided into Ns segments of ns points each.

The total number of segments Ns of \bfP is

Ns = Nu +

Nc\sum 
i=1

\bfx ci ,

where Nu is the total number of unique segments and Nc is the total number of common segments with
\bfx = \{ rc1 , . . . , rcNc

\} repetitions each. So the number of elements in (2) is

\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{h} (\bfP ) = \mathrm{l}\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{h}
\bigl( \bigl[ 
su1 , . . . , suNu

\bigr] \bigr) 
+

\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{h}
\bigl( \bigl[ 
sc1 , . . . , scNc

\bigr] 
\odot \bfx 

\bigr) (3)

where \{ su1 , . . . , suNu
\} is a set of unique segments, \{ sc1 , . . . , scNc

\} is a set of common segments with \bfr 
repetitions each, and \odot is a repeat operator (sci is repeated in memory rci times). \BbbS represents the segments
of the segmented pathmap:

\BbbS u = \{ su1 , . . . , suNu
\} ,

\BbbS c = \{ sc1 , . . . , scNc
\} ,

\BbbS = \BbbS u \cup \BbbS c.

We assume these segments exist in the training space, i.e., s \in C \prime | s \in \BbbS .

Taking no additional action, the memory required for \bfP will be on the order of:

\ttM \prime =

\biggl( 
3 \mathrm{l}\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{h} (\bfP ) +

\biggl( 
N\bfp 

2

\biggr) \biggr) 
, (4)

for the 3D vectors and the references to where each path starts. If we remove the duplicate segments, the
memory requirement (for the segments and for the connections between segments) is:

\ttM = (3ns +B) | \BbbS | . (5)
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ns is a constant describing the number of points in a segment and B is the memory requirement to store
a reference to a successor or predecessor segments. The factor of three follows from each segment being
composed of a 3D point. Equation 5 is valid as the common segments need to be stored only once when
storing the successor and predecessor segment’s information B.

4.2 Segmentation of paths’ modeling

If \ttP ik is the kth point on the ith path, let ns be the number of points in a segment. Our task is to find
an optimal or near optimal segment size for memory storage compression. Complicating this matter is
the alignment of segments (e.g., [B,C]-[D,E]-[F,G] versus [A,B]-[C,D]-[E,F]). Two approaches to address
alignment is to using padding, which itself will incur memory overhead, or to explicitly take into account
the probability of alignment. We chose the latter.

Let \mathrm{I}\mathrm{n}\mathrm{d}: \ttP ik \rightarrow \{ 1, 2, . . . , ns\} . \mathrm{I}\mathrm{n}\mathrm{d} maps from a point to its index in a segment. Consider

\mathrm{I}\mathrm{n}\mathrm{d}(\ttP ik) = k \mathrm{m}\mathrm{o}\mathrm{d} ns. (6)

If the segment length is short relative to the path length and the resulting indices are independent of the path,
then the function \mathrm{I}\mathrm{n}\mathrm{d} outputs a discrete uniform distribution. In other words, if

ns \ll length(\ttP i) \wedge \mathrm{I}\mathrm{n}\mathrm{d}(\ttP ik) \bot \bot \ttP i (7)

then
\mathrm{I}\mathrm{n}\mathrm{d}(\ttP ik) \sim \scrU (1, ns). (8)

Based on (8) the probability that two distinct independent paths \ttP i and \ttP j are aligned along a common
segment, given the random variables X = \mathrm{I}\mathrm{n}\mathrm{d}(\ttP ik) and Y = \mathrm{I}\mathrm{n}\mathrm{d}(\ttP jk), is

P (X = Y ) =
\sum 

x\in \{ 1,2,...,ns\} 

P (X = Y | X = x) \cdot P (x = X)

=
\sum 

x\in \{ 1,2,...,ns\} 

P (x = Y ) \cdot 
\biggl( 

1

ns

\biggr) 
=

\sum 1

(n2
s)

=
1

ns
, (9)

where P (x = X) = 1/ns by definition of \scrU (1, ns).

This result has two key consequences, showing the following. First, segments of length 1 (individual points)
are always aligned. Second, the expected number of encoded points is independent of ns. This means
ns \cdot | \BbbS c| is mostly independent of ns, assuming (7).

When trying to optimize (5), we need to keep three things in mind. Equation (9) shows expected number
of encoded points is independent of ns. Larger segments mean there will be fewer segments and hence less
overhead. However, larger segments run the risk that \mathrm{I}\mathrm{n}\mathrm{d}(\ttP ik) is something other than uniformly distributed.
We consider the variance of the memory usage to break this tie.

One can readily see the second moment of the path alignment problem is:\sum 
x\in \{ 1,2,...,ns\} 

P (X = Y )n2
s = ns.
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In this case, the variance (the second moment subtract the first moment squared) is dominated by the second
moment. The larger ns, the more variable the memory savings will be. For consistency, we choose a small
value of ns.

The smallest value we can choose for ns is 1. This means that we should only save points not segments.
However, this ignores three critical details. First, this ignores the influence of B in (5). Second, the smaller
ns, the larger the set \BbbS ; smaller segments mean more work is required to reconstruct optimal paths. Last, we
want to use “natural” cubic splines (Hagan and West 2006) without having to reconstruct larger segments
first. This implies that the smallest segment length we can use is a length of three. Thus, we choose ns = 3.
This leads to good, consistent memory savings. The paths are hence divided in segments of three points.
End segments may consist of different number of points depending on the value of l \mathrm{m}\mathrm{o}\mathrm{d} 3. The derivation
of the probability of finding overlapping segments in a specific space is a noteworthy factor, but will be
pursued in future work to limit the scope of this paper.

5 ONLINE PATH PLANNER

The input to online path planning is the constructed segmented pathmap. Online path planning is performed
by the A\ast graph search algorithm (Hart, Nilsson, and Raphael 1968) employing a specific heuristic for our
problem as discussed below.

1. Constructing input graph: Each segment of the segmented pathmap represents a node \eta in the input
graph. The neighbor information is stored as a pointer to the adjacent segments in the path. The end
segments of the paths are the terminal nodes of the graph. A delimiter field is included in the start
and terminal nodes of each path to maintain the path sequence. An iteration is performed through
the data structure to detect the common segments. Copies of the common segments are deleted and
their neighbor pointers from/to predecessor/successor nodes respectively are redirected.

2. A\ast parameters design: Admissible heuristics (defined in (Hart, Nilsson, and Raphael 1968)) improve
the efficiency of A\ast algorithm by exploring fewer nodes and never overestimating the distance to the
goal. For the current node \eta 

f(\eta ) =g(\eta ) + h\ast (\eta ), (10)

such that, h\ast (\eta ) \leq h(\eta )

where f(\eta ) is the evaluation function of \eta , g(\eta ) is the cost from the start node \eta start to n, h(\eta ) is
the actual cost to reach the goal node \eta goal from \eta and h\ast (\eta ) is the heuristic underestimated cost to
reach the goal node \eta goal from n.
To satisfy (10), we choose the Euclidean heuristic (Rayner, Bowling, and Sturtevant 2011) in 3D
space. For the current segment node \eta cur \in \BbbS , the Euclidean heuristic function is the Euclidean
distance between the initial point of the segment \eta cur1 and the initial point of the segment in goal
node \eta goal1 , i.e., h\ast (\eta cur) = \| \bfr (\eta cur1) - \bfx (\eta goal1)\| 2, where \bfx (\eta cur1) and \bfx (\eta goal1) are the 3D
positions of the initial points of the segments. To simplify g(\eta ) we assume the curve segments to
be rectifiable, as the summation of lengths of its constituent linear segments. Fig. 4 illustrates our
parameter calculations for the A\ast algorithm.

The online path planning is implemented given the initial \bfx \bfi \bfn \bfi \bft and goal position \bfx \bfg \bfo \bfa \bfl . Segments corre-
sponding to \bfx \bfi \bfn \bfi \bft and \bfx \bfg \bfo \bfa \bfl are found. If multiple goal segments exist, they are reduced to a single goal
segment, since the objective is to find the shortest path to \bfx \bfg \bfo \bfa \bfl irrespective of its contained segment. A\ast 

algorithm is executed on the segmented pathmap input with the heuristic discussed above. The planner
computes near-optimal (approximation of length of curve segments do not always guarantee shortest trajec-
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Figure 4: Heuristic calculation. Figure 5: Selection of points of interest.

tories) trajectories but ensures collision-free complete paths which is our main emphasis. Real-time path
re-planning can be accomplished by providing different \bfx \bfg \bfo \bfa \bfl on the fly while performing the task.

6 SIMULATIONS AND RESULTS

We demonstrate our offline online path planner in a simulated training environment of CAST. The simulated
training scenario is a hand eye coordination task in a “block world” environment. We chose a tolerance
radius of wtip = 0.04cm in our experiments as this represents the diameter of the laparoscopic instrument
tip used in CAST (assumed as a sphere). We perform our simulations on an Intel i7 2.93GHz quad-core
computer with 4GB memory.

6.1 Simulation Setup

CAST consists of two laparoscopic instruments mounted on fixtures composed of a gimbal, one for the left
hand and one for the right hand. As in laparoscopic surgery, the gimbal allows four degrees of freedom,
all centered around one single entry corresponding to the incision. The hand eye coordination experimental
task involves touching target positions close to the objects (“blocks”) in the workspace using the tips of the
instruments. The target points are selected such that they are reachable by the laparoscopic instruments in
the setup (see Fig. 1). This task is modeled in MATLAB and experiments are performed using our hybrid
path planner. Fig. 5 illustrates the points of interest chosen for the “block world” hand-eye coordination
task. The points of interest are selected in this fashion, since the task involves maneuvering the laparoscopic
instruments to pre-assigned target points in C \prime while avoiding collisions with obstacles. The selection is
normally done by an expert surgeon.

Eighty points of interest are selected and improved optMIS is used to generate optimal paths between these
points to result in about 1,300 optimal paths. The effective number of resulting optimal paths is lesser than\bigl( 
80
2

\bigr) 
, due to the elimination of points of interest unreachable by the laparoscopic instruments in the given

setup. The resulting optimal path trajectories take about seven hours to generate which is significantly less
from the expected fourteen hours without the improved algorithms. The path trajectories are stored in a file
with delimiters to signify start and end of each path and occupy 1.46MB of memory space. These trajectories
are divided into segments for memory savings.

We conducted experiments to reaffirm our deduction of the segment length to be three for good and con-
sistent memory savings from Section 4.2 . The path trajectories are divided into segments of length two,
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Table 1: Storage memory requirements of different sized segments.

Segment Size
Common Segments

(in KB)
Unique Segments

(in KB)
Segmented Pathmap

(in KB)
2 113 153 266
3 147 272 419
4 167 373 540
5 167 447 614

Figure 6: Illustration of an instance of the hybrid offline-online path planner for the “blocks world” laparo-
scopic training scenario.

three, four and five. Iterating through the segmented paths, the common segments are detected based on a
correspondence of the segment end points, while considering a tolerance of wtip. The common segments
identified contain varying redundant repetitions, which are eliminated. Then, a single copy of each common
segment along with the unique segments are saved in memory with adjacent neighbor segments pointers.
Storage memory values of the compressed segmented pathmap for each of these segment sizes are collected
and results shown in Table 1.

As observed in Table 1, segments with three points provide the greatest compression savings for the seg-
mented pathmap while considering the critical details discussed in Section 4.2. It occupies 419KB of mem-
ory with 4KB of neighbor information and delimiters. Based on (1), we attain a memory savings factor
of 3.45. The percentage of common segments present in the array of segmented paths with segment size
three was 50.54% reaffirming our deduction. Another interesting observation is that the space occupied by
common segments of segment size four and five are the same. This can be attributed to the fact that, the
common segments after a point start saturating. Also, we can see the space of the unique segments start to
grow slower. An iterative approach to find adaptive segment lengths for maximum savings for any given
problem can be deduced but it is beyond the scope of the paper and we will pursue it in future work.

We implement the online path planner in C++ to provide real-time capability. The input graph is generated
from the segmented pathmap for online path planning. A trainee/surgeon provides the initial and goal points
of a desired path. The training work space of “blocks world” is modeled in MATLAB for visualization.
Fig. 6 provides a snapshot of an instance of the online path planner for a surgical training session. Point
A represents the initial position and point B the intermediate goal position for a training path for one of
the instruments. Once the trainee reaches the intermediate goal position B, a replanned path is generated in
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almost real-time to the final goal position C. Detailed evaluation of the online path planner for dynamic path
re-planning will be performed in future work.

We averaged the execution time of generating paths over three runs. Execution time of the online path
planner for our instance required 90.0ms on overage. The average time of execution for a single path is
around 44.0ms. Our offline-online path planner hides the poor time performance of offline only path planner
(optMIS), that takes 67.6s for the same instance. It assures completeness and collision free paths, which are
the main requirements in a surgical training scenario that may involve unanticipated emergency procedures.

7 CONCLUSIONS

We have presented a novel hybrid offline-online path planner that can compute approximately optimal paths
for surgical systems. With medical training scenarios becoming more complicated and training systems
leading to portability, storage memory as well as exectution efficiency are key concerns. We have addressed
this issue by incorporating segmentation of the generated offline paths by storing in memory only a single
copy of the detected common segments. Our method integrates safety assurance and completeness provided
by discrete path planners with the real-time re-planning potential of online path planning, thus enhancing
the computational performance of discrete path planning, notably the one developed in (Napalkova et al.
2014). We demonstrated our planner and its efficiency on the Computer Assisted Surgical Trainer with a
hand-eye coordination training scenario.

Our offline-online path planner is scalable to other complicated surgical training models, with the one time
overhead of generating the trajectory repository. Additional obstacles in a particular training scenario can
be added and repository updated to reflect the same. This can be envisioned in surgical training systems
with synthetic body parts and tissues. However, we still have to evaluate the offline-online path planner in
a real-training scenario. Since our segmented path map is static, it restricts online path planning, failing to
generate paths from points not present in the input graph. We wish to pursue these issues in future work.
We will also design more complicated training scenarios (by adoption of the Fundamentals of Laparoscopic
Surgery (SAGES 2016) standards) and investigate advanced offline and online path planning algorithms to
reduce generation time of paths further.
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