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A special learning process with time delay
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Abstract. A special learning process is examined in linear N -firm oligopolies
in which the firms adjust their beliefs on the price function adaptively based on
predicted and actual prices. It is assumed that the price information is delayed,
which results in a system of difference-differential equations. In the case of
identical speed of adjustment a complete spectrum analysis is given which leads
to determining the stability region as well as stability switches. It is shown that
only the smallest such threshold gives stability switch, where Hopf bifurcation
occurs.

1 Introduction
Dynamic models play an important role in quantitative sciences including en-
gineering, biology and social sciences. There is a large literature examining the
existence and uniqueness of steady states and their asymptotic properties. In
mathematical economics oligopoly models are considered as one of the most
frequently studied areas of research. The classical model assumes a set of firms
producing identical goods to a homogeneous market (Cournot, 1838). Their
competition is modeled as a N -person noncooperative game. The existence
and uniqueness of the equilibrium was the main focus first under different con-
ditions and later the research turned to the dynamic extentions of this game.
Okuguchi (1976) gives a comprehensive summary of the earlier results, and their
multiproduct extensions with applications are discussed in Okuguchi and Szi-
darovszky (1999). Most models were linear, when local stability implied global
stability. In recent years an increasing attention has been given to nonlinear
models, where the global asymptotical behavior of the state trajectories has
a huge variety from global asymptotical stability to chaotic behavior. Recent
developments of nonlinear oligopolies are reported for example, in Bischi et al.
(2010). In most models discussed in the literature it was assumed that the firms
had complete knowledge of each others’ technology as well as of the market. In
real economies it is realistic to assume that the firms know the cost functions
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of the competitors, however the market demand function as well as the unit
price function are always uncertain. However by repeated price observations
they are able to continuously update their beliefs of the price function through
a learning process, which is modeled as a dynamic system. Fudenberg and Levin
(1998) give a general theory of learning in games. Marimon (1997) and Kirman
and Salmon (1995) have to be also mentioned as important references. In the
case of oligopolies the uncertainty of the price function and special learning
processes are discussed in Bischi et al. (2010) and the references given there.
In all earlier studies instantaneous price information was assumed, which is not
realistic in real economies. By introducing delayed information on the market
price the asymptotical properties of the resulting dynamic models become much
more complicated. If continuously distributed delay is assumed then the model
is a Volterra-type integro-differential equation. In the case of gamma-density-
type weighting functions the spectrum is finite (Cushing, 1977), so complete
eigenvalue analysis can be given in important special cases (Chiarella and Szi-
darovszky, 2004). By assuming fixed delays the governing dynamics is formu-
lated as a delay differential equation, the characteristic equation of which is
transcendental with an infinite spectrum. The asymptotic behavior of delay
differential equations have a very large literature. Burger (1956), Cooke and
Grossman (1982), Bellman and Cooke (1956) provide complete stability analy-
sis in several important special cases of single delays. In the presence of multiple
delays the analysis becomes much more complicated (Hale and Huang, 1993).
In this paper a special learning process in classical Cournot oligopolies will be
revisited. This model was introduced in Szidarovszky and Krawczyk (2004), and
further examined in Bischi et al. (2010). Without information delay the sys-
tem is always asymptotically stable showing that the beliefs of the firms about
the price function converge to the true function as time goes to infinity. This
stability however might be lost in the presence of fixed delay. We will present a
complete stability analysis of the delay model. This paper develops as follows.
The examined learning process will be introduced in Section 2, and complete
stability analysis will be provided in Section 3. Section 4 discusses stability
switches and the appearance of Hopf bifurcation. Conclusions, economic inter-
pretations of the results, and further research directions will be outlined in the
final section.

2 A special learning process

Consider an industry of N firms that produce the same product to a homoge-
neous market. Let xk denote the output of firm k, then s =

∑N
i=1 xi is the

total output of the industry and sk =
∑
i 6=k xi is the output of the rest of the

industry from the viewpoint of firm k. The unit price is a strictly decreasing
function of the supply, p(s) = B −As, where B is the maximum price and −A
the marginal price. It is assumed that both A and B are positive. The cost
function of firm k is also assumed to be linear, Ck(xk) = ckxk + dk, where dk is
the fixed cost and ck is the marginal cost. It is also assumed that the technology
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of the competitors is known by each firm, so that the cost functions are known
by each of them. However, they can have only an estimate of the price function.
By assuming that the marginal price is a common knowledge, each firm has only
an estimate of the maximum price. Let’s examine this situation from the point
of view of firm k. If its estimate of the maximum price is Bk, then it belives
that the price function is pk(s) = Bk − As. Therefore it also believes that the
profit of any firm l, including itself is

ϕl = xl(Bk −Asl −Axl)− (clxl + dl). (1)

This is a concave parabola in xl. Firm k believes that the profit maximizing
output of firm l is positive, otherwise this firm would leave the industry with zero
optimal production level. The first order condition shows that at the optimum

Bk −Asl − 2Axl − cl = 0,

that is,
Bk −A(s− xl)− 2Axl − cl = 0,

which results in the believed best response of firm l:

xl =
Bk −As− cl

A
. (2)

At the believed equilibrium every firm selects its best response, so equation (2)
should hold for all firms l. By adding this equation for all firms,

s =
1

A

(
NBk −NAs−

∑
i

ci

)
(3)

from which the believed output of the industry becomes

s =
NBk −

∑
i ci

(N + 1)A

with believed equilibrium price

pk = Bk −As =
Bk +

∑
i ci

N + 1
. (4)

Based on equation (2), firm k believes that its equilibrium output is

xk =
Bk −As− ck

A
=
Bk +

∑N
i=1 ci − (N + 1)ck
A(N + 1)

. (5)

In reality, however, each firm has its own estimate Bl of the maximum price, so
their beliefs of the equilibrium industry output as well as that of the equilibrium
price are usually different. Each of them provides its own equilibrium output
(2) when k is replaced by l, so in reality the industry output becomes

N∑
k=1

xk =
1

A(N + 1)

(
N∑
k=1

Bk −
N∑
k=1

ck

)
(6)
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with the actual market price

p = B −A
N∑
k=1

xk = B − 1

N + 1

(
N∑
k=1

Bk −
N∑
k=1

ck

)
. (7)

It is assumed now that the firms at each time period t ≥ 0 assess their beliefs
of the equilibrium based on their most current estimate Bk(t) of the maximum
price, so firm k believes that the market price will be

pk(t) =
1

N + 1

(
Bk(t) +

N∑
i=1

ci

)
, (8)

however, its price information from the market has some delay τ > 0. Therefore
the price that firm k believes at time period t is really the market price of the
earlier time period t− τ :

p(t− τ) = B − 1

N + 1

(
N∑
l=1

Bl(t− τ)−
N∑
l=1

cl

)
. (9)

The presence of delay in the price information is a realistic assumption, since
sales and price information from the wholesalers to the manufacturers are sent
periodically and not continuously at each time period. If the believed price is
lower than the actual price, then the firm wants to increase its price belief by
increasing the value of Bk. If the believed price is higher than the actual price,
then firm k wants to decrease its price function by decreasing Bk, and if the
believed and actual prices are equal, then the firm does not have any reason to
change its belief on the price function. This adjustment process can be described
by the dynamic equation

Ḃk(t) = Kk (p(t− τ)− pk(t)) , (10)

where Kk > 0 is the speed of adjustment of firm k. By using equations (8) and
(9) a system of delay differential equations is obtained:

Ḃk(t) =
Kk

N + 1

(
(N + 1)B −

N∑
l=1

Bl(t− τ)−Bk(t)

)
(11)

for k = 1, 2, · · · , N . By introducing the new variables ∆k = Bk(t) − B and
αk = Kk

N+1 , this system can be simplified as

∆̇k(t) + αk∆k(t) + αk

N∑
i=1

∆i(t− τ) = 0 (1 ≤ k ≤ N). (12)
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3 Stability analysis
As usual, we are looking for the solution in the form of ∆k(t) = eλtuk. Substi-
tuting this solution into equation (12) we get

λeλtuk + αke
λtuk + αk

(
N∑
i=1

ui

)
eλ(t−τ) = 0,

that is (
λI +D + a 1T e−λτ

)
u = 0, (13)

where I is the N ×N identity matrix, D = diag (α1, · · · , αN ), a = (α1, α2, · · · ,
αN )T , 1T = (1, 1, · · · , 1) and u = (u1, u2, · · · , uN )T . Nontrivial solution exists if
and only if the determinant of (13) is zero. In order to have a simple expression
for this determinant, we use the simple fact that if p and q are N -element column
vectors, then

det(I + p qT ) = 1 + qT p . (14)

A simple proof of this identity is given for example, in Bischi et al. (2010).
So we have the following equation:

0 = det(λI +D + a 1T e−λτ )

= det(λI +D) det(I + (λI +D)−1a 1T e−λτ )

=

N∏
k=1

(λ+ αk)

(
1 +

N∑
k=1

αk
λ+ αk

e−λτ

)
.

The eigenvalues are λ = −αk (k = 1, 2, · · · , N) and the solutions of equation

1 +

N∑
k=1

αk
λ+ αk

e−λτ = 0. (15)

Since −αk < 0, it is sufficient to find conditions that the roots of this equation
have negative real parts in order to guarantee asymptotical stability in which
case the beliefs of the firms converge to the true price function as t converges to
infinity. In order to simplify the mathematical analysis assume that the firms
select identical speed of adjustment Kk ≡ K for k = 1, 2, · · · , N , so αk ≡ γ.
Then equation (15) is simplified as

λ+ γ +Nγe−λτ = 0. (16)

By multiplying both sides by τ and introducing the new variables

∆ = λτ, A = γτ,

we have the following equation:

∆ +NAe−∆ +A = 0. (17)
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We will next provide a complete eigenvalue analysis. Let ∆ = α + iβ be a
complex root. We can assume that β > 0, since if ∆ is a solution, then its
complex conjugate is also a solution. Then

α+ iβ +A+NAe−α(cosβ − i sinβ) = 0. (18)

The real and imaginary parts imply that

α+A+NAe−α cosβ = 0 (19)

and
β −NAe−α sinβ = 0. (20)

If sinβ = 0, then β = 0, so the root is real and solves equation

α = −A−NAe−α

implying that α < 0 if α is a solution. If sinβ 6= 0, then

e−α =
β

NA sinβ

and by substituting it into (19) we get

α+A+NA
β

NA sinβ
cosβ = 0

or
α = −A− β cotβ. (21)

By substituting this relation into (20) a single-variable equation is obtained for
β:

β −NAeA+β cot β sinβ = 0

or
β

NAeA
= eβ cot β sinβ. (22)

In order to have asymptotical stability we need conditions which guarantee
that α < 0. From (21) this is the case when the solution of equation (22) also
satisfies

β cotβ > −A. (23)

Let f(β) denote the right hand side of equation (22) and

g(β) = β cotβ. (24)

Clearly,

g′(β) =

(
β cosβ

sinβ

)′
=

sin 2β − 2β

2 sin2 β
< 0
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for all β > 0. So g(β) strictly decreases in β. In addition,

lim
β→0+

β cosβ

sinβ
= 1,

lim
β→π

2 +kπ

β cosβ

sinβ
= 0,

lim
β→kπ
(k≥1)

β cosβ

sinβ
=

{
−∞ from left hand side
+∞ from right hand side.

Figure 1 shows the graph of g(β). There is a unique intercept βk of the

π/2 5π/23π/2 2ππ

1

g(β)

-A

β0 β1 β2

Figure 1: Graph of g(β)

horizontal line of −A and the curve of g(β) in each subinterval (π2 +kπ, (k+1)π),
k = 0, 1, 2, · · · and α < 0 if and only if β < βk in the subinterval. It is easy to
see that

lim
β→0+

f(β) = 0

and for k ≥ 1,
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lim
β→kπ−0

(β≥1)

f(β) = 0,

since β cotβ → −∞ as β tends to kπ from the left hand side. Similarly

lim
β→kπ+0

(k≥1)

f(β) =

{
∞ if k is even
−∞ if k is odd,

and finally

lim
β→π

2 +kπ
(k≥0)

f(β) =

{
1 if k is even
−1 if k is odd.

Simple differentiation shows that

f ′(β) = cosβeβ
cos β
sin β + sinβeβ

cos β
sin β

sinβ cosβ − β
sin2 β

=
1

sinβ
e
β cos β
sin β (sin 2β − β) .

There is a unique β∗ in (0, π2 ) such that sin 2β∗ = β∗, and for β < β∗,
sin 2β > β, and for β > β∗, sin 2β < β. Therefore f ′(β) > 0 if and only if either
β ∈ (0, β∗) or β ∈ ((2k−1)π, 2kπ), k = 1, 2, · · · . Similarly f ′(β) < 0 if and only
if either β ∈ (β∗, π2 ) or β ∈ (2kπ, (2k + 1)π), k = 1, 2, · · · . The graph of f(β) is
shown in Figure 2. The solution of equation (22) is the intercept of this graph
with the linear function β/(NAeA). In order to have asymptotical stability we

π/2 5π/22π3π/2

1

β

f(β)

π 3π 5π7π/2 4π 9π/2

-1

β0

f(β0)

β*

Figure 2: Graph of f(β)
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have to avoid the intervals [β0, π],[β1, 2π], [β2, 3π], · · · etc., which happens if the
slope of the linear line is greater than f(βk)/βk for k = 0, 2, 4, · · · . That is,

1

NAeA
>
f(βk)

βk
or

1 >
NAeAeβk cot βk sinβk

βk
=
NAeAe−A cosβk

βk cotβk
(25)

= −N cosβk.

Next we show that if 1 > −N cosβ0, then (25) holds for all k = 2, 4, · · · . It
is sufficient to show that cosβ0 ≤ cosβ2 ≤ cosβ4 ≤ · · · < 0 which is a simple
consequence of the facts that β0 < β2 < β4 < · · · and βk cosβk = −A for all k.
In summary, the system is asymptotically stable if

1 > −N cosβ0, (26)

and unstable if
1 < −N cosβ0,

since in this case the solution β ∈ (β0, π) results in positive α.
Notice that β0 is a strictly increasing function of A, which we can denote by

h(A). So (26) can be rewritten as

1 > −N cos(h(γτ))

since A = γτ . That is,

h(γτ) < cos−1

(
− 1

N

) (
∈
(π

2
, π
))

or

g(h(γτ)) > g

(
cos−1

(
− 1

N

))
which is the following:

γτ < − cos−1

(
− 1

N

)
cot

(
cos−1

(
− 1

N

))
= cos−1

(
− 1

N

)
cos
(
cos−1

(
− 1
N

))√
1− cos2

(
cos−1

(
− 1
N

)) (27)

=
1√

N2 − 1
cos−1

(
− 1

N

)
.

Let F (N) denote the last expression. The stability region in the (γ, τ)
plane is illustrated in Figure 3. It is interesting that it does not depend
on A, only on N . Notice that F (N) strictly decreases in N , F (1) = ∞,
F (2) = 1√

3
cos−1(− 1

2 ) = 2π
3
√

3
, and F (N)→ 0 as N →∞.
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Figure 3: Stability region in the (γ, τ) plane

4 Stability switches and Hopf bifurcation
Stability switches might occur when there is a pure complex eigenvalue, ∆ = iβ
with β > 0. Substituting it into the characteristic equation (17) we have

iβ +A+NAe−iβ = 0

or
iβ +A+NA(cosβ − i sinβ) = 0.

The real and imaginary parts imply that

A+NA cosβ = 0 (28)
and

β −NA sinβ = 0. (29)

From (28), cosβ = − 1
N , so

β = cos−1

(
− 1

N

)
+ 2nπ,

since from (29), sinβ > 0. Then (29) implies that

cos−1

(
− 1

N

)
+ 2nπ −NA

√
1− 1

N2
= 0,

so

An =
cos−1

(
− 1
N

)
+ 2nπ

√
N2 − 1

.

Notice that A = γτ . Consider γ fixed and select τ as the bifurcation parameter.
Then ∆ = ∆(τ), and by differentiating (17) with respect to τ yields
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∆′ + γ +Nγe−∆ +Nγτe−∆(−∆′) = 0

implying that

∆′ = − γ +Nγe−∆

1−Nγτe−∆
= −

γ +Nγ−∆−γτ
Nγτ

1−Nγτ −∆−γτ
Nγτ

=
∆

τ(1 + ∆ + γτ)
.

If ∆ = iβ, then

∆′ =
iβ

τ(1 + γτ + iβ)
=

iβ(1 + γτ − iβ)

τ((1 + γτ)2 + β2)

with real part

Re∆′ =
β2

τ((1 + γτ)2 + β2)
> 0

showing that at any critical value the real part of an eigenvalue changes sign
from negative to positive. At A0 it is a stability switch, but at An (n ≥ 1) the
system is already unstable, so there is no stability switch. At A = A0 Hopf
bifurcation occurs giving the possibility of the birth of limit cycles. So we have
the following result.

Theorem. If τγ < A0, then the system is asymptotically stable. If τγ > A0,
then it is unstable. At τγ = A0 Hopf bifurcation occurs.

5 Conclusions
A special learning process in oligopolies was examined when the firms had de-
layed information about the market price. A complete spectrum analysis was
performed. The stability region was determined and possible stability switches
were found. We also verified that only the smallest threshold can lead to stabil-
ity switches since later the system is unstable anyway due to the positive real
part of another eigenvalue. We found that learning leads to accurate knowledge
of the price function if

A = γτ =
K

N + 1
τ < A0 =

cos−1
(
− 1
N

)
√
N2 − 1

or

τ <
1

K
cos−1

(
− 1

N

)√
N + 1

N − 1
,

where this threshold depends on both the common speed of adjustment K and
the number N of firms. Notice that it decreases in both K and N , so larger
speed of adjustment and/or larger number of firms make the system less stable.
In our future research we will drop the assumption that the firms have identical
speed of adjustment, and will examine the spectrum based on equation (15). It
will need a much more complex study.
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