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Hardware/Software Partitioning Using
Bayesian Belief Networks

John T. Olson, Jerzy W. Rozenblit, Claudio Talarico, and Witold Jacak

Abstract—In heterogeneous system design, partitioning of the
functional specifications into hardware (HW) and software (SW)
components is an important procedure. Often, an HW platform is
chosen, and the SW is mapped onto the existing partial solution, or
the actual partitioning is performed in an ad hoc manner. The par-
titioning approach presented here is novel in that it uses Bayesian
belief networks (BBNs) to categorize functional components into
HW and SW classifications. The BBN’s ability to propagate evi-
dence permits the effects of a classification decision that is made
about one function to be felt throughout the entire network. In
addition, because BBNs have a belief of hypotheses as their core,
a quantitative measurement as to the correctness of a partitioning
decision is achieved. A methodology for automatically generating
the qualitative structural portion of BBN and the quantitative link
matrices is given. A case study of a programmable thermostat is
developed to illustrate the BBN approach. The outcomes of the
partitioning process are discussed and placed in a larger design
context, which is called model-based codesign.

Index Terms—Hardware/software partitioning, heterogenous
system design, model-based codesign.

I. INTRODUCTION

IN THIS, we present a new approach to the hardware
(HW)/software (SW) partitioning problem [4]–[6], [8], [21],

[24] that uses Bayesian belief networks (BBNs) for functional
component classification into HW and SW. Design of heteroge-
neous systems entails choosing which functional components
should be implemented in HW and which should be imple-
mented in SW. Typically, an HW platform is chosen, and the
SW is written to make the HW meet the specified requirements.
The problem with this approach, however, is that, during system
integration, interface and incompatibility problems may arise
very late in the design cycle. HW/SW partitioning is used to
push the implementation decisions into the early design phases,
so that the decision of whether to use HW or SW is not made in
isolation for each functional component.

In our previous work, we have established a systematic ap-
proach to the design of heterogeneous systems. Called model-
based codesign [5], [24], this approach uses simulatable system
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descriptions as the basis for the generation of design descrip-
tions from which the real system is built. Simulation is used
as a primary means of verifying functional requirements of the
design. Thus, in parallel to the simulation, classifications of the
system model components into HW or SW must be made.

The partitioning approach presented here uses the BBN
concept [3], [14], [20], [28]. The reasons for using the BBN
framework are the following: 1) its ability to represent the
causal nature of a functional description (e.g., a function A
calling another function B is a causal influence from A to B)
and 2) the ability to distribute local evidence (simulation results
that drive a particular functional component toward an HW or
SW realization) throughout the entire network and thus make
the effects of a local partitioning decision affect partitioning
decisions throughout the entire model. This, in conjunction
with the benefit of having probabilistic measurements as to the
degree of belief in classification decisions, makes the use of
BBNs appropriate.

In the ensuing sections, we first provide the motivation for
this new type of partitioning methodology and describe the
problem formally. We describe the principles of BBNs and then
address the existing body of HW/SW partitioning work. Then,
we present our formal methodology, followed by an illustrative
design example.

II. MOTIVATION

Extensive research has been conducted in the area of
HW/SW partitioning. There are three main partitioning ap-
proaches: 1) methods in which the partitioning is driven toward
a preexisting HW platform; 2) flexible methods that use no
fixed preexisting HW platform; and 3) methods that are based
on traditional very large scale integration (VLSI) partitioning
techniques.

In the methods that drive partitioning onto a preexisting HW
platform, the configuration usually consists of a single micro-
processor that runs the SW component and an application-
specific integrated circuit (ASIC) to implement the HW portion.
The work presented in [7], [9], [12], [16], [17], [31], [32], and
[34] is among the most notable in this area of HW/SW partition-
ing. The major limitation to this body of work is the inability to
utilize a different HW configuration, particularly, in the cases
where the design and fabrication of an ASIC is not feasible be-
cause of the cost. Therefore, the need for HW/SW partitioning
systems that are flexible with regard to the type and number of
components comprising the HW platform is warranted.

Several works have attempted to address the problem of
partitioning onto a flexible HW/SW platform. Among them
are [2], [10], [13], [15], [23], [25], [29], [30], and [33] that
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Fig. 1. Illustration of the partitioning problem. The labels A, B, C, and D
represent functional elements.

use criticality, dynamic cost functions, HW effort, object-
oriented design, and genetic-algorithm-based methodologies,
just to name a few. Although these works provide a necessary
extension to those that assume a fixed HW platform, they still
lack a way for localized decisions regarding partitioning to be
felt globally. For example, the fitness function of a genetic
algorithm determines “how good” a given chromosome is, but
it does not have the ability to calculate how a change in one
part of the chromosome affects other parts. The ability to track
how local partitioning decisions affect other components in the
global system is a useful method to determine the cause of
problems during system integration.

Another approach uses VLSI circuit partitioning algorithms
with some modifications. Alpert and Kahng [1] provide an
excellent review of such partitioning algorithms. Vahid [27]
and Maciel et al. [35] provide partitioning methodologies that
modify min-cut (an iterative pair swap algorithm) for func-
tional partitioning and add Petri nets to clustering methods,
respectively. With these types of partitioning approaches, a cost
function is often used, and the choice of which partition will be
chosen for a component is based on what will minimize the cost
to the greatest extent. Again, there is no direct way to measure
the effect that a partitioning choice has on the other components
individually, just the effect on the overall cost.

III. PROBLEM FORMULATION

In the design of heterogeneous systems, the choice of how
to implement the system architecture can make significant dif-
ferences in performance and reliability. In the past, an HW plat-
form was often chosen, and then, SW was written for correcting
the inadequacies of the HW. Currently, however, research has
progressed from the idea of partitioning HW elements within
a VLSI design to that of partitioning a high-level functional
model of a system. Fig. 1 shows an example partitioning into
HW and SW, with the system model containing four functional
components (A, B, C, and D) that are partitioned into HW
(A, C, and D) and SW (B).

The HW/SW partitioning methodology that we present here
is part of a larger design context called model-based code-
sign [5], [24]. In model-based codesign, a set of requirements
and specifications is obtained for the system to be modeled.
The system is then described as an abstract model that is
a combination of its structural and behavioral specifications.

Model components are specified at a high level of abstraction to
remain technology independent. The modeling process includes
a stepwise refinement of specifications to a desired level of
granularity. Then, simulation studies are carried out to gain
introspection into how well the model-based specifications
meet the system’s requirements. At the end of the simulation
process, a virtual system’s prototype is obtained.

The partitioning methodology that is presented here takes the
high-level functional description along with parameters that are
obtained from simulating the functional model (with a design
tool such as StateMate [11]—the primary design tool used
in our laboratory) to create the desired BBN representation.
The results that are obtained from the simulation experiments
of the components that have been classified thus far are then
used as evidence and propagated throughout the BBN. The
HW and SW functional classifications chosen by the BBN
framework are mapped into specific HW and SW components.
At this point, the abstract model is mapped onto a collection
of interconnected real-world components. This HW/SW parti-
tioning methodology is capable of the following: 1) partitioning
onto an HW platform that is determined dynamically and not
fixed prior to partitioning; 2) extending partitioning decisions
to apply to the entire system; and 3) generation of partitioning
representation based on BBNs.

IV. BACKGROUND

In this section, we provide a brief overview of the BBN
approach and the various existing partitioning methods.

A. BBNs

In order to fully understand the complexities of a BBN, one
must first contemplate the underlying mode of thinking in-
volved. In classical expert systems and other knowledge-based
systems, the key role of the tool being used is the inference
of new knowledge from preexisting knowledge [22]. In other
words, use what is already known about the state of a domain
(the facts) to infer (via an inference engine) new knowledge
by utilizing rules that describe the domain itself and how facts
can be combined (the rule base). Thus, the mode of thinking is,
“Given my current knowledge of the domain, what else can I
infer as true or false?”

The purpose of BBNs, on the other hand, is to look at
the world from a causal point of view. The key role of
the tool has changed from that of inferring new knowledge (as
is the case with rule-based systems) to that of cause and effect.
The causal nature of the domain is captured in the BBN, and
the knowledge of the state of the domain (the evidence) is used
to confirm a hypothesis with a certain degree of probability.
The mode of thinking is therefore, “Given my current knowl-
edge of the domain, what could have caused these facts?”

The theoretical foundation of probabilistic reasoning lies
on the concepts of joint probability, conditional probability,
Bayes’ theorem, the product rule, and the chain rule. Given
statement A, we denote the probability or likelihood that it is
true as P (A). A union probability is written as P (A ∨ B) and
represent the “probability that either A is true or B is true.” A
joint probability is written as P (A ∧ B) or P (A,B) and means
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the “probability that both A and B are true.” The relationship
between A ∧ B and A ∨ B is given by the following rule:

P (A ∨ B) = P (A) + P (B)− P (A ∧ B)

and it is illustrated graphically by the following diagram.

The notation P (B|A) is known as conditional probability,
and it states the probability of B, given that we already know
about A. P (B|A) is defined by the following rule:

P (B|A) =
P (B ∧ A)
P (A)

.

Of course, this rule cannot be used in cases where P (A) = 0.
Due to the commutativity of ∧, we can also write

P (B ∧ A) = P (A ∧ B) = P (B|A) · P (A) = P (A|B) · P (B).

When written in this form, the former expression is called
the multiplication rule. Bayes’ theorem is a direct consequence
of the multiplication rule and provides the mean to calculate
the probability that a certain proposition is true, given that we
already know related information. The theorem is stated as
follows:

P (B|A) =
P (A|B) · P (B)

P (A)
.

P (B) is called the prior probability of B, and P (B|A), aside
from being called the conditional probability, is also known
as the posterior probability of B. In general, joint statements
(beliefs) can be calculated by using the definition of conditional
probability and recursively applying Bayes’ theorem. The re-
sulting expression is known as the chain rule and is stated as
follows:

P (E1, E2, . . . , En−1, En)
= P (En|E1, E2, . . . , En−1) · P (E1, E2, . . . , En−1)
= P (En|E1, E2, . . . , En−1) · P (En−1|E1, E2, . . . , En−2)
·, . . . , ·P (E3|E2, E1) · P (E2|E1) · P (E1).

BBN simply represents an efficient way of storing a joint
probability distribution. Formally, a BBN is defined as a di-
rected acyclic graph (DAG), representing the causal nature of
a problem domain [3], [14], [20], [28]. A BBN is composed of
two parts: 1) the graphical representation showing the causal
relationship between nodes (the qualitative part) and 2) the
link matrices (also known as conditional probability tables) that
are associated with each edge of the DAG and the equations
that govern the propagation of evidence (the quantitative part).
Together, these two parts provide a system that is capable of

Fig. 2. Simple BBN showing that A has a causal influence over B and C.

Fig. 3. Definition for the entries in a link matrix.

translating evidence pertaining to measured results into the
probability that a given hypothesis is true.

In the qualitative portion of a BBN, a directed edge from
any node A to another node B (denoted A→ B) represents the
causal influence of A over B. Each node within a BBN repre-
sents a statistical random variable, which may comprise several
hypotheses. Therefore, evidence related to the likelihood of B
can be converted into the probability that a hypothesis in A is
the cause of B. The true power of the qualitative portion of
a BBN lies in the graphical nature in which it is represented.
Someone with little experience in the area of probabilistic
reasoning can easily understand the causal relationships among
the nodes. In Fig. 2, it is easy to see that node A has a causal
influence over nodes B and C.

The quantitative portion of a BBN uses the qualitative part by
determining in which direction evidence and causal messages
travel throughout the network when distributing probabilistic
evidence within a BBN. Evidence is a probabilistic measure
pertaining to the degree of belief for all hypotheses within
a given node (random variable) in the BBN. Two types of
messages are used: 1) Evidence messages carry the effects
of newly introduced evidence. 2) Causal messages carry the
effects of causal influences. Evidence messages travel against
the direction of the arc in the form of λ messages. The causal
messages travel in the direction of the arc in the form of π
messages. The combination of these two types of messages,
along with the prior probabilities and link matrices, is used
to determine the beliefs that are associated with each node of
the graph. The prior probabilities give the hypothetical beliefs
for each node before any evidences have been introduced
(usually set to equal probability). The link matrices represent
conditional probabilities of choosing a hypothesis given that the
values of the hypotheses of a node acting as a causal influence
are already known. Using Fig. 2, given that we know something
about node A, the link matrices would translate that knowledge
into information that can be used by node B or C. For the
link between A and B, the link matrix shown in Fig. 3 gives
the conditional probabilities that comprise the entries of the
matrix. For example, the entry in position (1,1) represents the
probability that element B should be implemented in HW, given
that A is implemented in HW.

All of the messages that interact with the link matrices and
the directions in which they flow are shown in Fig. 4.
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Fig. 4. Small BBN with the messages passed to node B illustrated.

The final step in understanding BBNs consists of knowing
how the belief of each node is calculated. The belief of a node
is actually the belief in each hypothesis within the node. Fig. 5
shows the simplest kind of BBN structure, i.e., a chain, along
with the equations that govern the calculation of belief. Note
that the term My|x represents the link matrix between “X” and
“Y,” which is a conditional matrix, with each value representing
the probability of an event in “Y” given the corresponding event
in “X.”

B. Partitioning Methods

Many previous works present partitioning algorithms that
assume a base architecture and then partition according to
that architecture. The work of Hendry and Sananikone [12]
partitions a solution into an SW component that runs on a
single processor and an HW component that consists of either
an ASIC or a field-programmable gate array in a system called
COSYN. Partitioning begins with a completely SW solution
and then iteratively moves nodes into an HW solution utilizing
activation frequency and token residence time along with HW
and SW estimators to determine the amount of speedup from
moving a given functional block from SW to HW.

The work of Eles et al. [7] is similar, in that partitioning
occurs to a single-microprocessor-based SW component and an
HW coprocessor. In the first step of the partitioning algorithm,
time-intensive processes are grouped, extracted, and replaced
with a new single process. Next, a process graph is produced
with weights on both nodes and arcs where the weights rep-
resent suitability for HW implementation, and interprocess
communication and synchronization, respectively. The process
graph is then partitioned using simulated annealing or “tabu”
search, where a list of previously explored, or “tabu,” nodes are
kept to reduce cycling.

The SHAPES environment [17] uses a single microprocessor
paired with an ASIC utilizing a shared memory for a target
architecture. Knudsen and Madsen [16] provide a very realistic
model of communication including synchronization delays as
part of a larger partitioning algorithm called PACE, which is
part of the LYCOS system. This work extends the “regular”
PACE by using communication parameters (protocol used, area
of drivers, and frequency of component execution) between any
two communicating processors to partition HW and SW.

In [15], Kalavade and Subrahmanyam assume the input to
be a set of applications, only one of which is active at any
given time. The first step in this partitioning methodology is
to first find commonality between the nodes within the set
of applications. The metrics used to find a measurement of
commonality between nodes include tagging each node with
a type, using node repetition, performance/area ratio, urgency,
and concurrency. Two methods of partitioning are then pre-
sented. The first algorithm uses high node repetition and high
performance/area ratio as conditions to bias nodes toward HW.
The second method first calculates each application’s time crit-
icality and orders the nodes within the applications with highest
criticality first. Then, each node is examined in order, and if a
similar node from a preceding application was placed in HW,
then this node is biased toward HW. If the preceding similar
node was placed in SW, then this node is biased toward SW. If
there is no preceding similar node, then the performance/area
ratio is used to carry out the partition.

Henkel and Ernst [13] present a unique method for high-
level estimation for HW/SW partitioning. In this paper, the
effort is placed on two high-level estimation techniques: 1) HW
effort and 2) HW/SW communication estimation. A control
and data flow graph representation that is derived from a C
system-level description is used to derive a set of modules,
registers, multiplexers, and the control unit. The overall HW
effort is then calculated by adding the HW efforts of each
component listed previously. The approach used in the HW/SW
communication estimation assumes that SW is running on a
single processor core and that it must stop and send information
to the HW components when needed. Therefore, the overhead
in cost comes from data being sent from SW to shared memory
and then from shared memory to HW. All of the estimation
techniques are combined into a dynamically weighted cost
function where the constant attached to the HW area increases
as the difference between the system time and the constraint
time decreases. In this way, the HW area component becomes
more important as the system time approaches its maximum
allowable value.

Gupta and De Micheli [10] compile an HardwareC descrip-
tion to produce graphs that are similar to data flow graphs
where vertices represent operations and edges represent either
data or sequencing dependence between vertices. The first step
of partitioning is to partition according to points of nondeter-
minism; external points of nondeterminism (caused by external
input/output operations) are assigned to HW, and internal points
of nondeterminism (caused by internal data-dependent oper-
ations) are assigned to SW. Following the initial partitioning
(assuming feasibility), operations are migrated from HW to SW
in search of a lower cost partition.

The work of Wolf [29] uses object-oriented techniques for
partitioning. It begins with a method data flow graph, execution
rates, and a library of available components. Initially, all meth-
ods and variables that are associated with an object are greedily
assigned to their own processing elements that are as fast as
the fastest method that is contained within the object needs to
be. The cost is then iteratively reduced by either attempting
to find a lower cost processing element for a given object, by
removing methods from a processing element until all methods
can be merged into other existing processing elements and
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Fig. 5. Actual calculations that must be made to determine the belief of X.

thus removing the need for it, or by moving methods to better
balance the system load. The next step is to find the cheapest
communication channel for each data path between processing
elements. Finally, communication channels are allocated, and
devices are allocated.

Alpert and Kahng [1] provide an excellent review of the
major classes of partitioning algorithms for VLSI circuit de-
sign, but these techniques also apply to any system in which
components are grouped and whose intergroup communication
must be kept to a minimum. Among these classes of partitioning
algorithms are the following: 1) move-based approaches such
as greedy and iterative exchange algorithms; 2) geometric
approaches such as vector partitioning; 3) combinatorial ap-
proaches such as max-flow min-cut; and 4) clustering-based
approaches [1].

V. BBN-BASED PARTITIONING METHODOLOGY

As we have stated in Section I, the HW/SW partitioning
methodology presented here is part of a larger design context
that is known as model-based codesign [21], [24].

In traditional HW and SW design, decisions regarding par-
titioning the HW and SW occur at the beginning of the design
process. SW and HW components are designed separately and
are later integrated. The difficulty with this type of design sce-
nario is that there are often compatibility and timing problems
that are encountered during integration and testing. It has been
shown that, the earlier design problems are found, the lower the
overall cost is to fix them [6].

In model-based codesign, however, the system to be designed
is modeled at a high level of abstraction, and partitioning is
pushed until as late as possible (as shown in Fig. 6). Because
of this, there are fewer integration problems, and the ways
in which HW and SW interact in the final solution are better
known. By knowing SW/HW interactions, the design space can
be better optimized in terms of HW area, which in turn helps
with space-constrained embedded systems.

The HW/SW partitioning methodology presented here takes
an executable functional model (including design characteris-
tics of the functional components) and produces a partitioned
model, as shown in Fig. 7.

There are four basic steps of the partitioning methodology:
1) generation of the BBN; 2) transformation of the results from
simulation of the current state of the model into evidence;
3) propagation of the evidence throughout the BBN (as de-
scribed in [20]); and 4) classification of each functional com-
ponent into HW or SW, if possible. The decision whether to
classify a functional component into HW or SW can be made
based on the degree of belief for each assignment, as given in

Fig. 6. HW/SW codesign methodology.

the belief probabilities that are associated with each node of
the BBN.

In the first step of the methodology, i.e., generation of the
BBN representation, a functional model is simulated to de-
termine values for the complexity, bandwidth, and frequency
of execution for each functional component. The hierarchical
structure of the functional model is mapped into a “flat” BBN
structure. The values for complexity, bandwidth, and frequency
are combined to construct the probability matrix that is associ-
ated with each causal link.

Once the representative BBN has been constructed, evidence
that is output from the simulation of the model is propagated
throughout the network. Given a specific implementation of
a component (HW or SW), we use simulation to estimate
the performance indexes of interest (e.g., response time and
throughput) of the component. The information collected is
transformed into evidence by comparing the estimated perfor-
mances. Let us say that the performance of interest is response
time, and the response time estimated through simulation is
RTsw for the SW implementation and RThw for the HW im-
plementation; then, the evidence for the given component is
computed as follows:

λ =
[

RThw/(RTsw + RThw)
RTsw/(RTsw + RThw)

]
.
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Fig. 7. BBN-driven HW/SW partitioning methodology.

Fig. 8. BNN-based partitioning revisited.

The model used during simulation is updated according to
the latest belief values, e.g., if the belief that a functional
component is 75% in agreement with an HW solution, then that
component is modeled as HW in the simulation. The initial val-
ues for the beliefs that are associated with each node of the BBN
are set to 50% HW and 50% SW. As evidence is introduced, the
beliefs change according to the rules of evidence propagation,
as set forth by [20]. This process in continued in an iterative
cycle, as illustrated in Fig. 8.

When there is no more evidence to introduce to the BBN
(i.e., simulation does not produce any new results to be added
as evidence), the beliefs that are associated with each node
are examined. If there is a clear indication that either HW
or SW should be used for the component (a belief having a
value of greater than 0.7, for example), then it is assigned to
the appropriate partition. In the case where there is no clear
decision that can be made by the belief values (such as when
the difference between HW belief and SW belief is < 0.2), then
it does not matter which partition is chosen. In this case, the
designer should intervene and make the decision based on other
criteria, for instance, the area of the circuit.

A. BBN Generation

Fig. 9 shows a typical nonhierarchical functional model with
its corresponding BBN representation. The functional model
representation that we have chosen is similar to a StateChart
[11]. Here, we see that, since the functional model is given
in a single level of abstraction, the structure of the BBN is
a one-to-one correspondence to that of the functional model.
The arrows in the functional model of Fig. 9 represent coupling
constraints. In the BBN of Fig. 9, these coupling constraints are
interpreted as causal links, and therefore, the arrow between

Fig. 9. Typical nonhierarchical functional model with corresponding BBN.

Fig. 10. Typical layer of abstraction with corresponding BBN representation.

any pair of nodes within the BBN is in the same direction as the
corresponding pair of entities within the functional model.

In choosing the BBN representation of an abstract level
within a functional model, the meaning of how the components
within the level are affected by their interactions was very im-
portant. Fig. 10 shows a level of abstraction within a functional
model and the corresponding BBN. Note that a node has been
added to represent the encapsulating level (in this case, A) and
that causal links have been added to each of the subcomponents.
These causal links represent the effect of interactions between
the abstraction level and the outside world. If information is
passed to the level boundary A, then it is appropriate that the
level boundary would transmit this information through causal
messages to the subcomponents.

Fig. 11 shows how components that are outside of a level
of abstraction can influence both the abstract level as a whole
and the individual subcomponents. Note that the output from
an abstract level can act as input to another component (e.g.,
the output of A is connected to E). Fig. 11 also shows how an
outside component H can have causal influence over an entire
abstract level A and over an individual subcomponent G.

The generation of a BBN structure involves taking the func-
tional model in the form of a set of functional nodes and
converting it first into a hierarchy tree. After conversion into
the hierarchy tree, the set of vertices and edges of the BBN is
then generated. The graph-based algorithm for carrying out the
conversion is presented in the Appendix.

The functional model and its corresponding BBN are shown
in Fig. 11. Fig. 12 portrays the same functional model and its
hierarchy tree.
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Fig. 11. (Left) Example functional model containing causal links crossing
abstraction boundaries and (right) corresponding BBN representation.

Fig. 12. (Left) Functional model with (right) associated hierarchy tree.

B. Generation of BBN Link Matrices

In order to calculate quantifiable values such as those con-
tained within the link matrices of a BBN, we must be given
some quantifiable input that is related to the operation of
each functional component. Therefore, we have chosen to
characterize each functional component with three types of
measurement: 1) the complexity of the functional component;
2) the total bandwidth that is associated with the individual
functional component (in bits per second); and 3) the frequency
of execution of the functional component (in executions per
second). Each of these measurements is assumed to be available
as output from the functional simulation of the design model.

Because complexity can mean so many things to so many
people, we loosely define it as an estimate of the number of
lines of underlying code within a StateChart [11] (recall that we
use StateChart as the modeling representation and StateMate
as the design tool) representing a functional component. We
calculate the complexity by adding the weighted code within a
given StateChart and multiplying that result by the total number
of states used. We rely on measures of costs such as the ones
shown in the following to weigh the lines of code.

• Execute simple instruction: Cost=1. (Shift, compare, etc.)
• Execute a memory reference: Cost = 3. (Read from or

write to memory)
• Execute a simple arithmetic operation: Cost = 3. (Add,

subtract, etc.)
• Execute a medium complexity calculation: Cost = 6.

(Multiply, divide, etc.)
• Execute a switching statement (such as “if. . .then”):

Cost = 7

• Execute a loop: Cost=number_iterations∗(7+ complexity
of statements contained within loop)

• Execute an event: Cost = 20
• Schedule an event: Cost=20+ number of ticks until

event occurs.
The key to remember is that the focus of this research is

on the use of the BBN and not on whether we have the best
estimation table for complexity. These values were chosen as
an estimate of the number of clock cycles that are needed to
complete the given operation on a basic microprocessor such as
the Motorola 68000.

The next two measurements (bandwidth within a single func-
tional component and frequency of execution) are obtainable
from a simulation of the functional model (in our case, using
StateMate).

Although we have chosen to use complexity, bandwidth, and
frequency as our metrics of choice, there are obviously several
different measures that could have been chosen. Gajski et al.
[8] show that some of the most popular types of metrics include
HW area, delay, and power consumption, just to name a few.
They also show that closeness metrics are useful when no parti-
tion yet exists. Relative complexity, relative bandwidth, and rel-
ative frequency act as closeness metrics that we use to construct
the BBN representation before any partitioning takes place.

When determining how to use these values to calculate the
link matrices, it is important to recognize why BBNs were
chosen in the first place. The role of the BBN is to show how the
implementation decision for each functional component affects
the decisions for the other functional components. The link ma-
trices can then be viewed as a way to quantify these influences.
Therefore, the individual values of complexity, bandwidth, or
frequency for a single functional component are not as critical
as their relation to the values of causally connected neighbors.
It is the values of these measurements that are relative to
the influenced functional components that are of importance.
Thus, we use the following equation as a measurement for how
“similar” the complexities of two functional components are
(which we call the relative complexity):

rel_comp(a, b)=
1

log10

(
max

(
comp(a)
comp(b) ,

comp(b)
comp(a)

))
+ 0.1

. (1)

What the preceding equation means is that the relative
complexity between two functional components is inversely
proportional to the magnitude of the ratio of their complexities.
Therefore, this function goes to a value of 10 for equal complex-
ities and asymptotically approaches 0 as the difference between
the two complexities increases. Similarly, we define the relative
bandwidth and relative frequency, as shown in the following:

rel_band(a, b)=
1

log10

(
max

(
band(a)
band(b) ,

band(b)
band(a)

))
+ 0.1

(2)

rel_freq(a, b)=
1

log10

(
max

(
freq(a)
freq(b) ,

freq(b)
freq(a)

))
+ 0.1

. (3)

Now that we know how each functional component relates
to one another, the final step is to find a suitable matrix
representation. In order for the link matrix to properly represent
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Fig. 13. Functional model for programmable thermostat.

beliefs, it must be guaranteed that the summation of each
column in the matrix equals 1. To that purpose, the link matrix
is constructed as follows:

Mb|a =
α

Nα

[
rel_comp(a, b) 1

rel_comp(a,b)
1

rel_comp(a,b) rel_comp(a, b)

]

+
β

Nβ

[
rel_band(a, b) 1

rel_band(a,b)
1

rel_band(a,b) rel_band(a, b)

]

+
γ

Nγ

[
rel_freq(a, b) 1

rel_freq(a,b)
1

rel_freq(a,b) rel_freq(a, b)

]
(4)

where Nα, Nβ , and Nγ are normalization factors, while the co-
efficients α, β, and γ provide system designers the chance to
express that one or more of the three measurements are more
critical than the other(s). The normalization factors are
given by

Nα = (α+ β + γ)·
(
rel_comp(a, b) +

1
rel_comp(a, b)

)

Nβ = (α+ β + γ)·
(
rel_band(a, b) +

1
rel_band(a, b)

)

Nγ = (α+ β + γ)·
(
rel_freq(a, b)+

1
rel_freq(a, b)

)
. (5)

VI. PARTITIONING EXAMPLE

In this section, we present a programmable thermostat design
example. Fig. 13 shows the functional model used in this
example. Fig. 14 gives a block representation of the functional
model that will make the generation of the structural portion of
the BBN easier to follow.

Fig. 15(a) shows the two levels of abstraction of the func-
tional model that include five components: one that contains no
subcomponents (L) and four components that act as abstraction
modules. All links between the five top-level components are
shown in Fig. 15(b), and since this is the iteration of the
algorithm corresponding to the first level of abstraction, there
are no links between different levels of abstraction.

Fig. 14. Block representation of the functional model.

Fig. 15. Hierarchical elements from (a) functional model and (b) correspond-
ing hierarchy tree.

The second iteration of the BBN structural generation algo-
rithm brings about many new nodes corresponding to the sub-
components of “A,” “D,” “F,” and “I.” Fig. 16 shows the system
model at the first two levels of abstraction and the matching



OLSON et al.: HARDWARE/SOFTWARE PARTITIONING USING BAYESIAN BELIEF NETWORKS 663

Fig. 16. After the second iteration of the algorithm, both levels of the (left) functional model with the (right) corresponding BBN.

Fig. 17. Reduced functional model for programmable thermostat.

BBN. Note that links have been added for both the internode
connections between nodes of the same abstraction level and
the links from the abstract parent nodes to the subordinate nodes
representing their subcomponents. Since this functional model
only contains two levels of abstraction, the algorithm stops at
this point.

For the generation of the link matrices and the introduction
of evidences, we have chosen to use a reduced functional model
shown in Fig. 17. This will allow the reader to better understand
the effects of evidence propagation.

The final result of the BBN structural generation algorithm
for the reduced node model is shown in Fig. 18.

In order to find the complexity, bandwidth, and frequency
measures of each functional component, a StateMate design
representation was created and simulated. To demonstrate
how the measures were calculated, consider the Control-
Temperature functional component. First, we calculate the
complexity. We have taken the embedded code in the Control-
Temperature StateChart and placed the associated complexity
values for each line next to the line in Fig. 19 (this code
is generated by StateMate). From adding the numbers in
Fig. 19 and multiplying by the number of states (four states
in the StateChart representation), we obtain a complexity value
of 6368.

To calculate the bandwidth of Control-Temperature, we take
all data and control lines coming into and exiting the StateChart,
multiply each by the size of the data in bits, and multiply each

Fig. 18. BBN representation of reduced functional model.

by the number of times that data pass through the particular data
or control line per second to obtain a value with units of bits per
second. When making these calculations, we assume that all
integers are 32 bits long and that events are coded as integers.
One important note to make is that since Control-Temperature
executes about once every second, and since it drives the
execution of all of the other components, all of the control lines
are used once per second. In our design models, there are eight
control lines connected to Control-Temperature, each with an
event occurring about once a second for a total of 256 bits/s.
The total bandwidth associated with Control-Temperature is
768 bits/s, as calculated from the StateMate model.

To determine the frequency of execution, we find the fastest
executing portion of the StateChart associated with the func-
tional model. For Control-Temperature, this corresponds to
the time that it takes to take in and transmit a program, i.e.,
fives times a second. All of the values just calculated are
given in Fig. 20, along with the values for the other functional
components.

For this example, we have chosen the following weights:
α = 3, β = 1, and γ = 3 (these are the designer’s preferences).
We obtain the set of link matrices shown in Fig. 21.

In the formulation of these matrices, the emphasis (designer’s
preference) was placed on complexity and frequency. This can
be seen particularly well in the link matrix on the link from
“Control-Temperature” to “Get-Current-Temp,” where the
probability that “Get-Current-Temp” should be implemented in
the same way as “Control-Temperature” is only 34%.

To continue, we now have a BBN that has been created for
the thermostat design example. We use a BBN calculation tool
to perform the propagation of evidence and update of beliefs
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Fig. 19. Embedded code for Control-Temp StateChart with associated complexity values.

Fig. 20. Table of complexity, bandwidth, and frequency of execution for
functional components in programmable thermostat example.

called Hugin Lite, which is a shareware version of the Hugin
System by Hugin Expert A/S. Initially, all beliefs are equal, but
let us say that we introduce evidence to “Get-Current-Temp”
that it is 83% likely that it should be implemented in HW.
Fig. 22 illustrates how this evidence affects the entire BBN.

Because of the vast differences in the link matrix values be-
tween the “Get-Current-Temp” and “Control-Temp” functional
components, the introduction of this evidence actually drives
“Control-Temp” toward an SW implementation. Next, we in-
troduce evidence that “Program-Interaction” has a 65% chance

that it should be implemented in SW, and the result is shown
in Fig. 23.

Here, we see that, although “Program-Interaction” has been
driven toward an SW implementation, “Time-Keeping” has
been driven slightly toward HW. This difference can be directly
attributed to the discrepancies between the two functional com-
ponents, as illustrated in Fig. 21, where the link matrix shows
that any influence from “Program-Interaction” drives “Time-
Keeping” in the opposite direction by a 0.52/0.48 ratio.

The process of propagating evidences throughout the BBN
continues until no new data can be introduced. At this point, a
decision is made as to whether each function should be imple-
mented in HW or SW. This decision is based on the amount of
belief that is associated with each type of implementation (i.e.,
if the belief is greater than some threshold, e.g., 75%, then that
type of implementation will be chosen). The classification of a
function into HW or SW is reflected in the system model, and
the process continues until all functions can be classified into
either HW or SW.

VII. SUMMARY

In this paper, we have introduced a new methodology for HW
and SW partitioning. We have shown how BBNs can be used to
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Fig. 21. BBN for programmable thermostat after the generation of the link matrices.

Fig. 22. Beliefs associated with each functional component after the introduc-
tion of the first piece of evidence.

propagate evidence regarding the classification of functions into
HW or SW realizations. This propagation permits the effects
of a classification decision that is made about one function
to be felt throughout the entire network. In addition, because
BBNs have a belief of hypotheses as their core, we know how
well a given classification fits into either HW or SW. Knowing
that a function with, for instance, 75% HW belief should be
implemented 75% of the time in HW allows the user to have a
measure of the appropriateness of their solution.

This paper also introduced a methodology for the generation
of both the qualitative and quantitative portions of a BBN
in the HW/SW partitioning domain. The generation of the
structure of the BBN exploits the ability to use abstract complex
models in the representation of the functional components. The
generation of the associated link matrices uses quantifiable
aspects of the individual functional components to determine
relative properties between components that are connected by
causal links.

The limitations of our work are given as follows: 1) the
accuracy and convergence of the method are bounded by the
precision and execution time of the simulations that are run to
determine the relative properties of the various components, and

Fig. 23. Beliefs for the functional components after the introduction of a
second piece of evidence.

thus, the fidelity of partitioning decisions is dependent on the
validity of the simulation models; 2) the generation of the BBN
representation may not be trivial to manage by design engineers
who are not familiar with the tenets of belief networks; and
3) other metrics for link matrix generation should be explored.

Future work should include testing other metrics and com-
binations of other metrics for the link matrix generation. We
would also like the ability to incorporate the BBN partitioning
methodology into an integrated computer-aided design system
for HW/SW codesign.

APPENDIX

This appendix illustrates the algorithm for generating the
BBN. The following definitions will be of use in the presen-
tation of the algorithm that follows:
(BBN) a directed acyclic graph G consisting of a set of vertices

V [G] and a set of edges E[G], where E[G] is defined as
E[G] ⊆ V [G]× V [G];

(Functional model) a hierarchical system representation con-
sisting of an array FM of functional nodes, where each
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member can be accessed by an integer between 1 and the
number of elements in the array;

(Functional node) a node within a functional model consisting
of the following elements:

— name: a string that must be unique with respect to all
other nodes in the same functional model.

— level: an integer that represents the level of abstrac-
tion at which the current functional node sits. This
number ranges from 1 to n, where n is the total num-
ber of layers of abstraction in the functional model,
and the highest level of abstraction has a level of 1.

— children: an array of names, where each entry rep-
resents a functional node that is influenced by the
given functional node identified by name, where each
member can be accessed by an integer between 1 and
num_children. The children of a functional node can
be only the children on the same or higher level of
abstraction.

— num_children: an integer giving the number of entries
in the children array.

— abs_children: an array of names of the functional
nodes that are contained in the abstraction level be-
low the current functional node, where each mem-
ber can be accessed by an integer between 1 and
num_abs_children.

— num_abs_children: an integer giving the number of
entries in the abs_children array.

(Hierarchy tree) a general tree T consisting of a set of vertices
V [T ] and a set of edges E[T ], where E[T ] is defined as
E[T ] ⊆ V [T ]× V [T ]. The root vertex represents level 0,
with the name equal to the string (“root”), and is only
meant as an anchor for the functional nodes of the func-
tional model.

The algorithm that is responsible for generating the set of
vertices V and the set of directed edges E for the BBN graph
G is shown here.

BBN-GENERATE(FM)
V[G]← ∅; //The set of vertices for the BBN is

initialized to empty

E[G]← ∅; //The set of directed edges for the BBN

is initialized to empty

V[T]← ∅; //The set of vertices for the hierarchy

tree is initialized

// to empty
E[T]← ∅; //The set of directed edges for the

hierarchy tree is

// initialized to empty
// Find the deepest level of abstraction
deepest_level← 0;
for i← 1 to length[FM] do

if (FM[i].level > deepest_level) then
deepest_level← FM[i].level;

// Create the root vertex and add it to hierarchy
tree T

V[T]← V[T] ∪ CREATE− VERTEX(root);
// For each functional node of level 1 add a vertex v
and a directed

// edge e = (v, root) between vertex and the root of

the hierarchy tree T

for i← 1 to length[FM] do

if (FM[i].level == 1) then

begin

v← FM[i].name;
V[T]← V[T] ∪ CREATE− VERTEX(v);
E[T]← E[T] ∪ CREATE− EDGE(root, v);

end if;
// Traverse the functional model FM, level by level,
until all children

// of all nodes have been added to V[T] and the
associated edges to E[T].

i← 1;
while (i < deepest_level) // Try all levels but

deepest

begin

for j← 1 to length[FM; //step through FM

if (fm[j].level == i) then

begin

u← fm[j].name;
for k← 1 to fm[j].num_abs_children do
begin

v← fm[j].abs_children[k];
V[T]← V[T] ∪ CREATE− VERTEX(v);
E[T]← E[T] ∪ CREATE− EDGE(u, v);

end for;
end if;

i← i + 1;
end while;
// At this point the hierarchy tree has beenconstructed.
// Copy the vertices and edges for the hierarchy
tree to the set of

// vertices and edges for the BBN
V[G]← V[T];
E[G]← E[T];
// Remove the root node and the associated edges
from the BBN graph

V[G]← V[G]− root;
for i← 1 to length(FM) do

if (FM[x].level == 1) then

v← FM[i].name;
E← E− (root, v);

// Now, the edges not associated with hierarchy are
added by

// stepping through the functional model, until all
influence related

// edges have been added
for i← 1 to length(FM) do

begin//Step through FM

u← fm[i].name;
for j← 1 to fm[i].num_children do
begin//Step through children

v← fm[i].children[j];
E[G]← E[G] ∪ CREATE− EDGE(u, v); //Add edge

end for;
end for;
return (V[G], E[G]);
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