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Abstract 
 

This article presents a hybrid software/hardware 
architecture for commander’s decision support in 

tactical operations. The architecture builds on the 

symbolic, object-oriented visualization software called 

Advanced Tactical Architecture for Combat Knowledge 

System (ATACKS). The extension discussed here is the 
design of a real-time robot agent layer that interacts 

wirelessly with ATACKS. This layer enacts decisions 

made by software agents (wargamers), continuously 

relays the execution states back to ATACKS, and 

updates its actions as advocated by replanning 

algorithms. The software layer is briefly described 
followed by the specification of the real-time 

requirements for the robotic architecture. The design 

and implementation are given with a small example that 

illustrates the hybrid system’s operation. 

 

1. Advanced Tactical Architecture for 

Combat Knowledge System (ATACKS) 
 

 In this section, we provide a brief background on the 

ATACKS architecture. The goal of our ongoing 

research and development work is to build a computer-

based environment that can portray multifaceted 

military and other (e.g., disaster, refugee relief) 

operations in a manner that conveys the information to 

the commander in real time as an engagement 

progresses. In our previous work, we have designed the 

Advanced Tactical Architecture for Combat 

Knowledge Systems [6] (ATACKS). ATACKS is a 

three-dimensional visualization tool that facilitates 

rapid, flexible development of high-level battlespace 

representations as well as execution and assessment of 

wargaming scenarios. Written in Java using the Java 

3D API, ATACKS allows the user to create and 

execute quickly major theatre of war scenarios based 

on its library of terrain and unit elements and their 

associated behaviors. It is used to study the synergy 

between human decision-makers and intelligent 

visualization systems operating in unconventional 

military situations such as small-scale contingency 

operations [6] where the planning and execution 

processes overlap and conventional military solutions 

may not be effective.  

 ATACKS expands standard battlefield symbology by 

providing abstract symbols on three dimensional (3D) 

abstract battlespace terrains.  It extends normal spatial 

visualization through process-centered displays that 

seek to enhance the commander’s understanding of the 

situation by presenting qualitative data in novel 

formats. In addition, external decision support tools 

communicate with ATACKS through an application 

program interface (API) that can allow communication 

over a network as well as between systems on differing 

operating systems.  With this capability, ATACKS 

serves as an integration point for intelligent aiding 

systems. 
 ATACKS contains three distinct general layers: 3D 

spatial representation of the situation, process displays 

that present abstract representations of data, and the 

decision support layer that can provide and evaluate 

COAs, as shown in Figure 1. The process displays use 

the information from this layer to display a variety of 

abstract information, such as unit effectiveness, impact 

alertness of an event, or suggested support units.  The 

middle layer manages the data of the current situation.  

The lowest layer  (decision support) passes information 

about the current state of the battlefield to decision 

support tools and then forwards  the results or 

interactions required back to the middle layer.  

 

1.1. Visualization engine 
 

 The central layer of ATACKS provides a 3D analog 

of standard military and new, unconventional 

symbology for contingency operations.  By grafting the 

2D unit symbols onto 3D abstractions, the system 

allows commanders to apply existing domain 

Proceedings of the 10 th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’03) 
0-7695-1917-2/03 $17.00 © 2003 IEEE 



knowledge to understand the three-dimensional 

battlespace representation. 

 

1.2. Configural displays 
 

 The top level of ATACKS creates process centered, 

or configural displays (CDs) which can provide a 

commander with a more thorough understanding of the 

current situation by presenting abstract representations 

of key events as they occur in the battle.   Different 

types of CDs were designed to display various aspects 

of the wargaming and battle process.  The basic CD 

designed for use in major theatre of war scenarios is 

shown below in Figure 2.  

 The chalked rectangular outline delineates the battle 

grid whose dimensions can be adjusted by the 

commander through the ATACKS GUI.  Also 

represented in white are the Phase Lines (PL), the Line 

of Advance (LOA), the Forward Edge of the Battle 

Arena (FEBA) and other similar Command and 

Control features.  The purpose of these outlines is to 

provide the viewer of the CD with references to the 

position and progress of the units along the battlefield.  

The position of the multi-colored bar is tied to the 

location of the units on the battlefield.  In addition to 

position, the CD also portrays the Combat 

Effectiveness of the Blue force and the Red-Blue 

combat ratio in the case where the friendly unit 

encounters an enemy. Since a CD is created for each 

friendly unit before the scenario begins execution, the 

combined CDs provide an at-a-glance indication of the 

status and progress of the units according to the battle 

plan.  

 

 
 

Figure 2. Configural displays and 3D 
battlespace 

 

 

1.3. Decision support 
 

 By isolating the decision support functionality into 

one layer or module, ATACKS can include its own 

decision support software (DSS) or take advantage of 

external sources such as COTS products.  It can then 

use its object-oriented visualization base to display the 

data, information, and knowledge derived from these 

external sources. This interface is defined through an 

Application Program Interface (API). Examples of 

such decision tools include FOX-GA [4].  

 FOX-GA uses a genetic algorithm to generate 

thousands of COAs and then narrows the choices down 

to the few best while ensuring that the selected options 

are sufficiently different from each other.  The choices 

are presented to the user who ultimately decides which 

COA to select for execution. Most recent development 

includes Sheherazade, a new system being developed 

jointly by the University of Arizona and the US Army 

Research Laboratories.  Sheherazade models 

Operations-Other-Than-War scenarios and coevolved 

COAs for multiple sides or factions.  These COAs can 

be visualized and analyzed in ATACKS. 

 

Process Centered Display

ATACKS Visualization Engine

DATA

Simulation EngineSimulation EngineSimulation EngineSimulation Engine

I/OI/OI/OI/O

Decision Support Systems

Visual Representation

Figure 1.  ATACKS’ three-layer architecture
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2. Mobile Agent Technology based 

Intelligent Robotic System (MATIX) 

 
2.1. Concept exploration 
 

 In addition to the underlying software, we are 

currently developing a real-time, physical layer of 

autonomous devices that represent the real-world 

entities in the tactical environment. This layer is to be 

implemented by a Mobile Agent Technology based 

Intelligent Robotic System (MATIX). We introduce the 

hierarchical control concept in the development of 

MATIX, in which field robots are subject to the control 

of their coordinators; these coordinators have their own 

supervisors, and so on. This hierarchy places  

ATACKS at the top level. In this paper, however, we 

will present a simplified two-level system with 

ATACKS as the direct supervisor for the field robots. 

Hereinafter, we refer to coordinator as the robot control 

software that has been integrated into ATACKS.  

Figure 3 shows the vertical interaction within MATIX 

and the communication between MATIX coordinator 

and other parts of ATACKS. 

 

 
Figure 3. A two-level hierarchical 

representation of MATIX  
 

Each of the field robots has its own ID and is equipped 

with wireless transceivers to communicate with 

ATACKS where it is represented as a visual 3D object. 

These configurable one-to-one mappings, and the 

dedicated two-way wireless communication, link the 

physical entities with the abstract object in the software 

environment. While commanders manipulate an object 

in the 3D environment, the corresponding robot carries 

out the same action and reports what is happening in its 

physical surrounding back to the commander. This is 

how the embedded devices are interfaced with 

software. 

 
2.2. Requirement discovery 
 

 We begin with a set of high-level requirements that 

the MATIX should fulfill. Cost and schedules are 

general design and realization process constraints. 

Reductions in weight, size, and power consumption are 

required in order to enhance efficiency while providing 

desired functionality and fault tolerance. 

 The robot shall be able to make basic movements 

such as going forward, backward, left, right, as well as 

braking when necessary. The robot makes these moves 

only when it receives such commands from the 

coordinator; the environment conditions trigger a 

certain reaction according to the rule base; or it has 

been programmed to execute a list of commands that 

direct the robot to do so. 

 To be able to synchronize with its “image” in the 

virtual software environment, the robot shall 

communicate with ATACKS continuously to exchange 

their status information in real-time. This 

communication will preferably follow industry 

standards to facilitate future upgrading and integration 

with other computer based system.  

 It is necessary for the robot to have certain levels of 

autonomy. That is, computational capability and 

sensors to perceive its physical environments. 

Additionally, the software system should be designed 

to provide such interface that would allow MATIX to 

be scaled up and down by inserting or extracting a 

layer of coordinators in and out of the hierarchy.  

 
2.3. Architecture 

 
 The design concept and requirements have been 

embodied in the layered architecture of MATIX robot 

as shown in figure 4. 

 
2.3.1. Physical layer. This layer handles all physical 

movements of the robot and collects data from the real 

time environment by different types of sensors. The 

track-based robot moves forward, backward and makes 

turns depending on the combination of the two motors’ 

rotation. Infrared wheel coders count the driving 

wheel’s revolutions in a given period of time and 

convert these into linear distance, which is further used 

for location and navigation. Ultrasonic rangers, 

combined with touch sensors, help to detect objects, 

avoid collisions and complete tasks related to physical 

contact. 
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2.3.2. Reactive layer. Each robot has a programmable 

rule stack as the basis for reasoning. The host 

coordinator also maintains a copy of the rule stack for 

each robot. The robot reacts to environmental stimuli 

based on its rule set, with a predefined conflict 

resolution strategy. If the coordinator needs to change a 

robot’s rule set for certain purposes, it does so on its 

local copy first and updates the robot’s rule stack 

wirelessly. By this mechanism, the robot could adapt 

itself to changing environments in real time. 

 
2.3.3. Central control layer. The central control layer 

consists of an embedded processor, peripherals, and 

control software. The main program manages tasks, 

maintains rule stacks, handles interrupts, and accesses 

memory. If the robot needs to report to the coordinator 

in operation, the controller will write a command to the 

communication port to be transmitted. If the 

coordinator intervenes, the controller should switch to 

the incoming commands and process them based on the 

priority order. User codes and data are stored on the 

Flash ROM, which is reprogrammable through the 

processor’s JTAG port.   

 
2.3.4. Communication layer. The robots and 

ATACKS communicate through the wireless 

transceivers, one connected to the ATACKS 

workstation, and the other being onboard the robot.  

ATACKS preserves one channel for each robot. A 

parser encodes data into predefined packets before 

sending them to ATACKS, and interprets received 

packets into recognizable commands for the robot 

controller to execute. By setting a special flag bit, the 

robot can be toggled between passive and active 

communication mode. In passive mode, the robot only 

responds to incoming coordinator commands, but does 

not automatically report its status to the coordinator as 

it does in active mode. 
 

3. Implementation 

 
3.1. Function modules 
 

 The robot prototype was built in a bottom-up 

manner: functional modules were built and verified on 

the development platform, and then a motherboard was 

designed to hold all the modules seamlessly.   

 

3.1.1. Java Controller Module. The latest embedded 

Java technology has been chosen in implementing the 

control system. Compared to other available RTOS and 

tool sets, the embedded Java excels in the following 

aspects in addition to the intrinsic advantage of  the 

Java language: 

 

��Portability 
By using an underlying Java run-time 

environment, applications can be easily developed 

on multiple operating systems with standard 

software development tools such as JBuilder. 

Hardware-specific code can be simulated on a 

desktop system. Then, by taking into account the 

underlying target hardware characteristics, 

applications can be moved with minimal effort to 

the specific target device. 

 

��Software reuse 
Because ATACKS is a pure Java system, and both 
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Figure 4.  The MATIX robot architecture
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the robot and coordinator have a similar 

communication layer, code written for the 

coordinator could be migrated to the robot without 

bothering with other languages. A native interface 

is also unnecessary. 

 

 The module we use in the robot consists of a native 

Java processor that runs a Java Virtual Machine and 

user codes stored in Flash ROM.  Figure 5 shows how 

this embedded Java environment differs from the OS-

based Java environment. 

 

  

The processor supports Real Time Specification for 

Java and Java2 Micro Edition. The J2ME Connected, 

Limited Device Configuration provides a set of APIs 

tailored for embedded applications. The command 

parser in the communication thread passes control 

commands to the program no matter the robot is in 

standby or operation. The main program has a 

communication thread that exchanges real time 

information with the coordinator. It also contains a task 

manager agent, a runtime rule manager agent, and 

interrupts service subroutines for various sensors. All 

these parts are coded in Java conforming to J2ME 

CLDC, and executed by the native Java processor at 

80MHz. 

 

3.1.2. Bluetooth transceiver module. Bluetooth is a 

fast growing new technology for wireless 

interconnectivity. It is a universal radio interface in the 

2.4 GHz frequency band that allows embedded devices 

to communicate via short-range, ad hoc networks. 

Bluetooth is based on a highly integrated low power 

chip, which delivers modest transfer rate for both data 

and voice. These features make it an ideal option in the 

battery-operated MATIX robots.  

 Bluetooth devices contain four major parts: a radio 

(RF) that transmits and receives data and voice, a 

baseband or link control unit that processes the data, 

link management software that manages the 

transmission, and supporting software. HCI (Host 

Control Protocol) is used to provide an interface 

between the Bluetooth hardware and a host via a 

physical connection, either UART or USB. In the 

MATIX design, we use UART connection for both the 

robot and the host computer. Figure 5 outlines the 

application framework and shows the data flow 

between the robot and its coordinator resident in 

ATACKS. 

 

3.1.3. Ultrasonic Ranger Module. The ultrasonic 

range finder offers precise ranging information at 

distances from several inches to several meters. It 

transmits a sonar pulse outside of the frequency of 

human hearing. This pulse travels at the speed of sound 

away from the ranger in a cone. The ranger pauses for 

a brief interval after the sound is transmitted and then 

awaits the reflected sound in the form of an echo. 

When the controller requests a ping, the ranger creates 

the sound and waits for the echo. If received, the ranger 

reports to the control, which then computes the 

distance to the object based on the elapsed time. Two 

IO ports of the controller are dedicated for the ranger 

operation, one for pulse trigger input, and another to 

take echo output. 

 

3.1.4. Battery Monitor Module. Power management 

and monitoring is another important issue in embedded 

devices. Traditional capacity monitoring schemes work 

by comparing the battery voltage to the rating value. 

However, this method lacks the required accuracy 

because many batteries have a relatively flat voltage 

profile in both charge and discharge directions. To 

make matters worse, the available capacity also 

changes as a function of self-discharge, cell aging, 

temperature, and discharge rate or profile. In order to 

provide precise capacity tracking and monitoring for 

the robot, the system uses a new battery monitor chip 

based on charge to voltage converter (VFC). The chip 

counts coulomb transferred through a low-value sensor 

resistor and stores the information into its registers. 

The Java processor then retrieves this information 

through the one-wire interface, thus getting the 

accurate and reliable information about the battery’s 

state of charge by simple calculation. 

 In addition, this system has several other modules 

such as the power regulator, the RS232 level converter, 
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and the motor drive that are important components to 

make the robot functional. 

 

3.2. Test and Integration 
 

 All of these above-mentioned modules have been 

developed and tested separately on a demo board.  

Although each of the modules has been verified to be 

working, problems occurred when they were put 

together onto the development station. Interrupt 

priority levels had to be rearranged, packet length and 

communication interval had to be adjusted, and other 

conflicts had to be solved before the final PCB board 

could be manufactured to fulfill every aspect of the 

designed functionality.  

4. Experimental Results 

 
 In order to test the effectiveness of the added 

MATIX, we simulated a simplified peace-keeping 

mission in ATACKS. The operation was to send a team 

to rescue several hostages behind a building with a 

known target position. The scenario was created in 

ATACKS with different 3D objects representing the 

target, the hostile units, and the team. The commander 

planned a route for the team, and sent the path 

information to the robot representing the team. When 

the commander launched the scenario in ATACKS, the 

robot simultaneously started off along the path. Figure 

6 shows a screenshot taken during the process of the 

experiment. The top window contains the robot control 

panel that shows the real-time status of the robot and 

the environment information sent back by it. The 

ellipse in the middle of the panel indicates the distance 

of the object ahead of the robot on a logarithmic scale.  

 Not only does the size of the eclipse vary according 

to the ultrasonic echo readout, but also does the color.  

Blue represents the distance greater than 3 meters; red 

represents the distance shorter than 8 inches; yellow 

represents any distances in between. On the sides of the 

radar screen are two odometers for the left and right 

tracks. The bar at the right bottom corner of the panel 

shows the remaining battery capacity, which updates 

itself every minute. Above the fuel gauge are switches 

for choosing communication modes and keyboard 

navigation modes. By selecting or deselecting these 

radio buttons, internal commands are sent to the robot 

and thus change its behavior. The scrollable pane at the 

left end of the panel logs communication between the 

robot and the commander. 

 Below the robot control panel is the ATACKS GUI 

that consists of two separate windows. The right ones 

provides drop down and pop-up menus for users to 

choose runtime engines, create scenarios, manipulate 

3D objects, and place paths and lines. It also displays 

the execution of the scenario. On the left is the object 

property page that allows user to change object 

 
Figure 6. Screenshot of a running scenario 
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attributes such as unit affiliation, size, speed, terrain 

color, line weight, etc.  

 In this specific experiment setup, the robot is 

programmed to report its status to the commander 

every 300 milliseconds. The robot will automatically 

avoid obstacles according to its rule set. Should any 

object exist within 4 inches of the front of the robot, it 

will trigger a warning dialog for the commander to take 

further actions.  In the actual experiment, the 

commander successfully received updated information 

collected by the robot’s sensors, and was able to update 

the robot’s rule set, part of which defines how the robot 

should avoid an obstacle. When the cooperator of the 

experiment placed an object within the warning range 

of the robot, it braked as programmed and wirelessly 

triggered the dialog for commander’s decision making. 

5. Conclusions 

 

 This paper presents the design of MATIX, a physical 

layer to interface with a battlefield simulation system. 

MATIX provides real-world information to a 

commander who verifies a plan created in a virtual 

environment. One of MATIX’s most unique features is 

its ability to communicate bi-directionally with 

ATACKS so that the physical robot and its image can 

stay synchronized in real time.  
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