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ABSTRACT 

This paper proposes a real-time, image-based training scenario comprehension method. This method aims 

to support the visual and haptic guidance system for laparoscopic surgery skill training. The target task of 

the proposed approach is a simulation model of a peg transfer task, which is one of the hands-on exam 

topics in the Fundamentals of Laparoscopic Surgery certification. In this paper, a simulation process of an 

image-based object state modeling method is proposed. It generates a system object state of the transfer 

task to support the guidance system. A rule-based, intelligent system is used to discern the object state 

without the aid of any object template or model. This is the novelty of the proposed method. 

Keywords: medical simulation, simulation-based surgical training, laparoscopy, image understanding. 

1 INTRODUCTION 

Computer Assisted Surgical Trainer (CAST) (Rozenblit et al. 2014) is a simulation-based training device 

designed for laparoscopic surgery skill training. Laparoscopic surgery is a popular and advanced 

technique which offers patients benefits of minimal invasiveness and fast recovery time. It requires 

extensive, simulation-based training before operating on patients. CAST can be considered as a 

simulation-based training device with visual and force guidance to its users.  

The system allows the users to work on several task scenarios. It has a visual guidance module (optViz) 

which generates a reference path laid over the live camera image. The force (haptic) guidance module 

(optGuide) (Hong and Rozenblit 2016a) provides force assistance in moving surgical instruments. To 

support these two modules, the optimal and collision free path generator (optMIS) was designed by 

(Napalkova et al. 2014). The generated paths are the reference inputs for the controller of the optGuide 

and the graphical generator of the optViz (Shankaran and Rozenblit 2013).  

To further develop the optMIS module, a state modeling method of a peg transfer task was designed in a 

simulated environment (Hong and Rozenblit 2016b). This is one of the important, hands-on training tasks 

SpringSim-MSM 2017, April 23-26, Virginia Beach, VA, USA
©2017 Society for Modeling & Simulation International (SCS)

867



Peng, Hong, and Rozenblit 

for laparoscopic surgery training. This state modeling method proposes an object state model, the XML 

based task description and Bezier curve based guidance path generation methods. However, the object 

state detection method is not discussed in (Hong and Rozenblit 2016b). Utilizing live-camera image is 

one of the object state detection methods.  

In this paper, we propose an image-based object state modeling method of a peg transfer task to support 

the CAST guidance system. This method aims to simulate the object states of the peg transfer task using 

the live camera image. The simulated object states will serve optMIS to understand the system states and 

generate the dynamic optimal path. Also, the collection of these simulated object states will be used to 

model the user behavior, which is another useful reference information to support the guidance system.  

The rest of this paper is organized as follows. Section 2 reviews the state description model of the peg 

transfer task and the related object tracking methods. Section 3 represents the framework for the proposed 

image feature-based object state modeling method. Section 4 is the simulation result and discussion. 

Section 5 concludes this paper and indicates the future research. 

2 OBJECT STATE TRACKING OF PEG TRANSFER TASK 

2.1 Peg Transfer Tasks 

The peg transfer task is the first hands-on exam in the Fundamentals of Laparoscopic Surgery (FLS) (FLS 

2017) program. FLS program was developed by the Society of American Gastrointestinal and Endoscopic 

Surgeons (SAGES). This program has multiple hands-on exams for trainees to learn the basic 

laparoscopic skills. There are five tasks of the exams: peg transfer, precision cutting, ligating loop, suture 

with extracorporeal knot, and suture with intracorporeal knot. For better understanding of the exam 

procedure for the peg transfer task, we suggest learning with a visual example (Sjhsurgery 2017).   

The basic components of the peg transfer task include two surgical instruments (e.g., graspers), one 

pegboard with 12 pegs, and six rubber ring-like objects (triangles) as shown in Figure 1(a). Trainees need 

to manipulate an instrument to grasp a triangle from a peg, carry this triangle in mid-air, transfer it to the 

other instrument, and place the triangle on a peg on the opposite side of the board. In this task, trainees 

learn how to manipulate grasper-type instruments. 

In the peg transfer task, CAST provides trainees visual and haptic guidance based on the system object’s 

state (Hong and Rozenblit 2016b). Hong and Rozenblit generalized the movements of grasper-type 

instruments and modeled these actions as object states as follows:  

 Move a grasper to a specific position.  

 Grasp (pick up) an object using a specific grasper.  

 Carry an object to a specific position using a specific grasper.  

 Transfer an object from a specific instrument to the other grasper.  

 Place (put down) an object at a certain location.  

However, there are two states not considered  in this setting. We supplement these two states into this 

action set as follows: 

 Stop all the other actions. 

 Drop the triangle from the grasper.  

The action stop is the case that all objects are not moving. The action drop is the case that the triangle is 

dropped from the grasper. Adding these two supplemental actions models the states of the peg transfer 

task comprehensively. 
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Figure 1: (a) FLS peg transfer task. (b) Simplified peg transfer task. 

2.2 Object State Tracking 

The topic of this paper is to detect the object states of the peg transfer task. In CAST, the live camera 

image contains the most comprehensive information of all the objects. We are interested in using this live 

camera image to track a moving object and understand its state. More specifically, this process is often 

called object tracking (Athanesious and Suresh 2012; Hu et al. 2004; Romero-Cano, Agamennoni, and 

Nieto 2015). In our application, we care about the relationship between the moving objects. For example, 

we can infer the move state when only the grasper is moving in the live camera image. Based on the 

survey done in (Athanesious and Suresh 2012), Silhouette Tracking is the effective way to extract the 

object region to model the state space model. To achieve real-time application, we prefer contour 

evolution rather than shape matching or learning, which needs the 3D template and complicated matching 

or learning process (Romero-Cano, Agamennoni, and Nieto 2015).  

Object tracking is the process to detect the object features, which is a critical role in a successful tracking 

process. The unique features of an object can be distinguished easily in the image. Athanesious and 

Suresh (Athanesious and Suresh 2012) summarized several common features: color, edge, centroid, and 

texture. In our application, the color and centroid of the moving objects are the salient features that can 

help identify the objects and their relationships. Based on these features, the temporal differencing 

method reviewed in (Hu et al. 2004) is used to track the object motion. This method makes use of the 

binary result of the pixel-wise absolute difference between the previous and current frame images. Then 

the motion regions are clustered by the connected component analysis. The temporal differencing method 

is very efficient to detect the motion pixels but not robust to noise. We have set up a well-controlled 

environment for our peg transfer task to limit noise; hence, the temporal differencing method is effective 

in our application.  

After detecting the object motion, the simulated object states can be modeled using an intelligent system. 

An Expected Association (EA) algorithm was proposed ( Romero-Cano, Agamennoni, and Nieto 2015) to 

learn and classify the multiple moving objects. The EA algorithm is robust but computational. The model-

based tracking reviewed in (Hu et al. 2004) effectively used a rule-based system to model the object state 

and then inferred the object states using the detected object behaviors. When we have a prior knowledge 

of the object behaviors, the object states are able to be modeled as a set of rules. The peg transfer task has 

predefined object actions and matches the criteria of the model-based tracking method.  

2.3 System Configurations  

To simplify the problem, only one right-hand grasper and one magenta triangle are considered in this 

paper. The user (trainee) needs to use a grasper to grab the triangle from one peg and then transfer it to 

another peg. During this operation, the user may accidentally drop the triangle. In this setting, we only 

consider the following object states: stop, move, carry, and drop. Besides, the image understanding 

process is sensitive to camera noise caused by the dark scene, background color, and environment 

 

(a)  

 

 

(b)  
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illumination. To provide a stable environment, we set up a uniform and sufficient light source for 

illumination with the color temperature of daylight. The background color of the environment is set to 

white. This simplified peg transfer task is shown in Figure 1(b).  

3 OBJECT STATE DETECTION 

To provide the object states for the peg transfer task in CAST, an object state model is required. This is 

inferred from the object actions detected in the live camera image. The Image Feature Based Object State 

Modeling (IFBOSM) defines the object states of the peg transfer task using image features extracted from 

the live camera image. In this section, we discuss the modeling method and the image processing 

algorithm for the peg transfer task. 

3.1 Image Feature Based Object State Modeling (IFBOSM) 

The object states are modeled using the image features. In the beginning, an image feature set is designed 

to represent each object. Then, the object states are modeled by the image feature set. This process is 

named Image feature Based Object State Modeling (IFBOSM). The IFBOSM provides a skeleton to 

develop the object state detection system. The block diagram is presented in Figure 2. In the following 

sections, we discuss the details of the implementation of this system. 

 

Figure 2: IFBOSM block diagram. 

Before modeling the object states, we define a set of image features to represent each object and the 

relationship between two objects. When objects are moving, the temporal differences of the luma and 

chroma (Schalkoff 1989) between the previous and current image frames are the significant features that 

can be used to identify each object. The image features are presented as follows: 

 Triangle: The key image feature of the triangle is the significant temporal chroma difference 

image (dC) of two continuous images. The triangle’s color is magenta in this task and has more 

significant chroma information comparing to the grasper, whose color is silver. The dC can be 

used to represent the moving flag of  the triangle (Tm). The Tm is formulated as the following 

equation. 

Tm=f
t
 (dC) 

where, function ft is the logistic function which will be elaborated later. 

 Grasper: The key image feature of the grasper is the significant temporal luma difference image 

(dY) of two continuous images. Because the grasper’s color is silver, the chroma information is 

very less (Schalkoff 1989). Although the triangle also has the temporal luma difference when 

moving, the temporal luma difference of the triangle can be removed by using the dC of the 

triangle. The dY without the triangle information (dY∩dC) can be used to represent the moving 

flag of the grasper (Gm). The Gm is formulated as the following equation 

Gm=f
g
(dY - dY∩dC) 

where, function fg is the logistic function which will be elaborated later. 

 Connection: When the triangle and grasper are both moving, they are connected when the 

distance between them is lower than a predefined threshold, which is determined by the CAST 

1. Image Feature Set 

Modeling

2. Object State 

Modeling

Object 

State

Camera Image 

Sequence

Video Image 

Feature Set
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system. The connection flag (Cn) of the triangle and grasper are defined by distance (dist) 

between the motion triangle and motion grasper. The feature Cn is formulated as the following 

equation 

Cn=f
c
(dist) 

where, function fc is the logistic function which will be elaborated later. 

Based on the above definition, we define an image feature set IFS(Tm, Gm, Cn), to represent the 

movement of the triangle and grasper. However, the information of each image frame pair might be 

unstable due to the noise or tremble in the user’s hand. The stabilized features in the video frame image 

are needed to be considered. Therefore, the video image feature set VIFS(vTm, vGm, vCn) is generated by 

the moving filtering process, which is a temporal noise reduction method (Schalkoff 1989).  

Using VIFS, the object states are modeled as follows. 

 Stop: Both the triangle and grasper are not moving.  

 Move: The grasper is moving and the triangle and grasper are not connected. 

 Carry: The triangle and grasper are both moving and the triangle and grasper are connected.  

 Drop: The triangle is moving and the triangle and grasper are not connected.  

3.2 Image Feature Set Modeling 

An Image Feature Set Modeling method (IFSM) is proposed in this section. There are two major steps of 

this process – pre-processing and post-processing. The block diagram of IFSM is shown in Figure 3. 

 

Figure 3: IFSM block diagram. 

3.2.1 Pre-processing 

The main purpose of preprocessing is to generate the dY and dC from the live camera images. There are 

two steps in pre-processing. First, the input image is converted to the luma (Y) and chroma (C) image 

pair. Then the dY and dC are calculated from the previous and current YC image pairs.  

In the step of YC Conversion, the YC image pair is converted from the input image using YCbCr format 

(Schalkoff 1989). The Y image of YC image pair is the same as the Y image converted from the input 

image as shown on the left side in Figure 4(b). The C image of YC image pair is the combination of the 

Cb and Cr (Schalkoff 1989). The C image is defined by the following equation. 

1. Image Feature Set Modeling

1.1. Pre-processing

1.1.1. YC Conversion

1.1.2. Motion Detection

1.1.3. Pre-denoise

1.2. Post-processing

1.2.1. YC Decoupling

1.2.2. ROI Detection

1.2.3. IFS Modeling

1.2.4. Post-denoise

Camera Image 

Sequence

Video Image 

Feature Set
VIFS(vTm, vGm, vCn)Y, C

dYo, dCo

dY, dC

dY’, dC

roiY, roiC

IFS(Tm, Gm, Cn) 
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C=((Cb-128)
2
+(Cr-128)

2
)
0.5

         (1) 

The C image is shown on the right side in Figure 4(b). In the step of the motion detection, using the YC 

image pair, the original temporal difference image of luma (dYo) and chroma (dCo) are calculated using 

absolute difference between previous and current frame as shown in Figure 4(c). Then, the dYo and dCo 

are converted from the gray image to the binary image by the binary threshold (thrbin) in the pre-denoise 

step. The thrbin is selected as 8, which is the commonly-used maximal image noise level (Schalkoff 1989). 

The binary temporal difference images of YC image are as shown in Figure 4(d).  

 

Figure 4: IFSM Pre-processing results. (a) Camera image sequence, upper: previous image frame, bottom: 

current image frame; (b) YC image pairs after YC conversion, upper: previous YC image pair, bottom: 

current YC image pair; (c) Primitive motion image difference after Motion detection, upper: dCo, bottom: 

dYo; (d) Motion image difference after Pre-denoise, upper: dC, bottom: dY. 

3.2.2 Post-processing 

After the processed dY and dC image pair is generated, the image feature set – IFS(Tm, Gm, Cn) is 

extracted in the post-processing. The main process in the post-processing includes four steps – YC 

decoupling, region of interests detection, image feature set (IFS) modeling, and post-denoise.  

The final goal of the post-processing is to use dY and dC to represent the moving grasper and triangle. 

However, dY contains the motion information of both moving objects. The YC decoupling process is 

needed to remove the information of the moving triangle in dY. Next, in order to reduce the computation, 

we define a region of interest of dY (roiY) and a region of interest of dC (roiC). The roiY and roiC have 

the compact and complete information of the grasper and triangle. This information includes the motion 

speed and location of the moving objects. The motion speed of the grasper and triangle are referred by the 

summation of dY and dC. The location of the grasper and triangle are referenced by the centroid of dY and 

dC. Using the locations of these two objects, the distance between them are also available.   

3.2.2.1 YC decoupling 

The first step of the post-processing is YC decoupling of dY and dC image pair. As we mentioned in 

Section 3.1, the triangle moving (Tm) is generated from dC, while the grasper moving (Gm) is generated 

from dY, from which the triangle information (dY∩dC) has to be removed. The dY is updated to dY’ by 

the YC decoupling process shown as following equation. 

dY'=dY - dY ∩ dC           (2) 

After YC decoupling, the dY’ is the binary image containing the luma change of the moving grasper, and 

the dC is the binary image containing only the chroma change of the moving triangle. When the dY’ and 

dC image pair is ready, the region of interest (roi) detection is able to be done in the next step. 

 

(a)  

 

(b)  

 

(c)  

 

(d)  
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Figure 5: IFSM Post-processing results. (a) Results of YC Decoupling, upper: dC, bottom: dY’. (b). 

Region of interests after ROI Detection, upper: roiC, bottom: roiY. 

3.2.2.2 Region of interests detection 

The roiY and the roiC are the predefined size of area where the objects are located. The motion of the 

triangle is in a small range of dC, while the motion of the grasper is in a larger range of dY’. The region 

we are interested in is the grasper’s front part, which directly interacts with the triangle. Then, we define 

the same size of roiY and roiC. When the grasper and triangle have similar motion behavior, roiY and 

roiC have the similar moving area.  

The roiY and roiC are detected by using the contour detection method in OpenCV (Bradski and Kaehler 

2008). There might be some noise or multiple regions of contours in dY’ or dC, but we only select the 

contour with the largest area to be the region of interest. The moving area size of the selected contour also 

must be larger than a moving object contour threshold (thrmvc), which is set as 50 in our application. The 

most-likely object contour of dY (mlocY) and dC (mlocC) are detected in this process. This method is the 

most-likely object contour detection (MLOCD).  

mlocY = MLOCD(dY’)            (3) 

mlocC = MLOCD(dC)            (4) 

The location and size of the minimum enclosing rectangle of mlocY (rectY) and mlocC (rectC)  are also 

available. For the triangle, the whole object contour is important in our application, so we set the centroid 

of rectC as the centroid of the roiC. For the grasper, we are only interested in the motion of the grasper’s 

front part. We select the left bottom corner area as the roiY because the grasper is moved from the right 

upper side in our application. This is the process of the region of interest extraction (ROIE). The roiC and 

roiY detection process are shown in Figure 5.  

roiC = ROIE(mlocC)            (5) 

roiY = ROIE(mlocY)           (6) 

If there is no most-likely object contour detected, the centroid location of region of interest is set to be (0, 

0) and its area size is set as 0. After the ROIE process, the roiC and roiY are available and we can model 

the image feature set IFS(Tm, Gm, Cn). 

3.2.2.3 Image feature modeling   

The IFS(Tm, Gm, Cn) includes three logistic image features: moving triangle (Tm), moving grasper (Gm), 

and connection (Cn) between the triangle and grasper. The roiC and roiY provide the location and motion 

(white) pixel amount of the dC and dY’ in the region of interests. The location of region of interest is the 

centroid of it. Using this information, the three image features are modeled as follows. 

 

(a)  

 

(b)  
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The Tm represented in the roiC and the Gm represented in the roiY are mentioned in Section 3.1. If the 

motion area size of the region of interest is larger than the motion pixel amount threshold (thrmpa), the 

object is in the motion state. The logistic equation is defined as follows. 

Tm = f
t
 (dC)=area(roiC) > thrmpa ? True : False        (7) 

Gm = f
g
 (dY - dY ∩ dC) =area(roiY) > thrmpa ? True : False     (8) 

We use the same thrmpa for both the roiC and roiY because they have the same dimension. The thrmpa is 

defined as 100. The connection (Cn) between the triangle and grasper is defined by the distance (distYC) 

between the centroids of the roiC and roiY. When the distYC is less than the connection threshold (thrcn), 

defined as 100 here, then Cn is set to be true. The logistic equation is defined as follows. 

Cn= f
c
(dist) = distYC < thrcn ? True : False         (9) 

In the case of any of the area(roiC) and area(roiY) being 0, then Cn is set as False.  

3.3 Video image feature modeling 

After the post-processing, the IFS(Tm, Gm, Cn) are modeled from the clear dY and dC image pair, but the 

IFS is unstable because of the noise from camera or hand tremor of the user. A temporal filter is applied 

on multiple frames (videos) to stabilize the IFS to get the video image feature set - VIFS(vTm, vGm, vCn).  

The temporal filter we use to stabilize the IFS is the moving median filter, which is a voting mechanism. 

We apply an odd number of frames of IFS queue and use the median value of this queue to replace the 

current IFS. All the image features of the IFS are logical values, and the median value of the data in the 

queue is the value of the majority. The VIFS(vTm, vGm, vCn) is formulated as follows 

VIFS(vTm, vGm, vCn) = (median(queue(Tm)), median(queue(Gm)), median(queue(Cn)))  (10) 

3.4 Object State Recognition 

The VIFS provides the stable image features of the objects, and the object states defined in Section 3.1 

can be represented using logic expression of VIFS. The rule of each state is expressed as follows. 

Stop: ¬vTm∩¬vGm
           

(11) 

Move: vGm∩¬vCn           (12) 

Carry: vTm∩vGm∩vCn          (13) 

Drop: vTm∩¬vCn            (14) 

4 SIMULATION RESULTS  

The proposed algorithm is simulated using C++. To evaluate the performance of our method, we use a 

practical case of image sequence which has 1000 frames. This image sequence covers all kind of states of 

the simplified peg transfer task: stop, move, carry, and drop. To quantitatively measure the result, we use 

the positive predictive value of each state in frame-based count and action-based count. We present the 

detailed settings and evaluation results in this section.  

4.1 Evaluation configuration and metrics 

The hardware configuration of the simulation system includes Intel i3-4160T 3.1 GHz CPU, Intel HD 

Graphic 4400 CPU, 16 GB DDR3 RAM, and 512 GB SSD. The camera is the Microsoft LifeCam Studio. 

The functions of auto focus, auto exposure, and auto white-balance are all disabled. The white-balance is 

fixed to 3500 Kelvin and illumination of the environment is set to a fixed brightness.  
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The software configuration of our method is described here. The resolution of the test image sequence 

from the camera is 1280 by 720 pixels and the frame rate is 30 frame per second (fps). To reduce the 

computation power, we downscale the image to 160 by 90 pixels to be the system input. In the ROI-

detection process, the dimensions of roiC and roiY are both 32 by 32 pixels. Based on the experimental 

results, this dimension covers most cases of the moving object. In the Post-Denoise process, the lengths of 

the three queues are set as 5. In the Image Feature Set Modeling process, all the thresholds are determined 

by experimental results. All these parameters are fixed in the simulation process.  

The test image sequence of the simplified peg transfer task is designed to cover all the object states. There 

are 1000 frames in this sequence. The frame count is the total frame amount of each object state, while 

the action count is the total action amount. For example, an action of the drop state may have around 4 

frames and in total we perform 10 actions of the drop state. In the drop state, the action count is 10, and 

the frame count is around 40. The frame count and the action count of each object state in the test image 

sequence are identified manually and summarized in Table 1. 

The quantitative evaluation is done by computing the positive predictive value (PPV) as follows.  

PPV=
TP

TP+FP
             (15) 

where TP is the total amount of true positive, and FP is the total amount of false positive. We consider the 

PPV of the frame count (PPV_fc) and the action count (PPV_ac) both. In the next section, we present the 

evaluation results of the test image sequence. 

Table 1: Positive predictive value (PPV) of the test image sequence. 

States Stop Move Carry Drop 

Frame count 

Truth 20 348 594 38 

TP_fc 20 288 557 20 

FP_fc 35 10 58 12 

PPV_fc 0.364 0.966 0.906 0.625 

Action count 

Truth 3 22 22 10 

TP_ac 3 22 22 8 

FP_ac 13 6 1 2 

PPV_ac 0.188 0.789 0.917 0.8 

4.2 Evaluation result and Discussion 

The computational efficiency is evaluated by monitoring the computation time of each frame in our 

system. The evaluation image sequence with the visualized label of each state is available on our website. 

(http://mbdl.arizona.edu/projects/computer.assisted.minimally.invasive.surgery.html). In our result, the 

average computation time is less than 20msec per frame, which is less than the camera capturing time (33 

msec of 30 fps). Our method is feasible for real-time implementation. 

In the simulation, the simulated object states are visualized as shown in Figure 6. There are 4 color boxes 

to be used as the indicators of the object states. The black, green, red, and blue boxes are fulfilled when 

the object states are stop, move, carry, and drop. The stop, move, and carry are mutually exclusive. The 

drop and move may happen at the same time. Using these visual indicators, the user and the supervisor 

can easily monitor the object state. 
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The quantitative evaluation of the performance is represented in Table 1, which shows the PPV_fc and 

PPV_ac from the result of simulation. The detection result of the carry state is over 90% in both frame 

count and action count, while result of the stop state is less than 40%. The PPV_fc of the move state has 

the best performance of the frame count, but the FP_fc causes significant effect on the PPV_ac. On the 

contrary, although the PPV_fc of the drop state is only 62.5%, the FP_fc only causes 2 counts in FP_ac 

and the PPV_ac is 80%. In the action count, our method is able to correctly identify the move, carry, and 

drop state, but the detection of the stop state has false positive cases, also known as false alarms. 

 

 

Figure 6: IFBOSM simulation results of each object state. (a) Stop: The black box is fulfilled as the 

indicator. (b) Move: The green box is fulfilled as the indicator. (c) Carry: The red box is fulfilled as the 

indicator. (d) Drop: The blue box is fulfilled as the indicator. 

The major issue in performance is the false alarms. The main factor identified for this issue is the 

operational noise, which is the hand tremor of the user. Although we have applied the temporal filter to 

stabilize this effect, the performance is limited due to the length of the queue. Long queue causes longer 

delay, but the filtering effect is weak in the short queue. Based on our experiment, the optimal length of 

the queue is 5. However, the case of the slow moving object suffers the effect of hand tremor. The image 

feature set may get cross the threshold back and forth frequently. It jumps in and out of the stop state in 

the detection. This is the root because of the false positive in the stop state. A possible solution is to 

consider the dynamic queue and threshold to adapt the case of the slow moving object.   

To improve the performance of other states, false alarm cases have to be reduced. The proposed method is 

a rule-based intelligent system using the image feature sets which are based on the fixed thresholds from 

the experimental results. The fixed thresholds have their limitation to fit all cases of the states. For 

example, the image features of near and far away the camera are different. The thresholds should be able 

to adapt to such differences. Although we would like to use an adaptive method to improve the accuracy 

of the detection, we do not have any information of the exact location of the objects in the live camera 

image to modify the thresholds. The possible solution to improve the quality of image feature sets is to 

consider the learning-based method to learn the object location and the associated threshold. False alarms 

during detection can be improved with this.  

 

(a)  

 

(b) 

 

(c)  

 

(d)  
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5 CONCLUSION AND FUTURE WORK 

In this paper, we propose an IFBOSM method to simulate the system object state of the simplified peg 

transfer task in the FLS. The major benefit of this method is to provide the framework of the simulated 

object state model for CAST. This method detects the object states based on the image feature sets and 

the rule-based intelligent system. The temporal difference of the moving objects in the image are modeled 

as the image feature sets and this method uses no object. The computation time of the proposed system is 

less than 20msec per frame and is able to be applied to the real-time application. The PPV of the state 

detection of move and carry state in frame count is over 90%, and in action count, it is around 80%. The 

weak points are the cases of false alarms. The root causes are the operational noise of the slow motion and 

the lack of the feasible threshold values when the objects are in different locations. In the future, we will 

focus on dynamic filtering and learning-based object state detection to improve the current weakness. 

Although the IFBOSM method is currently implemented in the simplified peg transfer, it has great 

potential to be extended to the complete peg transfer task and other tasks in the FLS. 
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