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Abstract 

This paper presents an application scenario in which 
knowledge-based and object oriented modeling 
techniques are applied and used in the analysis and 
design of complex, computer-based systems. The 
methodology is presented in the context of an operations 
automation and information management system in the 
electric utility operations problem domain. This system 
is referred to as OAS, for Operations Automation System 
in the remainder of this paper. 

The analysis and design methodology utilizes several 
techniques to analyze different aspects of the system in 
relative isolation. System Entity Specijkations (SE8 are 
used to decompose the system and to classih its 
components. The SES also serves as an anchor for 
linking the other models for traceability purposes, 

Use Case scenarios are used to model the system 
requirements. Object Modeling methods provide a rich 
mechanism for specihing the attributes and behavior of 
the system components. Dynamic modeling techniques, 
presented through the use of interaction diagrams, are 
used to model the dynamic behavior of system 
components and assist in the detailed system 
specijkation. 

The system presented in this paper is treated at a 
high level. The methodology supports iterative design 
and development so that the high-level design can be 
repeatedly re$ned, prototyped and tested until a suitably 
detailed design is produced. 

Introduction and Background 

The electric operations control room is an office, 
typically manned 24 hours a day by at least one electric 
system operator. The operator’s hdamental job is to 
ensure that customers are supplied with electric power 24 
hours a day, 365 days a year with minimal interruptions. 

Customers expect to be able to consume power at any 
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time they wish, in any quantity, limited only by the 
capacity of the equipment and protective devices serving 
their residence or commercial location. The power 
quality (voltage and frequency characteristic) is expected 
to be high at all times. 

A major component of the operator’s job is the 
management and direction of field crews in a variety of 
system activities. These activities include the installation 
of field equipment, routine maintenance of feeder 
equipment, and emergency restoration of power. 

The safety of field crews is the chief concem in this 
type of activity. For this reason, elaborate procedures, 
(typically paper and pencil based), have been developed 
to ensure equipment is in the proper state before 
construction, maintenance or reenergization activities 
are executed. 

The physical electrical system for most utilities is 
quite large. Major utilities organize their service 
territory into divisions. Divisions are often further 
subdivided into districts. The typical district contains 
between 20 and 100 distribution substations. Each 
substation provides power to between three and eight 
feeder circuits. The each fekder circuit delivers power to 
as many as 1500 of the utility’s customers. 

While there is usually one control room per district 
for daytime operation, it is common for a utility to 
consolidate operations and control into a single office 
responsible for providing “after hours” service for several 
districts. Control authority can be redistributed at any 
time if there is a storm or other event that requires more 
operators. 

The following list summarizes the typical tasks 
required of the electric system operators [ 11 : 

0 Know the current state of the system and have a good 
understanding of what states may occur based on 
system load, weather, date and time. 

0 Keep system voltage and loading within limits. 
0 Monitor total system load, and in some cases shed 

load if it exceeds limits (for economic or system 
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security reasons). 
Plan, document, and supervise pre-planned switching 
operations. 
Analyze and respond to emergency trouble calls. 
Document all changes to the electrical system. 

Over the past decade, a variety of computer-based 
information systems have been added to the electric 
operations control room to augment the existing 
paper-based systems. These systems typically operate 
independently, as “islands of automation.” Examples of 
these systems and tools are summarized below: 

Paper maps provide a detailed geographic and 
schematic view of the electrical system. These maps 
are often tiled together on the walls of the control 
room to provide a contiguous view of the entire 
service area. 
Telephone and radio communication equipment are 
used for communicating with field crews as well as 
with operators in other locations. 
One or more Supervisory Control and Data 
Acquisition (SCADA ) systems provide real-time 
information regarding the state of the electrical 
system. Devices that are equipped with sensors report 
their current conditions back to the SCADA systems, 
while devices with automatic control capability can be 
remotely actuated by the SCADA systems. SCADA 
systems include a graphical user interface that 
typically presents schematic and form-based 
drawings. 
A mainframe-based customer information system 
provides information regarding individual customers, 
including their power consumption history, their 
payment history, and in some cases their physical and 
electrical location in the system. 
Geographic information systems provide a wealth of 
data, including very detailed information about each 
physical component in the system as well as detailed 
geographic maps for the utility’s service territory. A 
graphical user interface is used to present the maps. 
Other systems such as trouble call reporting and 
analysis, field crew tracking, and weather information 
are additional tools that aid the operator monitoring 
and maintaining the system. Each typically has its 
own user interface with geographic or schematic 
displays of the utility’s service temtory. 

It is the operator’s job to acquire and assimilate 
information from all sou~ces in order to carry out his job. 
As stated above, similar information is presented in 
several locations and in similar formats. What is needed 
is a mechanism to aid the operator in acquiring, 

integrating, and utilizing information from these 
disparate systems. Furthermore, automation of manual 
and time critical tasks is a high priority hct ion.  

The OAS is a real-time system that interfaces with 
other information sources, acquiring data of interest, 
incorporating that data into a model of the physical 
system, and presenting the information to the user in a 
consistent, intuitive manner. Applications that control 
and analyze the system and automate user activities are 
layered on the model infrastructure. 

Requirements - Use Case Descriptions 

Requirements modeling is arguably the most 
important step of system design. It is critical that 
requirements be understandable, clearly documented, and 
easily traceable through the steps of the design and 
implementation process. Jacobson [2 J promotes Use 
Case scenarios as the vehicle for documenting all system 
requirements. 

Fundamentally, use cases are a description of each 
function the system provides to its users. Like the other 
components of the design process, use cases can be made 
more detailed and refined in an iterative process. 

High level use cases for the OAS include activities 
like devise control, area of responsibility management, 
alarm management, and diagram navigation. Note that 
in later sections, these sample use cases are expanded 
and their relationships to other system entities are 
diSCUSsed. 

Use cases are linked to System Entity Structures, 
described below, so that the requirements can be traced 
through the design and implementation process. This 
helps to ensure that all system requirements are 
considered in the system design and implementation 
processes. 

System Model 

In this section a knowledge representation called 
System Entity Structure (SES) [3, 41 is presented for the 
Operations Automation System. The three primary 
aspects of the OAS SES are described. These are the 
hardware architecture, communications architecture, and 
the software architecture. The software architecture is 
expanded to show decomposition and specialization of 
the system models, views and controls. Additionally, an 
object model [5, 81 for a portion of the system’s software 
architecture is presented. This is used to better show the 
relationships between software entities in the system. 

Both the System Entity and Object Modeling 
descriptions reflect the hierarchical, modular manner in 
which the system is constructed. Typically, low-level 
components are designed, implemented, and tested. 
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Higher level components are then designed, implemented 
and tested using low-level components. This process 
continues until the design and construction are complete. 
Booch refers to this method as the “round trip gestalt” 
approach [8]: the design is essentially top down, while 
construction is bottom up, but the overall process is 
iterative between phases of analysis, design, construction, 
and test. 

System entity structure is a mechanism for modeling 
the entities that are used to construct a complex system 
[3, 4, 61. The two fundamental relations in SES are 
decomposition and specialization In SES diagrams, 
decompositions are typically called aspects and denoted 
with a single vertical line. Specializations are denoted 
with dual vertical lines. 

Figure 1, below, shows the top level SES for the 
Operations Automation System. The system is 
decomposed into three fundamental aspects: the 
hardware architecture, software architecture, and 
communications architecture. Each of these architectures 
is further refined in the actual design process. In the 
next section, further analysis of the software architecture 
is presented. 

Note that the next level of analysis for the hardware 
architecture is a specialization, meaning that several 
types of hardware architecture are available to support 

I 

HW-Arch 

the OAS design (distributed, centralized, hybrid). Each 
of these is then decomposed further in the analysis 
process. 

Also note that each object represented in the SES can 
have attached attribute variables that further describe its 
properties. This feature is used to link the various 
artifacts of the analysis and design process for 
requirements traceability purposes. Each object in the 
SES contains references to one or more Use Case 
descriptions identifling all requirements directly 
influenced by this object. Each object also contains a 
reference to a class representation of one or more object 
diagrams, providing a cross reference between the two 
models. Where appropriate, the object also contains 
references to any interaction diagrams it participates in. 
In this way the SES serves as the anchor tying together 
use case descriptions, object diagrams, and interaction 
diagrams. 

We feel that in order to facilitate the evaluation of the 
overall design and to ensure complete coverage of 
requirements, fundamental software tools are needed. 
These tools are used to check that each use case is linked 
to an object modeled in the SES. Correspondences 
between SES objects, object models and interaction 
diagrams are also evaluated and reported. 

1 

CommbArch 

HW-Archspec 

Fl F] 
Figure 1 : Operations Automation System top level SES 
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Software Architecture 

The software architecture, shown in Figure 2, is 
based on a soha re  design structure known as Model- 
View-Controller [7]. The idea is to dmmpose the 
software system into: 

model objects, which represent the real world objects 
the software system is meant to manipulate, 
view objects, which are the mechanisms used to 
visualize the models, and 
control objects, which allow users or other systems to 
interact with, or influence the behavior of the system. 
Controls, in many ways, model the behavior of the 
system by relating model objects together to 
accomplish a particular function. 

Models. The overall system model consists of the 
system configuration model, field communication model, 
power system model and miscellaneous models. The 
System Configuration model represents the hardware and 
software entities that make up the OAS itself. 
Configuration management software interacts with these 
model components to monitor and control the state of 
the OAS so that redundant and non-redundant entities 
are properly managed under normal and failure modes of 
operation. 

The Field Communication model represents the 
entities that make up communication circuits from a data 
acquisition processor to the field devices being monitored 
and controlled. Data acquisition sofhvare interfaces with 
these model components to monitor and control the state 
of field communication system. 

The Miscellaneous models represent the software and 
physical entities used by various system functions. For 
example, access rights and access controls are defined as 
part of the Access Control function. Access Rights define 
the permissions given to a user or system making 
requests of the system. Access Controls define the 
privileges given each every modeled object in the system. 

The Power System model represents the physical 
power system that is being monitored and controlled. 
The power system model is the heart of the OAS in that 
all of the end-user functionality is built upon this. The 
power system model holds the current state of the system 
and makes it accessible to the user interface (views), and 
to other system functions. 

View objects provide the mechanism for 
users of the system to visualize the states stored in the 
model. Most views reflect the state of the power system 
model, including historical, current, and planned states. 
Additional views are necessary to present the state of the 
OAS configuration itself as well as the OAS 
communication architecture. 

Views. 
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The primary views required in the system include: 

Maps, providing a geographic view of the electrical 
system components as well as important non- 
electrical features. Map views are meant to replace or 
augment the paper wall board in the operations 
control room. 
Schematics, providing a more structured (non- 
geographic) view of system components. Schematic 
views are used to present dense areas of the power 
system not suited for a map view (i.e., the electrical 
system in a congested urban area). 
Lists, providing a tabular view of a group of model 
objects. Lists can be filtered in a variety of ways to 
show more specific groupings of model objects. 
Control Panel, providing a high-level view of the 
state of the OAS itself, as well as mechanisms to 
control the state of the OAS. 

Controls. Control objects are used to model the 
inputs to a system, whether they are from users, sub- 
functions of the same system or entirely different 
systems. Control objects encapsulate the logic and 
business rules that correlate model objects to accomplish 
a desired function; in other words, the system behavior. 

From a system maintenance standpoint, control 
objects are the most dynamic part of the system. As the 
business environment and computing requirements for a 
electric utility evolve, the control objects are the area of 
the system that must be modified. 

Example control objects in the OAS are listed below. 

Area of Responsibility Control objects are used to 
encode behavior of all system objects relative to an 
input’s access rights. For every system input, the 
requester’s access rights are compared against the 
rights of the effected object. Based on this, the input 
request is either permitted or refused. 
Device Control objects are used to encode the 
behavior of all controllable power system devices in 
the system. Device Control objects provide control 
pre-check logic before executing the control. 
Logging of the control request is also provided by the 
device control object. Device controls make use of 
access rights checking from an associated area of 
responsibility control object. 
Alarm Management Control objects encode the 
behavior of the alarm subsystem. Inputs are from 
other subsystems that have detected an abnormal 
condition and from users of the system. 
Navigation Control objects encode the behavior of 
view objects in response to navigation requests. For 
example, when an alarm object is selected for 

navigation from an alarm list view, the map location 
showing the device in an alarm state is be presented. 

There are many more control objects in the OAS than 
have been mentioned here. This portion of the software 
subsystem embodies essentially all system behavior. A 
more detailed analysis and presentation of these is 
beyond the scope of this paper. 

Software Object Model 

As mentioned above, the OAS software architecture is 
based on a sohare  design structure known as Model- 
View-Controller. This section uses one of the control 
objects discussed above to illustrate the relationships 
between objects that cannot be easily shown in SES 
diagrams. This highlights the value of object modeling 
techniques in expressing relationships between objects or 
classes of objects. 

Overview. The “Booch Notation” [8] is used in the 
class diagrams presented in this section. Figure 3 
presents the key constructs of Booch Notation. 

Class Icons Class RelationshiDs - uses a Abstmct Class - hasa 

Abstract Class Symbol - inheritance 

association 

Class Name 

w 
Class Symbd 

Figure 3: Booch Notation Overview 

A diagram showing the Model-View-Controller 
structure is presented in Figure 4. Note that each of these 
classes is designated as “abstract,” meaning the class 
itself is never instantiated; only classes that are 
descendants of the abstract class are instantiated. q--F Controls 

Figure 4: Model-View-Controller Structure 
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Controls Class Hierarchy. A more detailed 
illustration of the Controls class hierarchy is shown in 
Figure 5. The four classes shown all inherit from the 
root Controls class. Note that the “devicecontrol” and 
the “alarm-management” classes both have “uses” 
relationships with the “areasf-resp” class. Each of these 
use the services of the area-of-resp class in providing 
services to their own clients. 

f--T 
Controls 

navigation 
alarm-mgmt 

Area 

Figure 5 :  Controls Class Hierarchy 

of Responsibility. The area of responsibility 
control class diagram is show in Figure-6. The 
“requester” class represents any client requesting a 
service from the system. For example the requester could 
be an individual user requesting to issue a control, place 
a tag, acknowledge an alarm or navigate to a region of a 
map. The requester could also be a foreign system 
making a request for selected real-time data. 

requester model-objed 

area-of-resp 

Figure 6: “Area of Responsibility” Class Diagram 

Every valid requester in the system has an “access- 
rights” object associated with it. The access-rights object 
names the privileges granted to the requester. 

The “model-object” class represents any of the model 
objects in the system. A modelsbject could be a power 

system device, another processor or a user definition. 
Each model object in the system has an “accesscontrols” 
object associated with it. The accesscontrols object 
names the privileges or operations that can be carried out 
on this model object. It also defines the details of each 
privilege. For example, the “operator” privilege may 
allow control of a device, while the “engineer” privilege 
may allow deletion and creation of new objects in the 
system configuration model. 

System Dynamic Models 

Dynamic models are used to lay out and analyze the 
time-based behavior of system functions. As with System 
Model objects, dynaml+c +models can be created in a 
hierarchical, modular * manner. Low-level dynamic 
models can be constructed and validated. The low-level 
models are then used to construct higher level dynamic 
models. This process continues until the behavior of the 
entire system has been modeled. 

Interaction diagrams are used in this section to model 
system behavior. Jacobson [2] describes interaction 
diagrams as a mechanism to illustrate how behavior is 
realized through the interaction of objects or classes of 
objects. 

Area of Responsibility 

As described in the previous section, Area of 
Responsibility control class is used to verify that a 
requester has sac i en t  access rights to execute a control 
action. This process is illustrated in Figure 7, below. 

The sequence of events in Area of Responsibility 
checking is as follows: 

0. 

1. 

2. 

3. 

4. 

The sequence is SQrted by a user or subsystem 
requesting an operation. 
The requester notifies the target model-object that it 
intends to operate it. The model-object responds with 
the identifier of its accesscontrols object. 
The requester sends a check-access message to the 
areasf-resp control object. Included in this message 
are the identifier of the requester and its access-rights 
identifier, the identifier of the target modelabject and 
its access-controls identifier, and the operation to be 
carried out. 
The area-of-resp control object consults (a) the 
accesscontrol object and (b) the access-rights object 
to determine if the requester should be given 
permission to operate the model-object. 
A reply message to the requester indicates whether 
access has been granted or denied for this request. 
The areasf-resp control object also logs the time and 
completion status of the access request. (The 
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alarm-mgmt object receives the log-action message). 
5.  If the request was refused the sequence is ended and 

the user or subsystem is informed that the request 
failed because of insufEcient access rights. 

6. If the access request was granted, the requester issues 
the control request to the model. 

7. The sequence is ended with feedback to the requester 
that the request was serviced. 

3dIk 

use prototype software to "jump start" the development of 
the production system must be resisted. 

Typically, the customer or end user is very involved 
in functional prototypes, reviewing the effort and 
providing feedback to help focus the system 
requirements. There is less need for or benefit from 
customer involvement in technical prototypes. 

In many cases the language and development 
environment used for functional prototyping is not the 
same used for development of the production system. 
The goal of the prototyping exercise is to generate a 
mock-up of the system quickly while ignoring many of 
the requirements for the final system (error handling, 
message logging, redundancy, performance, etc.). 

Technical prototyping is used to evaluate issues in a 
specific area of the system for technical feasibility. For 
this type of prototype, it is important that the 
environment (the computing environment as well as the 
data and system loading), and tools used be as close to 
the production environment as possible. (In many ways, 
this type of prototype is similar to simulation, presented 
below.) 

The evaluation of any third party tool must consider 
commercial issues in addition to technical issues. Issues 
to be evaluated include the cost of using the product 
(licensing expense, maintenance expense, training 
expense, etc.), the financial health of the product 
developer organization and the long term direction of the 
product developer organization. 

Figure 7: Area of Responsibility Interaction Diagram 
Simulation 

Design Evaluation 

Evaluation is a critical part of the design process. For 
large-scale systems such as the OAS, design evaluation is 
best achieved through a combination of simulation and 
prototyping. Prototyping is used to help understand 
requirements and get user feedback early in the process, 
while simulation is used to investigate performance 
aspects and venfy correct operation under controlled, yet 
realistic conditions. 

Prototyping 

Prototypes can be classified as either functional or 
technical. As the names imply, functional prototypes are 
used to investigate system functionality, while technical 
prototypes are used to investigate specific technical 
issues. 

Prototyping is most effective when it is structured to 
answer specific questions. When those questions have 
been answered, the prototype software can be retired or 
used for other prototyping exercises. The temptation to 

While prototyping is used to evaluate portions of the 
design in relative isolation, simulation is used to evaluate 
the design at a subsystem or system level. The goal of 
simulation is to provide a controlled and repeatable 
environment that generates realistic inputs and feedback 
to the software being evaluated. 

Simulation provides an excellent mechanism for 
evaluating design trade-offs. Different designs and 
implementations can be executed in the simulation 
environment and the results can be compared. 

Another feature of simulation is that it provides an 
excellent test bed for the system. If an adequate 
simulation environment exists, the system can be 
evaluated and tested throughout the development cycle 
and exercised for customer testing. Simulation scenarios 
can be developed for evaluating and tuning performance 
under different loading conditions as well as different 
functional conditions. 
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In the evaluation of the OAS design the following 
areas of simulation are necessary: 

Power System Simulation: A realistic simulation of 
the electrical characteristics of the monitored system. 
The power system simulation is used to evaluate 
functional aspects of the system in a realistic 
environment. The power system simulation is also 
used to generate all or part of the input for 
performance evaluations. 
RTU Simulation: This is used to provide realistic 
input to the telemetry system. The RTU simulation 
can be used to augment the power system simulation 
to provide inputs for system performance evaluation. 
Communication Network Simulation: This is used to 
simulate the network connections between sites and 
between user interface devices and server machines 
under different bandwidth and loading scenarios. 

Conclusions 

This paper presented an example of the 
knowledge-based design process in the design of an 
Operations Automation System. Use Case Scenarios 
were discussed for requirements modeling. System 
Entity Structure and Object Modeling techniques were 
used to structure the information describing the problem 
domain and the envisioned system. Dynamic models, 
based on Interaction Diagrams, were developed for a 
selected function of the system. Finally, the use of 
prototyping and simulation in design and system 
evaluation was discussed. 

The integration of these different analysis and design 
techniques provides a methodology for effectively 
managing the design, development and operation 
through the entire system life cycle. 

In the last few years, object-oriented techniques (00) 
have been increasingly used in the design and modeling 
of complex, large scale systems. The 00 paradigm is no 
longer applied primarily as a software development and 
implementation methodology [9]. In our approach, rather 
than to rely on a single, exclusive modeling technique, 
we reconcile various methods, concepts, and techniques. 
Although the concepts are different from a formal 
perspective, they are unified in that they operate on 
common domain entities - representing the system’s 
objects - and are applied in both the structural or 
behavioral perspectives. The engineering process that 
employs these concepts in such perspectives leads to the 
overall, final system design. 

Our choice of the knowledge representation (SES) 
allows us to capture the typical relationships necessary to 

construct object models. Interaction Diagrams have 
sufficient efficacy to support behavior modeling. Then, 
the use of prototyping and simulation is the basis for the 
system’s model validation and testing. 

Our initial experience using an integration of design 
modeling techniques has been positive. Whereas any 
single design methodology has inherent limitations, the 
integrated approach builds on the strengths of each to 
produce a solid overall design product. We believe this 
approach will be useM in the design of complex, large 
scale systems in the future. 
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