
An Event-driven Architecture for Fine Grained Intrusion Detection and
Attack Aftermath Mitigation

Jianfeng Peng, Chuan Feng, Haiyan Qiao, Jerzy Rozenblit
Department of Electrical and Computer Engineering

The University of Arizona
Tucson, AZ 85721-0104, USA

jr@ece.arizona.edu

Abstract

In today’s computing environment, unauthorized

accesses and misuse of critical data can be
catastrophic to personal users, businesses, emergency
services, and even national defense and security. To
protect computers from the ever-increasing threat of
intrusion, we propose an event-driven architecture that
provides fine grained intrusion detection and decision
support capability. Within this architecture, an
incoming event is scrutinized by the Subject-Verb-
Object multipoint monitors. Deviations from normal
behavior detected by SVO monitors will trigger
different alarms, which are sent to subsequent fusion
and verification modules to reduce the false positive
rate. The system then performs impact analysis by
studying real-time system metrics, collected through
the Windows Management Instrumentation interface.
We add to the system the capability to assist the
administrator in taking effective actions to mitigate the
aftermath of an intrusion.

1. Introduction

Network attacks are a fundamental threat to today’s
largely interconnected computer systems. Most of
these attacks share the same characteristics: intrusion
into computer hosts that have securities holes [1].
Unauthorized accesses and misuse of critical data on
intruded hosts not only cause loss to personal users, but
also pose a threat to the entire corporate network
because in many cases the intruders use the
compromised nodes to launch larger scale attacks.
Firewall and antivirus packages are often insufficient
in detecting and preventing all intrusions, especially
attacks from insiders [2]. Efficient Intrusion detection
systems thus are needed to form another important line
of defense in the face of increasing vulnerability.

In the past, different types of IDS have been
proposed and built. However, a study of currently
existing IDSs reveals that most operate at a coarse
grain level [3]. For example, Steven et. al. proposed an
approach that uses sequence of system calls to identify
potential threats [4]; Warrender proposed a similar
approach [5]. Ghosh utilized return address
information extracted from the call stack to generate an
execution path for a program to detect anomaly [6].
While these IDSs use different feature representations
of system calls, they treat events as an integral part and
are unable to investigate internal characteristic such as
executers, event objects, etc [7]. This directly affects
detection accuracy. Another shortcoming of the coarse
grain IDS is that reaction is only available after an
event is completed, thus the system is unable to
preempt a harmful operation before it completes.

To achieve more efficient intrusion detection, we
need a more insightful understanding of the system’s
ongoing events. Fine grained event checking capability
is an essential part of the architecture proposed in this
paper. It is implemented using Subject-Verb-Object
multipoint monitors. Any event that is taking place in
the system is modeled using SVO structure. Alarms are
triggered with respect to each element of the triple to
achieve fine grained anomaly detection. The proposed
architecture employs two databases that maintain
metadata per user. The user metadata provides a basis
for detecting deviation from normal user behaviors.
The system metadata records real-time system
performance metrics to facilitate alarm verification and
impact analysis.

This paper is organized as follows: Section 2 briefly
describes the SVO techniques used to model system
events. Section 3 presents the proposed architecture.
Section 4 discusses issues that are related to some of
the function modules. Section 5 provides the DEVS
Simulation results and some concluding remarks.

Proceedings of the 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (ECBS'07)
0-7695-2772-8/07 $20.00 © 2007

2. Event Modeling Using Subject-Verb-
Object Triple

In order to study the internal characteristics of an
incoming event, we need a formal way to denote the
following aspects: event executer, operation, and event
object. In linguistic typology, such a structure is
commonly called an SVO triple. Using this pattern, we
can model an ongoing event with a triple that contains
all the detailed information we are interested in.

2.1. The SVO Triple

Any event happening inside the computer host has
its subject, which most of the time is a running process.
For instance, typing a letter is often associated with a
text editor; redrawing a client area is initiated by the
parent window, while a put command in a sftp session
usually comes from the ftp program. Similarly, we can
describe the verbs and objects for these three events.
Verbs of an event tell us what type of operation is
performed on the objects. Objects of an event are
normally hardware (peripheral devices, ports, etc) or
software resources (files, drivers, libraries, etc) on the
computer. At a higher level, these processes are owned
by the current user, whose behavior is modeled by
studying all the SVO triples when he is using the
computer on a daily basis. By putting the subject, verb
and object into a triple, we have a formal structure in
the following way:

{ MFC Window, Redraws, Client Area }
{ Text Pad, Reads, MyFile.txt }
{ FTP Program, Opens, Port 4567 }
{ User Program, Writes to, Serial Port }

…

We collect information of ongoing events using

custom developed software tools. By dissecting an
event into these three fields, we are able to perform
fine grained analysis of the events. One may question
the efficiency of this modeling technique as there are
virtually infinite numbers of combinations that can
happen when the computer is running. This problem is
addressed by limiting the events to be scrutinized to a
finite set of critical subjects, critical verbs and critical
objects. Any event outside of this set will either pose
no threat to the system or be a trivial threat that can be
ignored. Fortunately, most of the events happening
every moment on a computer do not belong to the
critical event set (CES), thus we can focus on studying
the behaviors of the ones that do belong to the critical
event set as described in the following section.

2.2. The User-Configurable Critical Event Set

Since every user on a particular computer host has

unique access privileges to resources, it is
computationally very expensive to define a critical set
that works for every user on every computer. Instead, it
is necessary for the IDS to allow customizable critical
set for each user. Depending on the nature of the data
that reside on the computer and the actual role of the
computer, this critical set can vary from a simple set
that contains a few password protected files, to a much
more comprehensive set of all files on C drive, local
ports, and even hardware resources. In the current
stage of our research, we focus on the critical set
containing important files that need protection. The
CES is defined as: {*, *, D:\EmployeeFiles*.doc}.

This critical set mandates that the IDS needs to
monitor any process that attempts to perform any
operations on any .doc files in the D:\EmployeeFiles
directory. Consequently, any operation that is not
accessing the data contained in that directory is ignored
under the current configuration.

2.3. Adding Time Information

Each SVO, when saved into the user database, is
tagged with a timestamp. The purpose of the timestamp
is twofold. First, it adds an additional dimension to the
event model and allows us to gain better understanding
of the abnormality of current events. For instance, a
particular file access operation is deemed normal
during regular work hours; however, it is abnormal out
of regular work hours. Secondly, timestamp makes it
possible to perform temporal alarm fusion, which helps
to reduce duplicated alarms.

By combining time information with an SVO triple,
we have a mechanism that allows us to explore the
following questions in a fine grained manner: who
does what, to whom, at what time.

3. SVO Based Intrusion Detection
Architecture

With the SVO modeling technique and custom
defined CES described in section 2, we propose an
architecture as depicted in Figure 1 to perform fine
grained checking on all incoming events. When a new
event comes in, it is intercepted by the IDS that runs in
the background and sent into a multistage monitor. The
monitor investigates the subject, verb and object by
comparing them respectively to the normal behavior
stored in the user database.

Proceedings of the 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (ECBS'07)
0-7695-2772-8/07 $20.00 © 2007

Figure 1 The Event-Driven Architecture

The user metadata database contains information
that tells the IDS at what time which processes will
normally take what kind of actions on what objects. A
new event will trigger an alarm if it involves objects
defined in the Critical Event Set, and if any element of
the SVO triple deviates from normal behaviors. For
instance, in our sample setting, all *.doc files in
D:\EmployeeFiles directory are protected. Now if a
process tries to modify a *.doc file in that directory, an
Object alarm will be triggered first. The same event
may also trigger Subject Commonality alarm if that
process has never been observed before inside the
current time window. In this case, the event violates
multiple security rules and triggers multiple alarms,
which are to be fused and verified subsequently.

The SVO based architecture has the following
advantages. First, it doesn’t require a priori knowledge
of intrusions as needed in signature based [3] or system
call traces based approaches [4]. Second, intrusion can
be detected at the earliest time possible because the
IDS does not need to wait until the operation has
successfully been executed or damage has been caused.
Third, an event is investigated at fine grain level so that
more appropriate and effective reactions can be taken
according to the nature of the intrusion.

Figure 1 shows all the essential components of the

proposed architecture. These include the SVO based
anomaly detection engine, alarm fusion module,
verification module, threat evaluation module and
decision support module. These modules address such
problems as how to determine if an event is abnormal,
how to deal with an alarm, what reactions should be
taken when a threat is confirmed. The remainder of this
section discusses the functionalities of these modules
in more detail.

3.1. Anomaly Detection based on User Profiling

Intrusion detection techniques of IDSs can be

categorized into two classes: signature-based and
anomaly-based. Signature-based IDSs compare current
events with known attacks and look for similarities,
such as comparing a sequence of system calls to known
attack patterns. This method has the major limitation of
not being able detect novel attacks [3]. To overcome
this, our proposed architecture uses an anomaly-based
detection approach, which models normal behaviors
and attempts to identify abnormal activities on the
computer.

The precondition for such an anomaly detection
IDS to work is to create a range of normal behaviors.
In our system, this normal base is established through

Proceedings of the 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (ECBS'07)
0-7695-2772-8/07 $20.00 © 2007

an extensive user profiling process whose purpose is to
build an in-depth knowledge of how the user uses this
computer. The following information is derived:
during normal usage of the computer, what processes
take what kind of actions on what hardware resources
or software objects?

To achieve this, we developed a software tool,
SysMon as shown in Figure 2, which uses WMI to
retrieve runtime system metrics. SysMon combines
information from Spy++ event logs and records the
results into a user profile database. More details
regarding the database can be found in section 4.1. To
model normal host behavior, both supervised and
unsupervised learning algorithms can be applied.

Unsupervised learning algorithms take as input a set
of unlabeled data and attempt to find intrusions
contained in the data. It can be treated as a variant of
the classical outlier detection problem and does not
require the input data set to be fully normal. Outlier
based anomaly detection algorithms cluster the data
based on certain metrics and the points located on
sparse regions are treated as intrusions. The
unsupervised algorithms make two important
assumptions about the data which motivate the general
approach. The first assumption is that the number of
normal instances dominates that of abnormal instances.
The second assumption is that the abnormal instances
are qualitatively different from the normal instances.
The basic idea is that since the anomalies are both are
rare and different from normal, they will appear as
outliers in the data and thus be detected [8]. The
clustering process scans through the data collected by
WMI, and identifies normal instances and outliers.

From the results of the above mentioned clustering
process, we have a clear knowledge of the user’s
normal usage of the computer. For instance, one can
conclude that User A on the monitored computer has
the following normal behavior with regard to file read
operations in D:\EmployeeFiles directory during the
regular work hours of 9am to 5pm:

Winword.exe, File Read
Operations/sec,

*.doc [50,200]

…

The above generalization gives an accurate
indication of how a user normally uses his computer.
Thus once a new event occurs, the anomaly detection
engine will compare it to the existing profile of that
user and determine whether the event falls into the
range of normal behavior. Once a deviation is detected,
the detection engine raises an alarm.

3.2. Alarm Fusion

 Once an abnormal event happens, it is very likely

to trigger multiple alarms at Subject, Verb and Object
checkpoints. In order to minimize redundant alarms
and condense alarms that stem from the same event
into one integral alarm, an alarm fusion module is
needed.

In the proposed architecture, a multi-level alarm
fusion algorithm is used. The first one is a source
preprocessing level, which synchronizes the
information flow from different sensors to reduce data
redundancy for further processes. The second level is
alarm normalization, which transforms different alarms
into a consistent set of scale. The third level is spatial
alarm fusion, which fuses alarms from different
anomaly detection monitors. The fourth level is
temporal alarm fusion, which analyzes alarms within a
certain time window and gives more useful intrusion
information. Further details of the fusion mechanism
can be found in [9]. After alarms are fused, they are
sent to the verification module.

3.3. Alarm Verification

The task of this module is to verify the correctness

of fused alarms in an effort to reduce false alarms. The
verification module works by checking the normality
of an event that has triggered an alarm. This includes
checking the frequency of similar operations that have
been performed before, as well as identifying the
security level of the objects that the process is trying to
access. While these are automated processes, the
verification module also provides a human-computer
interface that allows the system administrator to
participate in the decision making process.

3.4. Impact Evaluation

A successful attack on a computer usually results in

considerable impact on some aspects of its normal
operation. Such impact includes disruption of critical
services, undermined computation capability, increased
network latency due to excessive outbound traffic and
hardware resource exhaustion. To evaluate the impact
of an attack, it is necessary to carry out a detailed
comparison of system characteristics before and after
an alarm is triggered. This is made possible by our
real-time system performance monitoring tool, which
collects system run-time performance data and saves
them into a system metadata database as shown in
Figure 1. The impact evaluation module queries the
database about the following system metrics to find
any differences before and after the event:

Proceedings of the 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (ECBS'07)
0-7695-2772-8/07 $20.00 © 2007

 Number of running services
 Processor time, queue
 Memory usage
 Network bandwidth, latency

3.5. Decision Support and Aftermath
Mitigation

One of the major contributions of the proposed

architecture is its capability to provide insightful
information on current attacks and more precise
counteraction with regard to the Subject, Verb or the
Object. Depending on which elements of the SVO
triple pose threats to the protected system, the decision
support engine can automatically perform any one or a
combination of the following three categories of
actions:

 Ban current user
 Terminate operation
 Quarantine objects

In addition to the above three instantaneous actions,

the decision support engine uses a rule based reason
system that will investigate the nature of the attack,
and take post-attack actions to eliminate security
vulnerabilities and prevent the same type of intrusion
from happening again. For instance, security level of
the objects can be escaladed immediate to prevent
future unauthorized access. A system administrator
will be notified automatically. The administrator will
often perform further investigation into the nature of
the event and install patches to eliminate security
holes. Howard proposed a variety of security
precautions in building secure software [10]. Many of
those techniques can be applied to unaffected systems
on the same network to prevent the propagation of the
attack.

The architecture also provides an interface that can
report the current status to a network based fusion
engine. The network based fusion engine collects
information from each computer node, and correlates
the data to perform higher-level situation analysis.
Information provided by the interface includes
everything that is needed to determine at what time,
which user, by which process, is taking what kind of
action against which object. With such fine-grained
information, the network based fusion engine is able to
take more effective actions to mitigate the aftermath of
an intrusion such as terminating established TCP
connections, closing ports, and isolating the affected
host.

3.6. Performance Analysis

Once the IDS is installed on a computer, it runs

constantly in the background to protect
hardware/software resources defined in the CES. This
adds to run-time computational overhead similar to
antivirus packages. The overhead depends on the size
of the CES. A smaller CES will have less impact on
the system performance than a larger CES because the
latter will involve checking on more events in run time.
On computer systems that contain sensitive data,
advantages of the SVO based IDS will greatly
outweigh potential performance impact. The impact
can be further reduced by introducing a security
screening process that checks login attempts by any
user out of normal operation hours.

4. Design Issues: Collecting User/System Data
through WMI

The architecture proposed in this paper heavily

relies on the capability to collect real-time information
at both the system level and the process level.
Microsoft WMI is a set of extensions to the Windows
Driver Model that provides an operating system
interface through which instrumented components can
provide information and notification [11]. WMI
includes real-world manageable components, available
from the DMTF standards with some specific
extensions that represent the various Windows
components. To locate the huge amount of
management information available from the CIM
repository, WMI comes with a sql-like language called
the WMI Query Language (WQL). WMI can be used
to obtain data about your hardware and software by
writing a client script or application, and data can be
provided to WMI by creating a WMI provider.

Figure 2 Real-time User Profiling & System
Performance Monitoring Tool (SysMon)

Proceedings of the 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (ECBS'07)
0-7695-2772-8/07 $20.00 © 2007

Figure 2 is a screenshot that shows the SysMon tool
we developed to collect system run-time information
through WMI. The following is a snapshot of the
information collected using the real-time user profiling
and system performance monitoring tool that runs on
our desktop systems:

ID User Usage Counter CurTime
11 1 1332 Processor(_Total)

Interrupts/Sec
2006-09-20
17:08:04

12 1 16 Processor(_Total)
Processor Time

2006-09-20
17:08:35

13 1 0 Processor(_Total)
User Time

2006-09-20
17:08:59

…

5. Summary

To verify the overall effectiveness of the proposed

architecture, a simulation platform has been built to
simulate attacks and study the reactions of the IDS
system. The simulation uses Discrete Event System
Specification (DEVS) [12] to describe the proposed
architecture. The simulation is described in detail in
[7]. The initial experimental results are very promising.
We are currently obtaining real world data on which a
full verification of the proposed approach can be
carried out. Our future research will focus on the
mitigation of attack aftermath.

References

[1] B. Schneier, “Attack Trends 2004 and 2005”, ACM
Queue vol. 3, no. 5 - June 2005

[2] R. Chinchani, A. ILyer, H.Q. Ngo, S. Upadhyaya,
“Towards a Theory of Insider Threat Assessment”,
Proceedings of International Conference on
Dependable Systems and Networks, 28 June-1 July
2005 Page(s):108 - 117

[3] S. Axelsson, “Intrusion detection systems: A survey
and taxonomy”, Technical Report 99-15, Department
of Computer Engineering, Chalmers University, March
2000.

[4] S. A. Hofmeyr, S. Forrest, A. Somayaji, “Intrusion
detection using sequences of system calls”, Journal of
Computer Security, Volume 6, Number 3, 1998.

[5] C. Warrender, S. Forrest, B. Pearlmutter,
“Detecting intrusions using system calls: alternative
data models”, Proceedings of the 1999 IEEE

Symposium on Security and Privacy, May 09-12,
1999.

[6] A. K. Ghosh, A. Schwartzbard, M. Schatz.
“Learning program behavior profiles for intrusion
detection”, In Proceedings of the 1st USENIX
Workshop on Intrusion Detection and Network
Monitoring. USENIX Association, April 11-12 1999.

[7] A. Liu, C. Martin, T. Hetherington, Sara Matzner,
“A Comparison of System Call Feature
Representations for Insider Threat Detection”,
Proceedings of the Sixth Annual IEEE Systems, Man
and Cybernetics (SMC) Information Assurance
Workshop, 15-17 June 2005.

[8] H. Qiao, J. Peng, C. Feng, J. Rozenblit, “Behavior
Analysis-Based Learning Framework for Host Level
Network Intrusion Detection”, to be published in
Proceedings of the 2007 IEEE International
Conference and Workshop on the Engineering of
Computer Based Systems, March 2007.

[9] C. Feng, J. Peng, H. Qiao, J. W. Rozenblit. “Alert
Fusion for Intrusion Detection and Decision Support”,
to be published in Proceedings of the 2007 IEEE
International Conference and Workshop on the
Engineering of Computer Based Systems, March 2007.

[10] M. Howard and D. LeBlanc, “Writing Secure
Code,” Microsoft Press, 2nd edition, December 4,
2002.

[11] Microsoft, WMI: Introduction to Windows
Management Instrumentation,
http://www.microsoft.com/whdc/system/pnppwr/wmi/
WMI-intro.mspx

[12] B.P. Zeigler and H.S. Sarjoughian, “Introduction
to DEVS Modeling and Simulation with JAVA:
Developing Component-Based Simulation Models,”
Draft Version 3, 2005

Proceedings of the 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (ECBS'07)
0-7695-2772-8/07 $20.00 © 2007

