
Integration of Design Modeling Techniques: Operations Automation Systems
Scenario

William W. Owen
CEGELEC ESCA

Tucson, Arizona 85727, USA
wwo@esca. com

Abstract

This paper presents an application scenario in which
knowledge-based and object oriented modeling
techniques are applied and used in the analysis and
design of complex, computer-based systems. The
methodology is presented in the context of an operations
automation and information management system in the
electric utility operations problem domain. This system
is referred to as OAS, for Operations Automation System
in the remainder of this paper.

The analysis and design methodology utilizes several
techniques to analyze different aspects of the system in
relative isolation. System Entity Specijkations (SE8 are
used to decompose the system and to classih its
components. The SES also serves as an anchor for
linking the other models for traceability purposes,

Use Case scenarios are used to model the system
requirements. Object Modeling methods provide a rich
mechanism for specihing the attributes and behavior of
the system components. Dynamic modeling techniques,
presented through the use of interaction diagrams, are
used to model the dynamic behavior of system
components and assist in the detailed system
specijkation.

The system presented in this paper is treated at a
high level. The methodology supports iterative design
and development so that the high-level design can be
repeatedly re$ned, prototyped and tested until a suitably
detailed design is produced.

Introduction and Background

The electric operations control room is an office,
typically manned 24 hours a day by at least one electric
system operator. The operator’s hdamental job is to
ensure that customers are supplied with electric power 24
hours a day, 365 days a year with minimal interruptions.

Customers expect to be able to consume power at any

Jerzy W. Rozenblit
Dept. of Computer and Electrical Engineering

The University of Arizona
Tucson, Arizona 85721, USA

jmece. arizona. edu

time they wish, in any quantity, limited only by the
capacity of the equipment and protective devices serving
their residence or commercial location. The power
quality (voltage and frequency characteristic) is expected
to be high at all times.

A major component of the operator’s job is the
management and direction of field crews in a variety of
system activities. These activities include the installation
of field equipment, routine maintenance of feeder
equipment, and emergency restoration of power.

The safety of field crews is the chief concem in this
type of activity. For this reason, elaborate procedures,
(typically paper and pencil based), have been developed
to ensure equipment is in the proper state before
construction, maintenance or reenergization activities
are executed.

The physical electrical system for most utilities is
quite large. Major utilities organize their service
territory into divisions. Divisions are often further
subdivided into districts. The typical district contains
between 20 and 100 distribution substations. Each
substation provides power to between three and eight
feeder circuits. The each fekder circuit delivers power to
as many as 1500 of the utility’s customers.

While there is usually one control room per district
for daytime operation, it is common for a utility to
consolidate operations and control into a single office
responsible for providing “after hours” service for several
districts. Control authority can be redistributed at any
time if there is a storm or other event that requires more
operators.

The following list summarizes the typical tasks
required of the electric system operators [11 :

0 Know the current state of the system and have a good
understanding of what states may occur based on
system load, weather, date and time.

0 Keep system voltage and loading within limits.
0 Monitor total system load, and in some cases shed

load if it exceeds limits (for economic or system

158
0-8186-7355-9/96 $05.00 0 1996 IEEE

security reasons).
Plan, document, and supervise pre-planned switching
operations.
Analyze and respond to emergency trouble calls.
Document all changes to the electrical system.

Over the past decade, a variety of computer-based
information systems have been added to the electric
operations control room to augment the existing
paper-based systems. These systems typically operate
independently, as “islands of automation.” Examples of
these systems and tools are summarized below:

Paper maps provide a detailed geographic and
schematic view of the electrical system. These maps
are often tiled together on the walls of the control
room to provide a contiguous view of the entire
service area.
Telephone and radio communication equipment are
used for communicating with field crews as well as
with operators in other locations.
One or more Supervisory Control and Data
Acquisition (SCADA) systems provide real-time
information regarding the state of the electrical
system. Devices that are equipped with sensors report
their current conditions back to the SCADA systems,
while devices with automatic control capability can be
remotely actuated by the SCADA systems. SCADA
systems include a graphical user interface that
typically presents schematic and form-based
drawings.
A mainframe-based customer information system
provides information regarding individual customers,
including their power consumption history, their
payment history, and in some cases their physical and
electrical location in the system.
Geographic information systems provide a wealth of
data, including very detailed information about each
physical component in the system as well as detailed
geographic maps for the utility’s service territory. A
graphical user interface is used to present the maps.
Other systems such as trouble call reporting and
analysis, field crew tracking, and weather information
are additional tools that aid the operator monitoring
and maintaining the system. Each typically has its
own user interface with geographic or schematic
displays of the utility’s service temtory.

It is the operator’s job to acquire and assimilate
information from all sou~ces in order to carry out his job.
As stated above, similar information is presented in
several locations and in similar formats. What is needed
is a mechanism to aid the operator in acquiring,

integrating, and utilizing information from these
disparate systems. Furthermore, automation of manual
and time critical tasks is a high priority hct ion.

The OAS is a real-time system that interfaces with
other information sources, acquiring data of interest,
incorporating that data into a model of the physical
system, and presenting the information to the user in a
consistent, intuitive manner. Applications that control
and analyze the system and automate user activities are
layered on the model infrastructure.

Requirements - Use Case Descriptions

Requirements modeling is arguably the most
important step of system design. It is critical that
requirements be understandable, clearly documented, and
easily traceable through the steps of the design and
implementation process. Jacobson [2 J promotes Use
Case scenarios as the vehicle for documenting all system
requirements.

Fundamentally, use cases are a description of each
function the system provides to its users. Like the other
components of the design process, use cases can be made
more detailed and refined in an iterative process.

High level use cases for the OAS include activities
like devise control, area of responsibility management,
alarm management, and diagram navigation. Note that
in later sections, these sample use cases are expanded
and their relationships to other system entities are
diSCUSsed.

Use cases are linked to System Entity Structures,
described below, so that the requirements can be traced
through the design and implementation process. This
helps to ensure that all system requirements are
considered in the system design and implementation
processes.

System Model

In this section a knowledge representation called
System Entity Structure (SES) [3, 41 is presented for the
Operations Automation System. The three primary
aspects of the OAS SES are described. These are the
hardware architecture, communications architecture, and
the software architecture. The software architecture is
expanded to show decomposition and specialization of
the system models, views and controls. Additionally, an
object model [5, 81 for a portion of the system’s software
architecture is presented. This is used to better show the
relationships between software entities in the system.

Both the System Entity and Object Modeling
descriptions reflect the hierarchical, modular manner in
which the system is constructed. Typically, low-level
components are designed, implemented, and tested.

159

Higher level components are then designed, implemented
and tested using low-level components. This process
continues until the design and construction are complete.
Booch refers to this method as the “round trip gestalt”
approach [8]: the design is essentially top down, while
construction is bottom up, but the overall process is
iterative between phases of analysis, design, construction,
and test.

System entity structure is a mechanism for modeling
the entities that are used to construct a complex system
[3, 4, 61. The two fundamental relations in SES are
decomposition and specialization In SES diagrams,
decompositions are typically called aspects and denoted
with a single vertical line. Specializations are denoted
with dual vertical lines.

Figure 1, below, shows the top level SES for the
Operations Automation System. The system is
decomposed into three fundamental aspects: the
hardware architecture, software architecture, and
communications architecture. Each of these architectures
is further refined in the actual design process. In the
next section, further analysis of the software architecture
is presented.

Note that the next level of analysis for the hardware
architecture is a specialization, meaning that several
types of hardware architecture are available to support

I

HW-Arch

the OAS design (distributed, centralized, hybrid). Each
of these is then decomposed further in the analysis
process.

Also note that each object represented in the SES can
have attached attribute variables that further describe its
properties. This feature is used to link the various
artifacts of the analysis and design process for
requirements traceability purposes. Each object in the
SES contains references to one or more Use Case
descriptions identifling all requirements directly
influenced by this object. Each object also contains a
reference to a class representation of one or more object
diagrams, providing a cross reference between the two
models. Where appropriate, the object also contains
references to any interaction diagrams it participates in.
In this way the SES serves as the anchor tying together
use case descriptions, object diagrams, and interaction
diagrams.

We feel that in order to facilitate the evaluation of the
overall design and to ensure complete coverage of
requirements, fundamental software tools are needed.
These tools are used to check that each use case is linked
to an object modeled in the SES. Correspondences
between SES objects, object models and interaction
diagrams are also evaluated and reported.

1

CommbArch

HW-Archspec

Fl F]
Figure 1 : Operations Automation System top level SES

SW-Arch

CommbArchdspect

160

II II I I

Centralized Arch Cllent - Server Arch Distrlbutbd Arch

I I I
Intersits Co”s Field Equipment Foreign Slto

Comms Comms

n Models

I1

Area-of-Resp

I
I

I n

Management Navigation
Alarm

I Model-Aspect I

Maps Lists

F F Sys-Config Field-Comm Miscellaneous

Schematics ControCPanel

Software Architecture

The software architecture, shown in Figure 2, is
based on a soha re design structure known as Model-
View-Controller [7]. The idea is to dmmpose the
software system into:

model objects, which represent the real world objects
the software system is meant to manipulate,
view objects, which are the mechanisms used to
visualize the models, and
control objects, which allow users or other systems to
interact with, or influence the behavior of the system.
Controls, in many ways, model the behavior of the
system by relating model objects together to
accomplish a particular function.

Models. The overall system model consists of the
system configuration model, field communication model,
power system model and miscellaneous models. The
System Configuration model represents the hardware and
software entities that make up the OAS itself.
Configuration management software interacts with these
model components to monitor and control the state of
the OAS so that redundant and non-redundant entities
are properly managed under normal and failure modes of
operation.

The Field Communication model represents the
entities that make up communication circuits from a data
acquisition processor to the field devices being monitored
and controlled. Data acquisition sofhvare interfaces with
these model components to monitor and control the state
of field communication system.

The Miscellaneous models represent the software and
physical entities used by various system functions. For
example, access rights and access controls are defined as
part of the Access Control function. Access Rights define
the permissions given to a user or system making
requests of the system. Access Controls define the
privileges given each every modeled object in the system.

The Power System model represents the physical
power system that is being monitored and controlled.
The power system model is the heart of the OAS in that
all of the end-user functionality is built upon this. The
power system model holds the current state of the system
and makes it accessible to the user interface (views), and
to other system functions.

View objects provide the mechanism for
users of the system to visualize the states stored in the
model. Most views reflect the state of the power system
model, including historical, current, and planned states.
Additional views are necessary to present the state of the
OAS configuration itself as well as the OAS
communication architecture.

Views.

161

The primary views required in the system include:

Maps, providing a geographic view of the electrical
system components as well as important non-
electrical features. Map views are meant to replace or
augment the paper wall board in the operations
control room.
Schematics, providing a more structured (non-
geographic) view of system components. Schematic
views are used to present dense areas of the power
system not suited for a map view (i.e., the electrical
system in a congested urban area).
Lists, providing a tabular view of a group of model
objects. Lists can be filtered in a variety of ways to
show more specific groupings of model objects.
Control Panel, providing a high-level view of the
state of the OAS itself, as well as mechanisms to
control the state of the OAS.

Controls. Control objects are used to model the
inputs to a system, whether they are from users, sub-
functions of the same system or entirely different
systems. Control objects encapsulate the logic and
business rules that correlate model objects to accomplish
a desired function; in other words, the system behavior.

From a system maintenance standpoint, control
objects are the most dynamic part of the system. As the
business environment and computing requirements for a
electric utility evolve, the control objects are the area of
the system that must be modified.

Example control objects in the OAS are listed below.

Area of Responsibility Control objects are used to
encode behavior of all system objects relative to an
input’s access rights. For every system input, the
requester’s access rights are compared against the
rights of the effected object. Based on this, the input
request is either permitted or refused.
Device Control objects are used to encode the
behavior of all controllable power system devices in
the system. Device Control objects provide control
pre-check logic before executing the control.
Logging of the control request is also provided by the
device control object. Device controls make use of
access rights checking from an associated area of
responsibility control object.
Alarm Management Control objects encode the
behavior of the alarm subsystem. Inputs are from
other subsystems that have detected an abnormal
condition and from users of the system.
Navigation Control objects encode the behavior of
view objects in response to navigation requests. For
example, when an alarm object is selected for

navigation from an alarm list view, the map location
showing the device in an alarm state is be presented.

There are many more control objects in the OAS than
have been mentioned here. This portion of the software
subsystem embodies essentially all system behavior. A
more detailed analysis and presentation of these is
beyond the scope of this paper.

Software Object Model

As mentioned above, the OAS software architecture is
based on a sohare design structure known as Model-
View-Controller. This section uses one of the control
objects discussed above to illustrate the relationships
between objects that cannot be easily shown in SES
diagrams. This highlights the value of object modeling
techniques in expressing relationships between objects or
classes of objects.

Overview. The “Booch Notation” [8] is used in the
class diagrams presented in this section. Figure 3
presents the key constructs of Booch Notation.

Class Icons Class RelationshiDs - uses a Abstmct Class - hasa

Abstract Class Symbol - inheritance

association

Class Name

w
Class Symbd

Figure 3: Booch Notation Overview

A diagram showing the Model-View-Controller
structure is presented in Figure 4. Note that each of these
classes is designated as “abstract,” meaning the class
itself is never instantiated; only classes that are
descendants of the abstract class are instantiated. q--F Controls

Figure 4: Model-View-Controller Structure

162

Controls Class Hierarchy. A more detailed
illustration of the Controls class hierarchy is shown in
Figure 5. The four classes shown all inherit from the
root Controls class. Note that the “devicecontrol” and
the “alarm-management” classes both have “uses”
relationships with the “areasf-resp” class. Each of these
use the services of the area-of-resp class in providing
services to their own clients.

f--T
Controls

navigation
alarm-mgmt

Area

Figure 5 : Controls Class Hierarchy

of Responsibility. The area of responsibility
control class diagram is show in Figure-6. The
“requester” class represents any client requesting a
service from the system. For example the requester could
be an individual user requesting to issue a control, place
a tag, acknowledge an alarm or navigate to a region of a
map. The requester could also be a foreign system
making a request for selected real-time data.

requester model-objed

area-of-resp

Figure 6: “Area of Responsibility” Class Diagram

Every valid requester in the system has an “access-
rights” object associated with it. The access-rights object
names the privileges granted to the requester.

The “model-object” class represents any of the model
objects in the system. A modelsbject could be a power

system device, another processor or a user definition.
Each model object in the system has an “accesscontrols”
object associated with it. The accesscontrols object
names the privileges or operations that can be carried out
on this model object. It also defines the details of each
privilege. For example, the “operator” privilege may
allow control of a device, while the “engineer” privilege
may allow deletion and creation of new objects in the
system configuration model.

System Dynamic Models

Dynamic models are used to lay out and analyze the
time-based behavior of system functions. As with System
Model objects, dynaml+c +models can be created in a
hierarchical, modular * manner. Low-level dynamic
models can be constructed and validated. The low-level
models are then used to construct higher level dynamic
models. This process continues until the behavior of the
entire system has been modeled.

Interaction diagrams are used in this section to model
system behavior. Jacobson [2] describes interaction
diagrams as a mechanism to illustrate how behavior is
realized through the interaction of objects or classes of
objects.

Area of Responsibility

As described in the previous section, Area of
Responsibility control class is used to verify that a
requester has sac i en t access rights to execute a control
action. This process is illustrated in Figure 7, below.

The sequence of events in Area of Responsibility
checking is as follows:

0.

1.

2.

3.

4.

The sequence is SQrted by a user or subsystem
requesting an operation.
The requester notifies the target model-object that it
intends to operate it. The model-object responds with
the identifier of its accesscontrols object.
The requester sends a check-access message to the
areasf-resp control object. Included in this message
are the identifier of the requester and its access-rights
identifier, the identifier of the target modelabject and
its access-controls identifier, and the operation to be
carried out.
The area-of-resp control object consults (a) the
accesscontrol object and (b) the access-rights object
to determine if the requester should be given
permission to operate the model-object.
A reply message to the requester indicates whether
access has been granted or denied for this request.
The areasf-resp control object also logs the time and
completion status of the access request. (The

163

alarm-mgmt object receives the log-action message).
5. If the request was refused the sequence is ended and

the user or subsystem is informed that the request
failed because of insufEcient access rights.

6. If the access request was granted, the requester issues
the control request to the model.

7. The sequence is ended with feedback to the requester
that the request was serviced.

3dIk

use prototype software to "jump start" the development of
the production system must be resisted.

Typically, the customer or end user is very involved
in functional prototypes, reviewing the effort and
providing feedback to help focus the system
requirements. There is less need for or benefit from
customer involvement in technical prototypes.

In many cases the language and development
environment used for functional prototyping is not the
same used for development of the production system.
The goal of the prototyping exercise is to generate a
mock-up of the system quickly while ignoring many of
the requirements for the final system (error handling,
message logging, redundancy, performance, etc.).

Technical prototyping is used to evaluate issues in a
specific area of the system for technical feasibility. For
this type of prototype, it is important that the
environment (the computing environment as well as the
data and system loading), and tools used be as close to
the production environment as possible. (In many ways,
this type of prototype is similar to simulation, presented
below.)

The evaluation of any third party tool must consider
commercial issues in addition to technical issues. Issues
to be evaluated include the cost of using the product
(licensing expense, maintenance expense, training
expense, etc.), the financial health of the product
developer organization and the long term direction of the
product developer organization.

Figure 7: Area of Responsibility Interaction Diagram
Simulation

Design Evaluation

Evaluation is a critical part of the design process. For
large-scale systems such as the OAS, design evaluation is
best achieved through a combination of simulation and
prototyping. Prototyping is used to help understand
requirements and get user feedback early in the process,
while simulation is used to investigate performance
aspects and venfy correct operation under controlled, yet
realistic conditions.

Prototyping

Prototypes can be classified as either functional or
technical. As the names imply, functional prototypes are
used to investigate system functionality, while technical
prototypes are used to investigate specific technical
issues.

Prototyping is most effective when it is structured to
answer specific questions. When those questions have
been answered, the prototype software can be retired or
used for other prototyping exercises. The temptation to

While prototyping is used to evaluate portions of the
design in relative isolation, simulation is used to evaluate
the design at a subsystem or system level. The goal of
simulation is to provide a controlled and repeatable
environment that generates realistic inputs and feedback
to the software being evaluated.

Simulation provides an excellent mechanism for
evaluating design trade-offs. Different designs and
implementations can be executed in the simulation
environment and the results can be compared.

Another feature of simulation is that it provides an
excellent test bed for the system. If an adequate
simulation environment exists, the system can be
evaluated and tested throughout the development cycle
and exercised for customer testing. Simulation scenarios
can be developed for evaluating and tuning performance
under different loading conditions as well as different
functional conditions.

164

In the evaluation of the OAS design the following
areas of simulation are necessary:

Power System Simulation: A realistic simulation of
the electrical characteristics of the monitored system.
The power system simulation is used to evaluate
functional aspects of the system in a realistic
environment. The power system simulation is also
used to generate all or part of the input for
performance evaluations.
RTU Simulation: This is used to provide realistic
input to the telemetry system. The RTU simulation
can be used to augment the power system simulation
to provide inputs for system performance evaluation.
Communication Network Simulation: This is used to
simulate the network connections between sites and
between user interface devices and server machines
under different bandwidth and loading scenarios.

Conclusions

This paper presented an example of the
knowledge-based design process in the design of an
Operations Automation System. Use Case Scenarios
were discussed for requirements modeling. System
Entity Structure and Object Modeling techniques were
used to structure the information describing the problem
domain and the envisioned system. Dynamic models,
based on Interaction Diagrams, were developed for a
selected function of the system. Finally, the use of
prototyping and simulation in design and system
evaluation was discussed.

The integration of these different analysis and design
techniques provides a methodology for effectively
managing the design, development and operation
through the entire system life cycle.

In the last few years, object-oriented techniques (00)
have been increasingly used in the design and modeling
of complex, large scale systems. The 00 paradigm is no
longer applied primarily as a software development and
implementation methodology [9]. In our approach, rather
than to rely on a single, exclusive modeling technique,
we reconcile various methods, concepts, and techniques.
Although the concepts are different from a formal
perspective, they are unified in that they operate on
common domain entities - representing the system’s
objects - and are applied in both the structural or
behavioral perspectives. The engineering process that
employs these concepts in such perspectives leads to the
overall, final system design.

Our choice of the knowledge representation (SES)
allows us to capture the typical relationships necessary to

construct object models. Interaction Diagrams have
sufficient efficacy to support behavior modeling. Then,
the use of prototyping and simulation is the basis for the
system’s model validation and testing.

Our initial experience using an integration of design
modeling techniques has been positive. Whereas any
single design methodology has inherent limitations, the
integrated approach builds on the strengths of each to
produce a solid overall design product. We believe this
approach will be useM in the design of complex, large
scale systems in the future.

References

1. R Hoffman, “Effective User Interfaces for
Distribution Management Systems,” DA/DSM
Conference Proceedings, Palm Springs, CA 1995.

2. I. Jacobson et al., Object-Oriented Software
Engineering - A Use Case Driven Approach. ACM
Press, Addison-Wesley Publishing Co., Wokingham,
England, 1992.

3. C. Schaf€er and J.W. Rozenblit, “Modular,
Hierarchical Concepts for Support of Heterogeneous
Systems Design,” Proceedings of the 1995 IEEE
Symposium and Workshop on Systems Engineering of
Computer Based Systems, 200-208, IEEE Cat.
Number 95TH8053, 1995.

4. J.W. Rozenblit and J.F. Hu, “htegrated Knowledge
Representation and Management in Simulation Based
Design Generation,” M C S Journal of Mathematics
and Computers in Simulation, 34(34), 262-282, 1992.

5. J. Britton, “An Open, Object-Based Model As The
Basis Of An Architechue For Distribution Control
Centers,?’ 1992 Winter Power Meeting Paper Number

6. B.P. Zeigler, Multifacetted Modeling and Discrete
Event Simulation, Academic Press, Inc., New York,
1984.

7. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Patterns, Elements of Reusable Object-Oriented
Software, Addison-Wesley Publishing Co., Reading,
MA, 1994.

8. G. Booch, Object-Oriented Analysis and Design with
Applications, Second Edition. Benjamin Cummings
Publishing Company, Inc., Santa Clara, CA, 1994.

9. J. Rumbaugh et al., Object-Oriented Modeling and
Design, Prentice-Hall Publishing Co., 199 1.

92 I#” 184-2 PWRS.

165

