
Framework For Hardware/Software Partitioning Utilizing Bayesian Belief Networks

John T. Olson and Jerzy W. Rozenblit
Dept. of Electrical and Computer Engr.

University of Arizona
Tucson, AZ 8572 1

{Olson I jr}@ece.arizona.edu

ABSTRACT

In heterogeneous systems design, partitioning of
the functional specifications into hardware and software
components is an important procedure. Often, a
hardware platform is chosen and the software is mapped
onto the existing partial solution, or the actual
partitioning is performed in an ad hoc manner. The
partitioning approach presented here is novel in that it
uses Bayesian Belicf Networks (BBNs) to categorize
functional components into hardware and software
classifications. First, the motivation and background
material are preserted. Then, a case study of a
programmable thermostat is developed to illustrate the
BBN approach. The outcomes of the partitioning
process are discussed and placed in a larger design
context, called model -based codesign.

1.0 INTRODUCTION

In this article, we propose a new approach to the
hardwarelsoftware partitioning problem [3][4][9] by
utilizing Bayesian Belief Networks for functional
component classification into hardware and software.
Design of heterogeneous systems entails choosing which
functional componmts should be implemented in
hardware and which should be implemented in software.
Classically, a hardware platform is chosen and the
software is written to make the hardware meet the
specified requirements. The problem with this approach,
however, is that during system integration, interface and
incompatibility prohlems arise. Hardware/software
partitioning is used to push the implementation decisions
back so that the decision of whether to use hardware or
software is not made in isolation for each functional
component.

In our prebious work, we have established a
systematic approach to design of heterogeneous systems.
Called model-based codesign [7][8], this approach uses
simulatable system descriptions as the basis for the
generation of design descriptions from which the real

system is built. Simulation is used as a primary means of
verifying functional requirements of the design. Thus, in
parallel to the simulation, classifications to the system
model components into hardware or software must be
made.

The partitioning approach presented here uses
the Bayesian Belief Network (BEIN) concept
[2][5][6][121 for classification of functional elements
within the system model. The reasons for using the BBN
framework are: (1) its aptitude to represent the causal
nature of a functional description (e.g., a function, A,
calling another function, B, is a causal influence from A
to B) and (2) the ability to distribute local evidence
throughout the entire network and thus, make the effects
of a local partitioning decision affect partitioning
decisions throughout the entire model. This in
conjunction with the other benefit of having probabilistic
measurements as to the correctness of classification
decisions makes the use of BBNs appropriate.

In the ensuing sections, we first describe the
principles of BBNs and briefly suimmarize the
hardwarelsoftware partitioning work. Then, we present
the BBN-based partitioning methodology. An
illustrative partitioning problem is introduced in Section
3 to demonstrate our technique.

1.1 Background
A Bayesian Belief Network (BBN) is a directed

acyclic graph, representing the causal nature of a
problem domain [5]. A BBN is composed. of two parts:
(1) the graphical representation showing the causal
relationship between nodes (the qualitative part), and (2)
the conditional matrices associated with each link and
the equations that govern the propagation of evidence
(the quantitative part).

In the qualitative portion of a BEIN, a directed
arc from any node A to another node B (denoted A 3 B)
denotes the causal influence of A over B. The use of the
qualitative portion of a BBN lies in the gr,aphical nature
in which it is represented. Someone with little
experience in the area of probablistic reasoning can

0-7803-4778-1/96 $10.00 0 1998 IEEE 3983

mailto:jr}@ece.arizona.edu

easily understand the causal relationships among
thenodes. Each node within a BBN represents a
statistical random variable, which may comprise of
several hypotheses.

When distributing probablistic evidence
throughout a BBN, two types of messages are used: (1)
evidence messages carry the effects of newly introduced
evidence, and (2) causal messages carry the effects of
causal influences. The quantitative portion of a BBN
uses the qualitative part by determining in which
direction the evidence and causal messages travel
throughout the network. Evidence messages travel
against the direction of the arc in the form of h messages.
The causal messages travel with the direction of the arc
in the form of 71 messages. The combination of these
two types of messages, along with the prior probabilities
and link matrices are used to determine the beliefs
associated with each node of the graph. The prior
probabilities give the hypothetical beliefs for each node
before any evidences have been introduced (usually set
to equal probability), and the link matrices represent
conditional probabilities of choosing a hypothesis given
that the values of the hypotheses of a node acting as a
causal influence are already known. For a more detailed
description of BBNs we refer the reader to [2][5][6][12].

1.2 Previous Work
There is a great body of partitioning work that is

well documented in the literature. [l] provides an
excellent review of the major classes of partitioning
algorithms that not only can be used for VLSI circuit
design, but for any system in which components are
grouped and whose inter-group communication must be
kept to a minimum. Among these classes of partitioning
algorithms are the following: (1) move-based
approaches such as greedy and iteritive exchange
algorithms, (2) geometric approaches such as vector
partitioning, (3) combinatorial approaches such as max-
flow min-cut, and (4) clustering-based approaches [11.
In addition, other researchers have either augmented the
general algorithms (for example, Vahid [111 modified
the min-cut algorithm for functional partitioning), or
introduced new types of algorithms (such as Wolf who
employed an object-oriented approach [131).

2.0 THE PARTITIONING PROBLEM

In the design of heterogeneous systems, the
choice of how to implement the system architecture can
make significant differences in performance and
reliability. In the past, a hardware platform was often
chosen and then software was written for correcting the
inadequacies of the hardware. Currently, however,

research has progressed from the idea of partitioning
hardware elements, to that of partitioning a high level
functional model of a system. Figure 1 shows an
example partitioning into hardware and software, with
the system model containing four functional components
(A, B, C, D) that are partitioned into hardware (A, C, D)
and software (B).

System Model Partitioning
Assignments

Figure 1: An illustration of the partitioning problem.

The hardwarelsoftware partitioning
methodology we present here is part of a larger design
context called model-based codesign [7][8]. In model-
based codesign, a set of requirements and specifications
are obtained for the system to be modeled. The system is
then described as an abstract model that is a combination
of its structural and behavioral specifications. Model
components are specified at a high level of abstraction to
remain technology independent. The modeling process
includes a stepwise refinement of specifications to a
desired level of granularity. Then simulation studies are
carried out to gain introspection into how well the
model-based specifications meet the system's
requirements. At the end of the simulation process, a
virtual system's prototype is obtained.

The BBN framework uses the results from the
simulation experiment as evidence. The hardware and
software functional classifications chosen by the BBN
framework are mapped into specific hardware and
software components. At this point, the abstract model is
considered to be mapped onto a collection of
interconnected, real world components.

2.1 BBN Functional Classifications
There are several requirements of a functional

classification system as described above. Evidence
produced from simulation results is propagated
throughout the BBN. Also, coupling between functional
components determines the values in the conditional
matrices. These two facts combined with the
hierarchical nature of the system model requires that
simulation experimental specification and interfaces
between levels of abstraction be well defined. This
ensures that correct evidence is introduced and that the

3984

values in the link matrices allow accurate evidence
propagation. The introduction of evidence along with
the causal structure of the belief network can be
combined to calculate the beliefs of component
classifications (e.g., the analysis of a simulation result
may introduce evidence in support of implementing a
given component in hardware or software). The
classification algorithm and its description follow.

Variables:

Current-Temp
Desired-Temp
Program-Array

C L A S S I F I C A T I O N ALGORITHM

Fixed- Size (order of I
size? magnitude)
Yes 1 byte
Yes 1 byte
Yes 100b yt es

functional-model := generate-functional-model(requiremen ts);
BBN := generate-BBN(functiona1-model);
while (not(synthesizab1c)) do

results := simulate(system-model);
evidence := convert-topevidence(resu I ts);
BBN := propagate-evidence(evidence);
system-model := add-classified-components(BBN);
synthesizable := check-synthesis(system-model);

end while

In the classification algorithm, given an initial system
model, a functional [description of the model is created
(in the format similar to the Specification Level
Intermediate Format (SLIF) model [lo]). Next, the
BBN is generated with nodes representing functional
components, and causal links corresponding to
component coupling$,, function accesses, and functional
independence of colnponents. The choice of which
values to place inside the conditional matrices associated
with each link depend on the communication needs
between the given pair of elements, and how tightly their
performance is coupl1:d. Once the BBN is created, it can
be used to evaluate 1 he current design by incorporating
the simulation results as evidences.

During each iteration of the design loop, results
are obtained from simulation and converted into
evidence that is propagated throughout the BBN. The
beliefs for each available type of classification are
calculated at each component node and the system model
(now possibly with some classified components) is
altered to reflect the new classifications. Simulation is
performed again, and the process is repeated until the
components of the system model reach a level that can
be synthesized into 3 prototype capable of being built
and tested with tangible hardware and software. In
determining if a model can be synthesized into actual
hardware and software components, we look at the
strengths of the beliefs associated with each functional
classification, and check to see if they meet a required
threshold value.

3.0 AN ILLUSTRATIVE EXAMPLE

In this section, we present a programmable
thermostat design example. The thermostat must meet
the following requirements:

The user must be able to set the temperature in the
range 55 degrees F to 100 degrees F.
If cooling, the unit must tum on at desired-temp + 1,
and cool to desired-temp -1
If heating, the unit must tum on at desired-temp - 1,
and heat to desired-temp + 1
The unit must be able to keep track of day of the
week and time of day.
The unit must be able to store 5 temperature zones (a
zone consists of a starting and ending time, along
with a desired temperature) for every day of the
week, which will be active while in the program
mode:
a) The temperature will retum to the default

desired temperature if no temperature zone is
specified for a particular time, and the unit is in
program mode.

b) The default desired temperature would also be
stored where the temperature zone programs are
stored.

The unit must be able to be switched from program
mode to manual mode and back again without
malfunctioning.
There must exist a method to keep the stored
program data in the event of a power failure.
The temperature must be checked at least 10 times
every second.

In meeting these requirements, we adopted a
functional representation similar to SLIF and divided the
problem into variables and functions needed. The table
below gives the variables and a description of whether or
not they are fixed size and an approximate size to each.

Table 1: Variables needed for programmable
thermostat.

The next table gives the names of the needed fimctions
along with the type of algorithm they employ (standard,
loop, or switch) and a rating as to how critical the speed
in which the function is performed (on a scale from 1 to
10).

3985

Functions: Type

1 Get-Current-Temp I Stand. I 5

Speed-Critical-
Rating

Control-Tem

Temp
Accumulate-Elapsed-
Time
Determine-Current-

Loop 10

Loop 8
I Time

Table 2: Set of functions required to implement the
programmable thermostat.

From Table 2, we select to model only those
functions deemed “important” for the function of the
programmable thermostat (excluding input and output)
and generate the BBN shown in Figure 2. Depending on
how a BBN is constructed, and the interpretation of
requirements, the final BBN structure can appear in
many different topologies. Therefore, the BBN shown in
Figure 2 is only one possible interpretation. In this case,
it is easy to see that the causal links point in the direction
of one function calling or accessing another.

The conditional matrices were created using the
information from Table 2, along with communication
assumptions. To interpret the entries to the conditional
matrices, take the entry for row 1, column 1 of the matrix
associated with the link from Control-Temp to
Determine-Desired-Temp (shown in bold). This
particular entry states that the probability that Determine-
Desired-Temp should be implemented in hardware given
that Control-Temp is already implemented in hardware is
75%. Row 2, column 1 indicates the probability that
Determine-Desired-Temp should be implemented in
software given that Control-Temp is implemented in
hardware is 25% (shown in bold). Similarly for the link
from Determine-Current-Time to Accumulate-Elapsed-
Time, it can be seen from the matrix that if Determine-
Current-Time is implemented in hardware, then the
probability that Accumulate-Elapsed-Time should also
be implemented in hardware is 90% (shown in bold). In
general for any link matrix from A + B, column 1
represents A is in hardware, column 2 represents A is in
software, row 1 represents B is in hardware, and row 2
represents B is in software.

j Con=o‘-Temp j

7
Determme-Derired-

Temp

040 0 6 0

Check-Program

Elapsed-Time

Get-Current-Temp

Figure 2: Bayesian belief network for the major
functional components.

With the BBN given, it is now possible to begin
the ‘while’ loop of the algorithm. At this point, the
system model would be simulated and the results from
simulation converted into evidences that can be
propagated throughout the BBN. Because our
methodology is currently a stand-alone system, the
evidences introduced here are estimates of reasonable
values that one would expect to obtain from simulation.
Figure 3 shows one such piece of evidence added to the
node for Determine-Current-Time. Determine-Current-
Time is deemed as a computationally intensive loop that
has to execute often. Because of this, a reasonable
estimate for the evidence that this function should be
implemented in hardware has an 85% probability and a
probability of 15% to be implemented in software.
Figure 3 shows the beliefs associated with each function,
after the introduced evidence has propagated throughout
the BBN. Note that because of the causal relationship
(and strong coupling shown by the conditional matrix)
between Determine-Current-Time and Accumulate-
Elapsed-Time, the belief that Accumulate-Elapsed-Time
should also be implemented in hardware is now
approximately 80%.

3986

Control-Temp

HW 05169
SW 04831

hardware or software is reflected in the system model,
and the process continues until all functions can be
classified into either hardware or software.

c
Determine-Desired-

Temp

HW 06884
SW 03116

BEL

Get-Current-Temp Check-Program

BEL
HW 04221 HW 08623 HW 04623
sw 05779 SW 01377 sw 05377

‘A
Accumulate-Elapsed-

.................
i El i HW 08036

SW 0 1964

Figure 3: Introduction of the first evidence node.

Figure 4 shows another piece of evidence being
added to the BBN; in this case for Control-Temp.
Because Control-Temp calls other functions and does not
need to be performed at critical speeds, a reasonable
performance estimate would have a 25% probability of
being implemented in hardware, and a 75% probability
of being implemented in software. This estimate
assumes that the cost of software is significantly cheaper
than hardware and should be used when performance
permits; an interpretation that would normally be used in
the conversion of simulation results to evidence. The
beliefs shown for each function in Figure 4 are those
valid after the evidence has been propagated throughout
the BBN. It can easily be seen that this piece of evidence
has a profound influence over the Control-Temp function
by changing its probability of being implemented in
software from 48.3 1% to 73.71%. Also note that the
effects of this piece of evidence are felt all the way down
to the Accumulate-]Elapsed-Time function by lowering
the probability it should be implemented in hardware
from 80.36% to 19.04%. A small change, but a change
none the less.

The process of propagating evidences
throughout the BBN continues until no new data can be
introduced. At this point, a decision is made as to
whether or not each function should be implemented in
hardware or software. This decision is based upon the
amount of belief associated with each type of
implementation (i.e., if the belief is greater than some
threshold, e.g., 75%, then that type of implementation
will be chosen). The classification of a function into

Control-Temp

HW 02629
SW 07371

I

BEL I HW 0.6302 I i E2 ‘j

-.*<
SW 03698

Get-Current-Temp Deternune-Current- Check-hogram

BEL
HW 04740
SW OS260 HW 04076 HW 08563

SW 05924 SW 01437

Accumulate-Elapsed-
Time

nw 07994 I SW
02006 I

I I

Figure 4: Introduction of second evidence node.

4.0 CONCLUSIONS

In this paper, we have introduced a new
methodology for functional partitioning into hardware
and software classifications. Through an example
system, we have shown how Bayesian Belief Networks
can be used to propagate evidence regarding
classification of functions into hardware or software
realizations. This propagation permits the effects of a
classification decision made about one function to be felt
throughout the entire network. In addition, because
BBNs have a belief of hypotheses as their core, we know
how well a given classification fits into either hardware
or software. Knowing that a function with a 15%
hardware belief, should be implemented 75% of the time
in hardware allows the user to have a measure of the
appropriateness of their solution.

The work presented in this paper makes several
assumptions. The first assumption is that functions
would be only classified into hardware or software
realizations. Future work will expand the scope of
classifications to include several types of hardware and
mixed types of hardware and software such as
application specific integrated circuits, field
programmable gate arrays, among other intermediate

3987

types. This expansion will be implemented by utilizing
multi-valued hypotheses, where several classifications of
hardware and software are possible for each functional
component.

The second major assumption is that we have in
place a method to generate both the causal structure of
the BBN, and the conditional matrices. Currently, this
construction is performed manually. Future research will
include automatic generation of the causal structure of
the BBN from the input requirements and independence
assumptions that can be made about the relationship
between sets of functional components. In addition, we
plan to automatically generate the conditional matrices
associated with each causal link based on the coupling
and communications between functional components.

Acknowledgments

This work has been supported by the National Science
Foundation under grant No. 9554561 ‘‘Hardware/
Software Codesign for High Performance Systems.”

References

Charles J. Alpert and Andrew B. Kahng, “Recent
Directions In Netlist Partitioning: a Survey,”
Integration, the VLSI Journal, Vol. 19, No. 1-2,

E. Chamiak., “Bayesian networks without tears,”
AI Magazine, Vol. 12, No. 4, (winter 1991) pp.

M. Chiodo, P. Giusto, A. Jurecska, H.C. Hsieh,
A. Sangiovanni-Vincentelli, and L. Lavagno,
“Hardware-Software Codesign of Embedded
Systems”, IEEE Micro, 1994, Vol. 14, No. 4, pp.

D. Gajski, S. Narayan, F. Vahid, and J. Gong,
Spec fication and Design of Embedded Systems,
Englewood Cliffs, NJ: Prentice-Hall, 1994.

August 1995, pp. 1-81.

50-63.

26-36,

Q. Ji and M.M. Marefat, “Bayesian approach for
extracting and identifying features,” Computer
Aided Design, Vol. 27, NO. 6, 1995, pp. 435-54.
J. Pearl, Probabilistic Reasoning in Intelligent
Systems : Networks of Plausible Inference,
Morgan Kaufmann Publishers, San Mateo, CA,
1988.
J. W. Rozenblit and K. Buchenrieder (Eds.),
Codesign: Computer-Aided Sof?are/Hardware
Engineering, IEEE Press, 1994.
S. Schulz, J. W. Rozenblit, M. Mrva, and K.
Buchenrieder, “Model-Based Codesign: the
Framework and its Application, IEEE Computer,
August 1 99 8.
Donald E. Thomas, Jay K. Adams, and Herman
Schmit, “A Model and Methodology for
Hardware-Software Codesign,” IEEE Design and
Test of Computers, Vol. 10, NO. 3, Sept., 1993,

Frank Vahid and Daniel D. Gajski, “SLIF: A
Specification-Level Intermediate Format for
System Design,” Proceedings. The European
Design and Test Conference. ED&TC 1995, pp.

Frank Vahid, “Modifying Min-Cut for Hardware
and Software Functional Partitioning,”
Proceedings of the Fifth International Workshop
on Hardwareisoftware Codesign.

L. C. Van der Gaag, “Bayesian Belief Networks:
Odds and Ends,” Computer Journal, Vol. 39, No.

Wayne Wolf, “Object-Oriented Cosynthesis of
Distributed Embedded Systems, ACM
Transactions on Design Automation of Electronic
Systems, Vol. 1, No. 3, July 1996, pp. 301-31.

pp. 6-15.

185-189.

CODEWCASHE ‘97, pp. 43-48.

2, (1996) pp. 97-1 13.

3988

