
Framework For Hardware/Software Partitioning Utilizing Bayesian Belief Networks 

John T. Olson and Jerzy W. Rozenblit 
Dept. of Electrical and Computer Engr. 

University of Arizona 
Tucson, AZ 8572 1 

{Olson I jr}@ece.arizona.edu 

ABSTRACT 

In heterogeneous systems design, partitioning of 
the functional specifications into hardware and software 
components is an important procedure. Often, a 
hardware platform is chosen and the software is mapped 
onto the existing partial solution, or the actual 
partitioning is performed in an ad hoc manner. The 
partitioning approach presented here is novel in that it 
uses Bayesian Belicf Networks (BBNs) to categorize 
functional components into hardware and software 
classifications. First, the motivation and background 
material are preserted. Then, a case study of a 
programmable thermostat is developed to illustrate the 
BBN approach. The outcomes of the partitioning 
process are discussed and placed in a larger design 
context, called model -based codesign. 

1.0 INTRODUCTION 

In this article, we propose a new approach to the 
hardwarelsoftware partitioning problem [3][4][9] by 
utilizing Bayesian Belief Networks for functional 
component classification into hardware and software. 
Design of heterogeneous systems entails choosing which 
functional componmts should be implemented in 
hardware and which should be implemented in software. 
Classically, a hardware platform is chosen and the 
software is written to make the hardware meet the 
specified requirements. The problem with this approach, 
however, is that during system integration, interface and 
incompatibility prohlems arise. Hardware/software 
partitioning is used to push the implementation decisions 
back so that the decision of whether to use hardware or 
software is not made in isolation for each functional 
component. 

In our prebious work, we have established a 
systematic approach to design of heterogeneous systems. 
Called model-based codesign [7][8], this approach uses 
simulatable system descriptions as the basis for the 
generation of design descriptions from which the real 

system is built. Simulation is used as a primary means of 
verifying functional requirements of the design. Thus, in 
parallel to the simulation, classifications to the system 
model components into hardware or software must be 
made. 

The partitioning approach presented here uses 
the Bayesian Belief Network (BEIN) concept 
[2][5][6][ 121 for classification of functional elements 
within the system model. The reasons for using the BBN 
framework are: (1) its aptitude to represent the causal 
nature of a functional description (e.g., a function, A, 
calling another function, B, is a causal influence from A 
to B)  and (2) the ability to distribute local evidence 
throughout the entire network and thus, make the effects 
of a local partitioning decision affect partitioning 
decisions throughout the entire model. This in 
conjunction with the other benefit of having probabilistic 
measurements as to the correctness of classification 
decisions makes the use of BBNs appropriate. 

In the ensuing sections, we first describe the 
principles of BBNs and briefly suimmarize the 
hardwarelsoftware partitioning work. Then, we present 
the BBN-based partitioning methodology. An 
illustrative partitioning problem is introduced in Section 
3 to demonstrate our technique. 

1.1 Background 
A Bayesian Belief Network (BBN) is a directed 

acyclic graph, representing the causal nature of a 
problem domain [5]. A BBN is composed. of two parts: 
(1) the graphical representation showing the causal 
relationship between nodes (the qualitative part), and (2) 
the conditional matrices associated with each link and 
the equations that govern the propagation of evidence 
(the quantitative part). 

In the qualitative portion of a BEIN, a directed 
arc from any node A to another node B (denoted A 3 B)  
denotes the causal influence of A over B. The use of the 
qualitative portion of a BBN lies in the gr,aphical nature 
in which it is represented. Someone with little 
experience in the area of probablistic reasoning can 
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easily understand the causal relationships among 
thenodes. Each node within a BBN represents a 
statistical random variable, which may comprise of 
several hypotheses. 

When distributing probablistic evidence 
throughout a BBN, two types of messages are used: (1) 
evidence messages carry the effects of newly introduced 
evidence, and (2) causal messages carry the effects of 
causal influences. The quantitative portion of a BBN 
uses the qualitative part by determining in which 
direction the evidence and causal messages travel 
throughout the network. Evidence messages travel 
against the direction of the arc in the form of h messages. 
The causal messages travel with the direction of the arc 
in the form of 71 messages. The combination of these 
two types of messages, along with the prior probabilities 
and link matrices are used to determine the beliefs 
associated with each node of the graph. The prior 
probabilities give the hypothetical beliefs for each node 
before any evidences have been introduced (usually set 
to equal probability), and the link matrices represent 
conditional probabilities of choosing a hypothesis given 
that the values of the hypotheses of a node acting as a 
causal influence are already known. For a more detailed 
description of BBNs we refer the reader to [2][5][6][12]. 

1.2 Previous Work 
There is a great body of partitioning work that is 

well documented in the literature. [ l ]  provides an 
excellent review of the major classes of partitioning 
algorithms that not only can be used for VLSI circuit 
design, but for any system in which components are 
grouped and whose inter-group communication must be 
kept to a minimum. Among these classes of partitioning 
algorithms are the following: (1) move-based 
approaches such as greedy and iteritive exchange 
algorithms, (2) geometric approaches such as vector 
partitioning, (3) combinatorial approaches such as max- 
flow min-cut, and (4) clustering-based approaches [ 11. 
In addition, other researchers have either augmented the 
general algorithms (for example, Vahid [ 111 modified 
the min-cut algorithm for functional partitioning), or 
introduced new types of algorithms (such as Wolf who 
employed an object-oriented approach [ 131). 

2.0 THE PARTITIONING PROBLEM 

In the design of heterogeneous systems, the 
choice of how to implement the system architecture can 
make significant differences in performance and 
reliability. In the past, a hardware platform was often 
chosen and then software was written for correcting the 
inadequacies of the hardware. Currently, however, 

research has progressed from the idea of partitioning 
hardware elements, to that of partitioning a high level 
functional model of a system. Figure 1 shows an 
example partitioning into hardware and software, with 
the system model containing four functional components 
(A, B, C, D) that are partitioned into hardware (A, C, D) 
and software (B). 

System Model Partitioning 
Assignments 

Figure 1: An illustration of the partitioning problem. 

The hardwarelsoftware partitioning 
methodology we present here is part of a larger design 
context called model-based codesign [7][8]. In model- 
based codesign, a set of requirements and specifications 
are obtained for the system to be modeled. The system is 
then described as an abstract model that is a combination 
of its structural and behavioral specifications. Model 
components are specified at a high level of abstraction to 
remain technology independent. The modeling process 
includes a stepwise refinement of specifications to a 
desired level of granularity. Then simulation studies are 
carried out to gain introspection into how well the 
model-based specifications meet the system's 
requirements. At the end of the simulation process, a 
virtual system's prototype is obtained. 

The BBN framework uses the results from the 
simulation experiment as evidence. The hardware and 
software functional classifications chosen by the BBN 
framework are mapped into specific hardware and 
software components. At this point, the abstract model is 
considered to be mapped onto a collection of 
interconnected, real world components. 

2.1 BBN Functional Classifications 
There are several requirements of a functional 

classification system as described above. Evidence 
produced from simulation results is propagated 
throughout the BBN. Also, coupling between functional 
components determines the values in the conditional 
matrices. These two facts combined with the 
hierarchical nature of the system model requires that 
simulation experimental specification and interfaces 
between levels of abstraction be well defined. This 
ensures that correct evidence is introduced and that the 
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values in the link matrices allow accurate evidence 
propagation. The introduction of evidence along with 
the causal structure of the belief network can be 
combined to calculate the beliefs of component 
classifications (e.g., the analysis of a simulation result 
may introduce evidence in support of implementing a 
given component in hardware or software). The 
classification algorithm and its description follow. 

Variables: 

Current-Temp 
Desired-Temp 
Program-Array 

C L A S S I F I C A T I O N  ALGORITHM 

Fixed- Size (order of I 
size? magnitude) 
Yes 1 byte 
Yes 1 byte 
Yes 100b yt es 

functional-model := generate-functional-model(requiremen ts); 
BBN := generate-BBN(functiona1-model); 
while (not(synthesizab1c) ) do 

results := simulate(system-model); 
evidence := convert-topevidence( resu I ts); 
BBN := propagate-evidence(evidence); 
system-model := add-classified-components(BBN); 
synthesizable := check-synthesis(system-model); 

end while 

In the classification algorithm, given an initial system 
model, a functional [description of the model is created 
(in the format similar to the Specification Level 
Intermediate Format (SLIF) model [lo]). Next, the 
BBN is generated with nodes representing functional 
components, and causal links corresponding to 
component coupling$,, function accesses, and functional 
independence of colnponents. The choice of which 
values to place inside the conditional matrices associated 
with each link depend on the communication needs 
between the given pair of elements, and how tightly their 
performance is coupl1:d. Once the BBN is created, it can 
be used to evaluate 1 he current design by incorporating 
the simulation results as evidences. 

During each iteration of the design loop, results 
are obtained from simulation and converted into 
evidence that is propagated throughout the BBN. The 
beliefs for each available type of classification are 
calculated at each component node and the system model 
(now possibly with some classified components) is 
altered to reflect the new classifications. Simulation is 
performed again, and the process is repeated until the 
components of the system model reach a level that can 
be synthesized into 3 prototype capable of being built 
and tested with tangible hardware and software. In 
determining if a model can be synthesized into actual 
hardware and software components, we look at the 
strengths of the beliefs associated with each functional 
classification, and check to see if they meet a required 
threshold value. 

3.0 AN ILLUSTRATIVE EXAMPLE 

In this section, we present a programmable 
thermostat design example. The thermostat must meet 
the following requirements: 

The user must be able to set the temperature in the 
range 55 degrees F to 100 degrees F. 
If cooling, the unit must tum on at desired-temp + 1, 
and cool to desired-temp -1 
If heating, the unit must tum on at desired-temp - 1, 
and heat to desired-temp + 1 
The unit must be able to keep track of day of the 
week and time of day. 
The unit must be able to store 5 temperature zones (a 
zone consists of a starting and ending time, along 
with a desired temperature) for every day of the 
week, which will be active while in the program 
mode: 
a) The temperature will retum to the default 

desired temperature if no temperature zone is 
specified for a particular time, and the unit is in 
program mode. 

b) The default desired temperature would also be 
stored where the temperature zone programs are 
stored. 

The unit must be able to be switched from program 
mode to manual mode and back again without 
malfunctioning. 
There must exist a method to keep the stored 
program data in the event of a power failure. 
The temperature must be checked at least 10 times 
every second. 

In meeting these requirements, we adopted a 
functional representation similar to SLIF and divided the 
problem into variables and functions needed. The table 
below gives the variables and a description of whether or 
not they are fixed size and an approximate size to each. 

Table 1: Variables needed for programmable 
thermostat. 

The next table gives the names of the needed fimctions 
along with the type of algorithm they employ (standard, 
loop, or switch) and a rating as to how critical the speed 
in which the function is performed (on a scale from 1 to 
10). 
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Functions: Type 

1 Get-Current-Temp I Stand. I 5 

Speed-Critical- 
Rating 

Control-Tem 

Temp 
Accumulate-Elapsed- 
Time 
Determine-Current- 

Loop 10 

Loop 8 
I Time 

Table 2: Set of functions required to implement the 
programmable thermostat. 

From Table 2, we select to model only those 
functions deemed “important” for the function of the 
programmable thermostat (excluding input and output) 
and generate the BBN shown in Figure 2. Depending on 
how a BBN is constructed, and the interpretation of 
requirements, the final BBN structure can appear in 
many different topologies. Therefore, the BBN shown in 
Figure 2 is only one possible interpretation. In this case, 
it is easy to see that the causal links point in the direction 
of one function calling or accessing another. 

The conditional matrices were created using the 
information from Table 2, along with communication 
assumptions. To interpret the entries to the conditional 
matrices, take the entry for row 1, column 1 of the matrix 
associated with the link from Control-Temp to 
Determine-Desired-Temp (shown in bold). This 
particular entry states that the probability that Determine- 
Desired-Temp should be implemented in hardware given 
that Control-Temp is already implemented in hardware is 
75%. Row 2, column 1 indicates the probability that 
Determine-Desired-Temp should be implemented in 
software given that Control-Temp is implemented in 
hardware is 25% (shown in bold). Similarly for the link 
from Determine-Current-Time to Accumulate-Elapsed- 
Time, it can be seen from the matrix that if Determine- 
Current-Time is implemented in hardware, then the 
probability that Accumulate-Elapsed-Time should also 
be implemented in hardware is 90% (shown in bold). In 
general for any link matrix from A + B, column 1 
represents A is in hardware, column 2 represents A is in 
software, row 1 represents B is in hardware, and row 2 
represents B is in software. 

j Con=o‘-Temp j 

7 
Determme-Derired- 

Temp 

040  0 6 0  

Check-Program 

Elapsed-Time 

Get-Current-Temp 

Figure 2: Bayesian belief network for the major 
functional components. 

With the BBN given, it is now possible to begin 
the ‘while’ loop of the algorithm. At this point, the 
system model would be simulated and the results from 
simulation converted into evidences that can be 
propagated throughout the BBN. Because our 
methodology is currently a stand-alone system, the 
evidences introduced here are estimates of reasonable 
values that one would expect to obtain from simulation. 
Figure 3 shows one such piece of evidence added to the 
node for Determine-Current-Time. Determine-Current- 
Time is deemed as a computationally intensive loop that 
has to execute often. Because of this, a reasonable 
estimate for the evidence that this function should be 
implemented in hardware has an 85% probability and a 
probability of 15% to be implemented in software. 
Figure 3 shows the beliefs associated with each function, 
after the introduced evidence has propagated throughout 
the BBN. Note that because of the causal relationship 
(and strong coupling shown by the conditional matrix) 
between Determine-Current-Time and Accumulate- 
Elapsed-Time, the belief that Accumulate-Elapsed-Time 
should also be implemented in hardware is now 
approximately 80%. 
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Control-Temp 

HW 05169 
SW 04831 

hardware or software is reflected in the system model, 
and the process continues until all functions can be 
classified into either hardware or software. 

c 
Determine-Desired- 

Temp 

HW 06884 
SW 03116 

BEL 

Get-Current-Temp Check-Program 

BEL 
HW 04221 HW 08623 HW 04623 
sw 05779 SW 01377 sw 05377 

‘A 
Accumulate-Elapsed- 

................. 
i El i HW 08036 

SW 0 1964 .... ............... 

Figure 3: Introduction of the first evidence node. 

Figure 4 shows another piece of evidence being 
added to the BBN; in this case for Control-Temp. 
Because Control-Temp calls other functions and does not 
need to be performed at critical speeds, a reasonable 
performance estimate would have a 25% probability of 
being implemented in hardware, and a 75% probability 
of being implemented in software. This estimate 
assumes that the cost of software is significantly cheaper 
than hardware and should be used when performance 
permits; an interpretation that would normally be used in 
the conversion of simulation results to evidence. The 
beliefs shown for each function in Figure 4 are those 
valid after the evidence has been propagated throughout 
the BBN. It can easily be seen that this piece of evidence 
has a profound influence over the Control-Temp function 
by changing its probability of being implemented in 
software from 48.3 1% to 73.71%. Also note that the 
effects of this piece of evidence are felt all the way down 
to the Accumulate-]Elapsed-Time function by lowering 
the probability it should be implemented in hardware 
from 80.36% to 19.04%. A small change, but a change 
none the less. 

The process of propagating evidences 
throughout the BBN continues until no new data can be 
introduced. At this point, a decision is made as to 
whether or not each function should be implemented in 
hardware or software. This decision is based upon the 
amount of belief associated with each type of 
implementation (i.e., if the belief is greater than some 
threshold, e.g., 75%, then that type of implementation 
will be chosen). The classification of a function into 

Control-Temp 

HW 02629 
SW 07371 

I 

BEL I HW 0.6302 I i E2 ‘j 

-.*< 
SW 03698 ................ 

Get-Current-Temp Deternune-Current- Check-hogram 

BEL 
HW 04740 
SW OS260 HW 04076 HW 08563 

SW 05924 SW 01437 

Accumulate-Elapsed- 
Time 

nw 07994 I SW 
02006 I 

I I 

Figure 4: Introduction of second evidence node. 

4.0 CONCLUSIONS 

In this paper, we have introduced a new 
methodology for functional partitioning into hardware 
and software classifications. Through an example 
system, we have shown how Bayesian Belief Networks 
can be used to propagate evidence regarding 
classification of functions into hardware or software 
realizations. This propagation permits the effects of a 
classification decision made about one function to be felt 
throughout the entire network. In addition, because 
BBNs have a belief of hypotheses as their core, we know 
how well a given classification fits into either hardware 
or software. Knowing that a function with a 15% 
hardware belief, should be implemented 75% of the time 
in hardware allows the user to have a measure of the 
appropriateness of their solution. 

The work presented in this paper makes several 
assumptions. The first assumption is that functions 
would be only classified into hardware or software 
realizations. Future work will expand the scope of 
classifications to include several types of hardware and 
mixed types of hardware and software such as 
application specific integrated circuits, field 
programmable gate arrays, among other intermediate 
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types. This expansion will be implemented by utilizing 
multi-valued hypotheses, where several classifications of 
hardware and software are possible for each functional 
component. 

The second major assumption is that we have in 
place a method to generate both the causal structure of 
the BBN, and the conditional matrices. Currently, this 
construction is performed manually. Future research will 
include automatic generation of the causal structure of 
the BBN from the input requirements and independence 
assumptions that can be made about the relationship 
between sets of functional components. In addition, we 
plan to automatically generate the conditional matrices 
associated with each causal link based on the coupling 
and communications between functional components. 
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