

A Hybrid Architecture for

Visualization and Decision Making in Battlespace Environments

J. Peng, J.W. Rozenblit and L. Suantak

Department of Electrical and Computer Engineering

The University of Arizona

Tucson, AZ 85721-0104, USA

jr@ece.arizona.edu

Abstract

This article presents a hybrid software/hardware
architecture for commander’s decision support in

tactical operations. The architecture builds on the

symbolic, object-oriented visualization software called

Advanced Tactical Architecture for Combat Knowledge

System (ATACKS). The extension discussed here is the
design of a real-time robot agent layer that interacts

wirelessly with ATACKS. This layer enacts decisions

made by software agents (wargamers), continuously

relays the execution states back to ATACKS, and

updates its actions as advocated by replanning

algorithms. The software layer is briefly described
followed by the specification of the real-time

requirements for the robotic architecture. The design

and implementation are given with a small example that

illustrates the hybrid system’s operation.

1. Advanced Tactical Architecture for

Combat Knowledge System (ATACKS)

 In this section, we provide a brief background on the

ATACKS architecture. The goal of our ongoing

research and development work is to build a computer-

based environment that can portray multifaceted

military and other (e.g., disaster, refugee relief)

operations in a manner that conveys the information to

the commander in real time as an engagement

progresses. In our previous work, we have designed the

Advanced Tactical Architecture for Combat

Knowledge Systems [6] (ATACKS). ATACKS is a

three-dimensional visualization tool that facilitates

rapid, flexible development of high-level battlespace

representations as well as execution and assessment of

wargaming scenarios. Written in Java using the Java

3D API, ATACKS allows the user to create and

execute quickly major theatre of war scenarios based

on its library of terrain and unit elements and their

associated behaviors. It is used to study the synergy

between human decision-makers and intelligent

visualization systems operating in unconventional

military situations such as small-scale contingency

operations [6] where the planning and execution

processes overlap and conventional military solutions

may not be effective.

 ATACKS expands standard battlefield symbology by

providing abstract symbols on three dimensional (3D)

abstract battlespace terrains. It extends normal spatial

visualization through process-centered displays that

seek to enhance the commander’s understanding of the

situation by presenting qualitative data in novel

formats. In addition, external decision support tools

communicate with ATACKS through an application

program interface (API) that can allow communication

over a network as well as between systems on differing

operating systems. With this capability, ATACKS

serves as an integration point for intelligent aiding

systems.
 ATACKS contains three distinct general layers: 3D

spatial representation of the situation, process displays

that present abstract representations of data, and the

decision support layer that can provide and evaluate

COAs, as shown in Figure 1. The process displays use

the information from this layer to display a variety of

abstract information, such as unit effectiveness, impact

alertness of an event, or suggested support units. The

middle layer manages the data of the current situation.

The lowest layer (decision support) passes information

about the current state of the battlefield to decision

support tools and then forwards the results or

interactions required back to the middle layer.

1.1. Visualization engine

 The central layer of ATACKS provides a 3D analog

of standard military and new, unconventional

symbology for contingency operations. By grafting the

2D unit symbols onto 3D abstractions, the system

allows commanders to apply existing domain

Proceedings of the 10 th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’03)
0-7695-1917-2/03 $17.00 © 2003 IEEE

knowledge to understand the three-dimensional

battlespace representation.

1.2. Configural displays

 The top level of ATACKS creates process centered,

or configural displays (CDs) which can provide a

commander with a more thorough understanding of the

current situation by presenting abstract representations

of key events as they occur in the battle. Different

types of CDs were designed to display various aspects

of the wargaming and battle process. The basic CD

designed for use in major theatre of war scenarios is

shown below in Figure 2.

 The chalked rectangular outline delineates the battle

grid whose dimensions can be adjusted by the

commander through the ATACKS GUI. Also

represented in white are the Phase Lines (PL), the Line

of Advance (LOA), the Forward Edge of the Battle

Arena (FEBA) and other similar Command and

Control features. The purpose of these outlines is to

provide the viewer of the CD with references to the

position and progress of the units along the battlefield.

The position of the multi-colored bar is tied to the

location of the units on the battlefield. In addition to

position, the CD also portrays the Combat

Effectiveness of the Blue force and the Red-Blue

combat ratio in the case where the friendly unit

encounters an enemy. Since a CD is created for each

friendly unit before the scenario begins execution, the

combined CDs provide an at-a-glance indication of the

status and progress of the units according to the battle

plan.

Figure 2. Configural displays and 3D
battlespace

1.3. Decision support

 By isolating the decision support functionality into

one layer or module, ATACKS can include its own

decision support software (DSS) or take advantage of

external sources such as COTS products. It can then

use its object-oriented visualization base to display the

data, information, and knowledge derived from these

external sources. This interface is defined through an

Application Program Interface (API). Examples of

such decision tools include FOX-GA [4].

 FOX-GA uses a genetic algorithm to generate

thousands of COAs and then narrows the choices down

to the few best while ensuring that the selected options

are sufficiently different from each other. The choices

are presented to the user who ultimately decides which

COA to select for execution. Most recent development

includes Sheherazade, a new system being developed

jointly by the University of Arizona and the US Army

Research Laboratories. Sheherazade models

Operations-Other-Than-War scenarios and coevolved

COAs for multiple sides or factions. These COAs can

be visualized and analyzed in ATACKS.

Process Centered Display

ATACKS Visualization Engine

DATA

Simulation EngineSimulation EngineSimulation EngineSimulation Engine

I/OI/OI/OI/O

Decision Support Systems

Visual Representation

Figure 1. ATACKS’ three-layer architecture

Proceedings of the 10 th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’03)
0-7695-1917-2/03 $17.00 © 2003 IEEE

2. Mobile Agent Technology based

Intelligent Robotic System (MATIX)

2.1. Concept exploration

 In addition to the underlying software, we are

currently developing a real-time, physical layer of

autonomous devices that represent the real-world

entities in the tactical environment. This layer is to be

implemented by a Mobile Agent Technology based

Intelligent Robotic System (MATIX). We introduce the

hierarchical control concept in the development of

MATIX, in which field robots are subject to the control

of their coordinators; these coordinators have their own

supervisors, and so on. This hierarchy places

ATACKS at the top level. In this paper, however, we

will present a simplified two-level system with

ATACKS as the direct supervisor for the field robots.

Hereinafter, we refer to coordinator as the robot control

software that has been integrated into ATACKS.

Figure 3 shows the vertical interaction within MATIX

and the communication between MATIX coordinator

and other parts of ATACKS.

Figure 3. A two-level hierarchical

representation of MATIX

Each of the field robots has its own ID and is equipped

with wireless transceivers to communicate with

ATACKS where it is represented as a visual 3D object.

These configurable one-to-one mappings, and the

dedicated two-way wireless communication, link the

physical entities with the abstract object in the software

environment. While commanders manipulate an object

in the 3D environment, the corresponding robot carries

out the same action and reports what is happening in its

physical surrounding back to the commander. This is

how the embedded devices are interfaced with

software.

2.2. Requirement discovery

 We begin with a set of high-level requirements that

the MATIX should fulfill. Cost and schedules are

general design and realization process constraints.

Reductions in weight, size, and power consumption are

required in order to enhance efficiency while providing

desired functionality and fault tolerance.

 The robot shall be able to make basic movements

such as going forward, backward, left, right, as well as

braking when necessary. The robot makes these moves

only when it receives such commands from the

coordinator; the environment conditions trigger a

certain reaction according to the rule base; or it has

been programmed to execute a list of commands that

direct the robot to do so.

 To be able to synchronize with its “image” in the

virtual software environment, the robot shall

communicate with ATACKS continuously to exchange

their status information in real-time. This

communication will preferably follow industry

standards to facilitate future upgrading and integration

with other computer based system.

 It is necessary for the robot to have certain levels of

autonomy. That is, computational capability and

sensors to perceive its physical environments.

Additionally, the software system should be designed

to provide such interface that would allow MATIX to

be scaled up and down by inserting or extracting a

layer of coordinators in and out of the hierarchy.

2.3. Architecture

 The design concept and requirements have been

embodied in the layered architecture of MATIX robot

as shown in figure 4.

2.3.1. Physical layer. This layer handles all physical

movements of the robot and collects data from the real

time environment by different types of sensors. The

track-based robot moves forward, backward and makes

turns depending on the combination of the two motors’

rotation. Infrared wheel coders count the driving

wheel’s revolutions in a given period of time and

convert these into linear distance, which is further used

for location and navigation. Ultrasonic rangers,

combined with touch sensors, help to detect objects,

avoid collisions and complete tasks related to physical

contact.

MATIX

Level 0 Subsystem:

Coordinator

Level 1 Subsystem:

Field Robots

Input from

physical

surroundings

Intervention Feedback
Output to

physical

surroundings

Input from

other parts of

ATACKS

Output to other

parts of

ATACKS

ATACKS

Proceedings of the 10 th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’03)
0-7695-1917-2/03 $17.00 © 2003 IEEE

2.3.2. Reactive layer. Each robot has a programmable

rule stack as the basis for reasoning. The host

coordinator also maintains a copy of the rule stack for

each robot. The robot reacts to environmental stimuli

based on its rule set, with a predefined conflict

resolution strategy. If the coordinator needs to change a

robot’s rule set for certain purposes, it does so on its

local copy first and updates the robot’s rule stack

wirelessly. By this mechanism, the robot could adapt

itself to changing environments in real time.

2.3.3. Central control layer. The central control layer

consists of an embedded processor, peripherals, and

control software. The main program manages tasks,

maintains rule stacks, handles interrupts, and accesses

memory. If the robot needs to report to the coordinator

in operation, the controller will write a command to the

communication port to be transmitted. If the

coordinator intervenes, the controller should switch to

the incoming commands and process them based on the

priority order. User codes and data are stored on the

Flash ROM, which is reprogrammable through the

processor’s JTAG port.

2.3.4. Communication layer. The robots and

ATACKS communicate through the wireless

transceivers, one connected to the ATACKS

workstation, and the other being onboard the robot.

ATACKS preserves one channel for each robot. A

parser encodes data into predefined packets before

sending them to ATACKS, and interprets received

packets into recognizable commands for the robot

controller to execute. By setting a special flag bit, the

robot can be toggled between passive and active

communication mode. In passive mode, the robot only

responds to incoming coordinator commands, but does

not automatically report its status to the coordinator as

it does in active mode.

3. Implementation

3.1. Function modules

 The robot prototype was built in a bottom-up

manner: functional modules were built and verified on

the development platform, and then a motherboard was

designed to hold all the modules seamlessly.

3.1.1. Java Controller Module. The latest embedded

Java technology has been chosen in implementing the

control system. Compared to other available RTOS and

tool sets, the embedded Java excels in the following

aspects in addition to the intrinsic advantage of the

Java language:

��Portability
By using an underlying Java run-time

environment, applications can be easily developed

on multiple operating systems with standard

software development tools such as JBuilder.

Hardware-specific code can be simulated on a

desktop system. Then, by taking into account the

underlying target hardware characteristics,

applications can be moved with minimal effort to

the specific target device.

��Software reuse
Because ATACKS is a pure Java system, and both

Communication

Wireless

Transceiver

Command

Parser

Control System

Rule Planning/

Reprogramming

Embedded

Processor

Task

Management

Memory

Reactive

Rules

Rule 1:

If...

Then...

Rule 2:

...

Forward

Backward

Left

Right

Brake

Action

Physical

Signal

Processor

Motor Drivers

Sensors

Range Finder

Touch Sensor

Digital Compass

Battery Monitor

Figure 4. The MATIX robot architecture

Proceedings of the 10 th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’03)
0-7695-1917-2/03 $17.00 © 2003 IEEE

the robot and coordinator have a similar

communication layer, code written for the

coordinator could be migrated to the robot without

bothering with other languages. A native interface

is also unnecessary.

 The module we use in the robot consists of a native

Java processor that runs a Java Virtual Machine and

user codes stored in Flash ROM. Figure 5 shows how

this embedded Java environment differs from the OS-

based Java environment.

The processor supports Real Time Specification for

Java and Java2 Micro Edition. The J2ME Connected,

Limited Device Configuration provides a set of APIs

tailored for embedded applications. The command

parser in the communication thread passes control

commands to the program no matter the robot is in

standby or operation. The main program has a

communication thread that exchanges real time

information with the coordinator. It also contains a task

manager agent, a runtime rule manager agent, and

interrupts service subroutines for various sensors. All

these parts are coded in Java conforming to J2ME

CLDC, and executed by the native Java processor at

80MHz.

3.1.2. Bluetooth transceiver module. Bluetooth is a

fast growing new technology for wireless

interconnectivity. It is a universal radio interface in the

2.4 GHz frequency band that allows embedded devices

to communicate via short-range, ad hoc networks.

Bluetooth is based on a highly integrated low power

chip, which delivers modest transfer rate for both data

and voice. These features make it an ideal option in the

battery-operated MATIX robots.

 Bluetooth devices contain four major parts: a radio

(RF) that transmits and receives data and voice, a

baseband or link control unit that processes the data,

link management software that manages the

transmission, and supporting software. HCI (Host

Control Protocol) is used to provide an interface

between the Bluetooth hardware and a host via a

physical connection, either UART or USB. In the

MATIX design, we use UART connection for both the

robot and the host computer. Figure 5 outlines the

application framework and shows the data flow

between the robot and its coordinator resident in

ATACKS.

3.1.3. Ultrasonic Ranger Module. The ultrasonic

range finder offers precise ranging information at

distances from several inches to several meters. It

transmits a sonar pulse outside of the frequency of

human hearing. This pulse travels at the speed of sound

away from the ranger in a cone. The ranger pauses for

a brief interval after the sound is transmitted and then

awaits the reflected sound in the form of an echo.

When the controller requests a ping, the ranger creates

the sound and waits for the echo. If received, the ranger

reports to the control, which then computes the

distance to the object based on the elapsed time. Two

IO ports of the controller are dedicated for the ranger

operation, one for pulse trigger input, and another to

take echo output.

3.1.4. Battery Monitor Module. Power management

and monitoring is another important issue in embedded

devices. Traditional capacity monitoring schemes work

by comparing the battery voltage to the rating value.

However, this method lacks the required accuracy

because many batteries have a relatively flat voltage

profile in both charge and discharge directions. To

make matters worse, the available capacity also

changes as a function of self-discharge, cell aging,

temperature, and discharge rate or profile. In order to

provide precise capacity tracking and monitoring for

the robot, the system uses a new battery monitor chip

based on charge to voltage converter (VFC). The chip

counts coulomb transferred through a low-value sensor

resistor and stores the information into its registers.

The Java processor then retrieves this information

through the one-wire interface, thus getting the

accurate and reliable information about the battery’s

state of charge by simple calculation.

 In addition, this system has several other modules

such as the power regulator, the RS232 level converter,

Serial Port

Computer Hardware

OS

RFRF

Base Band

HCI Driver

Link Manager

HCI Transport

UART

Base Band

HCI Driver

Link Manager

HCI Transport

UART

RF Signal

JAVA API

Java Virtual Machine

Coordinator

ATACKS

JAVA API

Java Virtual Machine

Robot Control

Program

Serial Port

Embedded Hardware

HOST ROBOT

Figure 5. Data flow between MATIX
robot and the coordinator in ATACKS

Proceedings of the 10 th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’03)
0-7695-1917-2/03 $17.00 © 2003 IEEE

and the motor drive that are important components to

make the robot functional.

3.2. Test and Integration

 All of these above-mentioned modules have been

developed and tested separately on a demo board.

Although each of the modules has been verified to be

working, problems occurred when they were put

together onto the development station. Interrupt

priority levels had to be rearranged, packet length and

communication interval had to be adjusted, and other

conflicts had to be solved before the final PCB board

could be manufactured to fulfill every aspect of the

designed functionality.

4. Experimental Results

 In order to test the effectiveness of the added

MATIX, we simulated a simplified peace-keeping

mission in ATACKS. The operation was to send a team

to rescue several hostages behind a building with a

known target position. The scenario was created in

ATACKS with different 3D objects representing the

target, the hostile units, and the team. The commander

planned a route for the team, and sent the path

information to the robot representing the team. When

the commander launched the scenario in ATACKS, the

robot simultaneously started off along the path. Figure

6 shows a screenshot taken during the process of the

experiment. The top window contains the robot control

panel that shows the real-time status of the robot and

the environment information sent back by it. The

ellipse in the middle of the panel indicates the distance

of the object ahead of the robot on a logarithmic scale.

 Not only does the size of the eclipse vary according

to the ultrasonic echo readout, but also does the color.

Blue represents the distance greater than 3 meters; red

represents the distance shorter than 8 inches; yellow

represents any distances in between. On the sides of the

radar screen are two odometers for the left and right

tracks. The bar at the right bottom corner of the panel

shows the remaining battery capacity, which updates

itself every minute. Above the fuel gauge are switches

for choosing communication modes and keyboard

navigation modes. By selecting or deselecting these

radio buttons, internal commands are sent to the robot

and thus change its behavior. The scrollable pane at the

left end of the panel logs communication between the

robot and the commander.

 Below the robot control panel is the ATACKS GUI

that consists of two separate windows. The right ones

provides drop down and pop-up menus for users to

choose runtime engines, create scenarios, manipulate

3D objects, and place paths and lines. It also displays

the execution of the scenario. On the left is the object

property page that allows user to change object

Figure 6. Screenshot of a running scenario

Proceedings of the 10 th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’03)
0-7695-1917-2/03 $17.00 © 2003 IEEE

attributes such as unit affiliation, size, speed, terrain

color, line weight, etc.

 In this specific experiment setup, the robot is

programmed to report its status to the commander

every 300 milliseconds. The robot will automatically

avoid obstacles according to its rule set. Should any

object exist within 4 inches of the front of the robot, it

will trigger a warning dialog for the commander to take

further actions. In the actual experiment, the

commander successfully received updated information

collected by the robot’s sensors, and was able to update

the robot’s rule set, part of which defines how the robot

should avoid an obstacle. When the cooperator of the

experiment placed an object within the warning range

of the robot, it braked as programmed and wirelessly

triggered the dialog for commander’s decision making.

5. Conclusions

 This paper presents the design of MATIX, a physical

layer to interface with a battlefield simulation system.

MATIX provides real-world information to a

commander who verifies a plan created in a virtual

environment. One of MATIX’s most unique features is

its ability to communicate bi-directionally with

ATACKS so that the physical robot and its image can

stay synchronized in real time.

References

1. K. Buchenrieder and J.W. Rozenblit, “Codesign:

An Overview”, in J.W. Rozenblit and K.

Buchenrieder (Eds) Condesign: Computer-Aided

Software/Hardware Engineering, pp.1-16, IEEE

Press, 1994

2. J. Borenstein and J. Evans, “The OmniMate

Mobile Robot Design, Implementation, and

Experimental Results”, Proceedings of the IEEE

International Conference on Robotics and

Automation. Albuquerque, NM, pp. 3505-3510,

April 1997.

3. R. Bischoff, “Design Concept and Realization of

the Humanoid Service Robot HERMES”, in A.

Zelinsky (ed.), Field and Service Robotics, pp.485-

492, Springer, London, 1998.

4. C.C. Hayes, J.L. Schlabach, C.B. Fiebig, “FOX-

GA: An intelligent Planning and Decision Support

Tool. Proceedings of the IEEE International

Conference on Systems, Man and Cybernetics, 3,

2454-2459, Oct 1998.

5. M.D. Mesarovic, D. Macko and Y. Takahara,

“Theory of Hierarchical, Multilevel, Systems”,

Academic Press, 1970.

6. F. Momen, J.W. Rozenblit, L. Suantak and M.

Barnes. Three Layer Architecture for Continuous

Planning and Execution. Proceedings of the 2001
Army Research Laboratories Symposium, College

Park, MD, March 2001.

Proceedings of the 10 th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’03)
0-7695-1917-2/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

