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Abstract Whether it be one security expert covering more
systems or reducing total man-hours, there has always been
a push to do more with less. Intuitively, we realize different
systems need different levels of security. To aid in this effort,
we develop multiresolution attacker/defender games by com-
bining two game theoretic approaches: resource assign-
ment and optimal response. We use the resource assign-
ment game to determine the level of detail necessary to build
the game needed to respond optimally to attacks. To aid in
the selection of a resource assignment game and an optimal
response game, we present considerations and survey numer-
ous works. Further resource savings are possible when the
optimal response games share features. Even though effort
sharing between systems ought to be addressed during the
resource-allocation game, we present both a linear effort
sharing model and a method for solving post hoc. An illus-
trative example demonstrates the potential savings from our
technique.

Keywords Multiresolution · Games · Game theory ·
Attacker/defender · Security · Survey

1 Introduction

Defending assets have become one of the top priorities for
network administrators and homeland defense alike. Due
to the nature of the interactions between the attackers and
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defenders, game theory provides an appropriate framework
to aid in all sorts of security breaches. Since the attacks on
September 11, 2001, game theory research and application
have become as popular as they were back in the cold war
era. Then, as now, game theory has been studied as a mech-
anism for defense. However, the major difference between
then and now is the nature of attackers. Today, game theory
targets counter-terrorism [2,58,59] rather than international
policy [9].

Defenders need to know both how to distribute resources
among assets and how to protect them. While game theory
has been used to provide answers to how to protect assets [47–
50,63] and how to distribute resources [1,3,4,16,21,31], they
provide the answers separately. However, we can do better
by combining these two approaches. Thus, we propose com-
bining these two approaches with a multiresolution approach
[5,7,56,65].

Knowing that some assets require more resources to opti-
mally defend, naturally leads to the use of multiresolution
models. Methods that provide optimal response actions to
attacks [49,50,63] require significant amounts of time and
information to construct their models. Therefore, it is logi-
cal for the resources spent developing the attacker/defender
games to be a function of the resources allocated to defend-
ing that asset. If some assets require more resources, then
some models will have higher levels of detail. This is what
we mean by multiresolution models.

Kobbelt et al. [36], Garland [8], Park et al. [52], and
Goswami et al. [12] use multiresolution in context of com-
puter graphics and computer vision. The basic idea is that
objects (polygons, point clouds, etc.) which are further away
or are partially obscured have lower levels of detail. This
means they can be approximated using less information. By
abstracting this approach from computer graphics and using it
for decision support, threats deemed “far away” can be mod-
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eled more frugally, saving resources. While a threat being
“far away” is undefined, it is clear that it depends on the
probability of the attacks and the value of the assets. There-
fore, we propose making an attacker/defender game’s level
of detail a function of the resources allocated to it.

Note that a multiresolution approach can be applied to
the construction of a game or to its analysis. We will only
briefly address multiresolution game analysis. In multireso-
lution analysis, each action Ai (a high level of abstraction)
has more detailed instantiations Ai j . All Ai j simplify to
Ai when the game, its consequences, or the actions’ con-
sequences are deemed sufficiently “far away”. The bulk of
this paper will focus on the multiresolution construction of
games. By this, we mean more significant threats receive
more elaborate games to minimize the potential damage.

The rest of the paper proceeds as follows. Section 2 dis-
cusses the selection of attacker/defender games. Subsections
review one method for resource allocation and one method
for determining optimal responses. Multiresolution games
and effort sharing are covered in Sect. 3. We provide an illus-
trative example in Sect. 4. Conclusions and further research
directions are given in Sect. 5.

2 A comparison of works

A summary and comparison of different works are in Tables 1
and 2. We only cover the works most relevant to our approach.
For a larger survey, but using a different classification system,
see the work by Hausken and Levitin [29]. The tables are
abbreviated using the “list of title word abbreviations”.1 We
also introduce more abbreviations in the text that follows.

Since we are pairing a resource-allocation (res-alloc.)
game and an optimal response action game (det. resp. act.),
these games should use similar frameworks. This makes the
assumptions consistent. We will consider several assump-
tions and introduce their abbreviations. Issues to consider
include whether the payoffs are stochastic (stoch.) or deter-
ministic (non-stoch.); which moments do the stochastic
frameworks optimize; what are the models; are moves simul-
taneous (simult.), sequential (seq.), or only one-sided (agno.);
and what is the type of analysis (i.e., optimization (optim.)
or Nash equilibria). While consistent frameworks are not
strictly required, consistency helps justify of the results.

Likewise, we prefer accurate frameworks. There are pri-
marily two ways to improve accuracy: more detailed models
and better approximations. Most of the works in Table 1
take into account system structure such as series, parallel,
nearly decomposable, interdependent, or n-out-of-k systems.
If the assets in question are part of a larger system, composed

1 For a complete list see http://www.issn.org/services/online-services/
access-to-the-ltwa/.

in any of these manners, then these works provide more
detailed models. On the other hand, accuracy can be bol-
stered by using better approximations. According to Samuel-
son [57], any distribution can be characterized by its mean,
variance, skewness, kurtosis, etc. Using higher moments will
increase both the complexity and accuracy of the analysis.
By optimizing only the expected value (EV), one assumes
a linear utility function. Contrary to this, most reasonable
utility functions have diminishing returns implying they are
nonlinear. To account for this behavior, we must take into
account higher moments. Substituting the uncertain payoffs
with μ − ασ 2, a linear combination of the expected value
and variance (VAR), is a common practice in the economic
literature [60]. Thus, we prefer stochastic models which use
higher moments. Works that use higher moments are all listed
at the bottom of Table 2.

Tables 1 and 2 show a myriad of models. The works in
Table 1 are built off of additive (A-), series (S-), parallel
(P-), combined (C-), nearly decomposable (ND-), n-out-of-
k (NooK-), interdependent or interlinked (I-) system struc-
tures. For example, Hausken [13] studies additive, series, and
parallel systems (ASP-syst.). Other models include “ratio”
and “difference” (diff.) contest functions [35], balls-and-
bins models [55], and resource-constrained shortest-path
problem (RCSPP) [34]. Many are based on Markov deci-
sion processes (MDP) and its extensions. These include
multiagent Markov decision processes (MMDP), partially
observable Markov decision processes (POMDP), multia-
gent partially observable Markov decision processes (MPO-
MDP), and partially observable competitive Markov decision
processes (POCMDP) [33]. Some works use generic func-
tions as models; when possible we list properties of these
functions such as whether they are affine (aff.), linear (lin.),
or multiplicative (mult.). However, we are unaware of any
study definitively showing one model being superior. For
this reason, we are indifferent toward models.

While we cannot thoroughly discuss all relevant works,
we pick a few to review more in depth. The authors of
Carin et al. [6] present an analysis tool called Quantita-
tive Evaluation of Risk for Investment Efficient Strategies
(QuERIES). QuERIES takes a protection map (a detailed
security plan) and reverse-engineering methodologies to gen-
erate a POMDP, from which it can quantify risk and esti-
mate probability distributions (est. prob. dist.). Hausken [18]
builds on much of Hausken’s earlier works to cover a large
variety of different system configurations, including how to
decompose some systems into a combination of serial and
parallel subsystems. Levitin [39] uniquely discusses how to
allocate resources (between detection and destruction) when
there are unknown parameters in the ratio contest functions.
Various works focus on trade-offs between defense, hiding,
separation of assets, the separation strategy (sep. strat.), false
targets, and redundancy.
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Table 1 Comparison & summary of related works

Related work Objective Payoff and
moments

Model Move type Analysis type

Azaiez and Bier [1] Res-alloc. EV Testing PS-syst. One-sided Optim.

Bier et al. [4] Res-alloc. EV PS-syst. One-sided Optim.

Hausken [13] Res-alloc. EV ASP-syst. Simult. Nash

Hausken [15] Res-alloc. EV Ratio cont., CSP-syst. Simult. Nash

Hausken [17] Res-alloc. EV Ratio cont., CISP-syst. Simult. Nash

Hausken [18] Res-alloc. EV Ratio cont.,
CINDNooKSP-syst.

Simult. Nash

Hausken [20] Res-alloc. EV Ratio and diff. cont.,
CIPS-syst.

Simult. Nash

Hausken and
Levitin [24]

Res-alloc. EV Ratio cont., P-syst. N.A. Def. vs. sep.

Hausken and
Levitin [25]

Res-alloc., sep. strat.,
est. prob. dist.

EV CPS-syst. Seq. Nash

Hausken and
Levitin [26]

Res-alloc. (def. vs. false
targets)

EV Ratio cont., S-syst. Seq. Nash and
optim.

Hausken and
Levitin [27]

Res-alloc. (def. vs. sep.) EV Ratio cont., P-syst. Simult. Nash

Hausken and
Levitin [28]

Res-alloc. (2-seq. attacks) EV Ratio cont., P-syst. Seq. Nash

Hausken [14,16] Res-alloc. EV Ratio cont., SP-syst. Simult. Nash

Hausken [21] Res-alloc. EV Ratio cont., S-syst. Seq. Nash

Levitin [37],
Levitin and
Ben-Haim [41],
Levitin [38,40]

Res-alloc., sep.
strat., est. prob.
dist.

EV SP-syst., unmet demand Seq. Nash

Levitin and
Hausken [42]

Res-alloc. (def. vs.
redundancy)

EV Ratio cont., P-syst.,
unmet demand

Seq. Nash

Levitin and
Hausken [43]

Res-alloc., sep. strat.,
est. prob. dist.

EV Ratio cont., P-syst.,
unmet demand

Seq. Nash

Levitin and
Hausken [45]

Res-alloc. (def. vs. sep.) EV Ratio cont., SP-syst. Seq. Nash

Peng et al. [53] Res-alloc. (def. vs. false
targets)

EV Ratio cont., SP-syst. Seq. Nash and
optim.

Multiple methods from Tables 1 and 2 form good combi-
nations to determine multiresolution optimal responses. We
will review two which work well together. For the rest of
this paper, we will be using the resource allocation from Szi-
darovszky and Luo [62] to calculate the level of detail. This
level of detail will be used to build general purpose games
of the type mentioned in [63]. We chose these two because
they both account for variance-based risk, both can produce
optimal solutions taking the opponent’s prior probabilities
into account, Valenzuela et al. [63] allow games to reuse
elements from other games, and Valenzuela et al. [63] pro-
vide a model with nonlinear rules. These two are reviewed
in Sects. 2.1 and 2.2.

2.1 The resource assignment game

Szidarovszky and Luo [62] suppose I independent potential
targets need defending. Let a particular target be represented
by i ∈ {1, 2, . . . , I }. Each target is valued as being worth vi .

The attacker’s efforts, ni , are known and the defenders
efforts, mi , are to be determined. Using the standard ratio
contest function and the target’s value, the defender avoids
vi mi

mi+ni
damage at a cost of ci mi , where ci is the unit cost to

defend. This cost is only incurred if the target is attacked.
Each target has the probability pi of being attacked. There-
fore, the defender’s payoff is

ui =
{ vi mi

mi+ni
− ci mi with probability pi

0 with probability 1− pi
(1)

The objective function is the certainty equivalent [60] of this
random payoff:

D = E [u]− r V ar [u]

s.t. B �
I∑

i=1

ci mi

u =
I∑

i=1

ui
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Table 2 Comparison & summary of related works

Related work Objective Payoff and
moments

Model Move type Analysis type

Bier et al. [3] Res-alloc. (two locations) EV Gen. Simult. and seq. Nash

Carin et al. [6] Quant. risk, est. prob. dist. EV POMDP Agno. Agno.

Golany et al. [10] Res-alloc. (schedule) Non-stoch. RCSPP N.A. Optim.

Golany et al. [11] Res-alloc. (schedule) EV Damage while wait. Simult. Nash and optim.

Hausken et al. [23] Res-alloc. (vs. terror.
and nature)

EV Ratio cont., aff. Simult. and seq. Nash and optim.

Hausken and
Bier [22]

Res-alloc. (1 asset) EV Ratio cont. Simult. Nash (n-player)

Hausken [19] Res-alloc. (2 assets) EV Ratio cont. Simult. Nash

Hausken and
Zhuang [30]

Res-alloc. (2-seq. attacks) EV Ratio cont., aff. Seq. Nash

Hausken and
Zhuang [31]

Res-alloc. (T-period
defense/attack)

EV Ratio cont. Seq. Nash

Hausken and
Zhuang [32]

Res-alloc. (1 asset,
myopic repeated)

EV Ratio cont., aff. Seq. Nash

Levitin [39] Res-alloc. (def. vs.
hiding)

EV and worst-case Ratio cont., mult. Simult. Nash

Levitin and
Hausken [44]

Res-alloc. (2-seq.
attacks)

EV Ratio cont. Seq. Nash

Shen et al. [61] Det. resp. act. (many
players with teams)

EV MMDP w/
hierarchical
payoffs

Simult. Nash

Wang et al. [64] Max. prob. of
service availab.

Stoch. Balls-and-bins Poisson Agno. Optim.

Zhang and Ho [66] Ident. pivots of
attack schemes

EV MPO-MDP Simult. Optim.

Zhuang and Bier [67] Res-alloc. EV Gen. Simult. and seq. Nash

Zhuang et al. [68] Res-alloc. and signaling EV Ratio cont. Partially simult. Nash

Zonouz et al. [69] Det. counter-measures EV POCMDP Seq. Nash

Luo et al. [48] Det. multistage
block levels

EV Custom Seq. Nash

Luo et al. [49] Det. resp. act. EV, VAR Gen. Seq. Optim.

Luo et al. [50] Det. resp. act. EV, VAR Gen. Seq. Optim.

Szidarovszky and
Luo [62]

Res-alloc. EV, VAR Ratio cont. Agno. Optim.

Valenzuela et al. [63] Det. resp. act. EV, VAR Aff., state space Seq. Nash and optim.

where r ∈ R is the risk attitude of the decision maker, E [u]
is the expected value, V ar [u] is the variance of u, and B is
the defender’s budget.

This optimization problem is non-convex, the solution of
which has numerical difficulties, and the computed result
has no guarantee it is globally optimal. By introducing new
decision variables, the objective function D transforms into
a concave function. Since the constraints also become con-
cave, the problem comes a standard concave programming
problem. It can be solved with standard gradient algorithms
[46]. Moreover, the problem further simplifies if the bud-
get is sufficiently large. Then the problem reduces to the
following three-stage problem. First solve for m∗i , the sta-
tionary point for (1) and calculate the corresponding pay-
off u∗i . For all m∗i ≤ 0, use mi = 0 to calculate u∗i .

Second, solve for ui and an auxiliary variable2 Q, such
that

I∑
i=1

pi ui (Q) = Q (2)

where

ui (Q) =
{

Q + 1
2 r if Q ≤ u∗i − 1

2 r
u∗i otherwise

(3)

This can be solved easily by finding the intersection of a 45
degree line (Q) passing through the origin with the piece-
wise linear function

∑I
i=1 pi ui (Q). The solution is unique

provided r is finite. Then given ui solve for mi according

2 Q allows us to solve for ui despite each ui depending on all other u j .
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to (1). If two solutions exist, take the smaller positive solu-
tion.

While the resource allocation is useful in itself, it does not
prescribe a course of action to defend the target. However,
the resources allocated to each target can then be used to
determine how much effort (e.g., man-hours) should be used
to determine such courses of action. Since game theory can
also be used to prescribe courses of action, the resources
distributed to a target ought to, in part, be used to construct
these elaborate games.

2.2 The optimal response framework

Valenzuela et al. [63] introduce both a game theoretic frame-
work and a game builder tool. The framework is similar to
other repeated two-person games with the notable exceptions
that it includes:

1. a rule set (i.e., when the strategies are available),
2. a state space that actions (strategies) influence,
3. initial conditions for each player,
4. a linear mapping from the state space to the payoff for

each player,
5. risk attitudes for each player, and
6. optional prior probabilities.

Nevertheless, the most important detail about this work is
that it possesses a system to reuse actions and rule sets. This
feature makes this work particularly attractive for building
multiresolution games when reuse of rules or actions is pos-
sible.

Unlike many repeated games which have been studied in
the literature, the available actions change depending on the
triggered rules. Each rule can be mathematically defined as
a seven-tuple consisting of:

1. a set of triggering players,
2. a set of triggering actions,
3. an add/remove operator,
4. a set of add/remove actions,
5. a set of affected players,
6. the rule’s life span in number of turns, and
7. a Boolean describing if it is initially active.

A rule is triggered when any of the triggering actions are per-
formed by a triggering player. When a rule is triggered, it will
allow/disallow strategies for one or both players for the spec-
ified number of turns. This allows for complex interactions.
For instance, after a player has been attacked first, an action
“attack” might be replaced with the action “retaliate”, where
“retaliate” effects the state of the game differently from the
“attack”.

To provide better introspection into the state of the game,
Valenzuela et al. [63] use a state space-based cost-benefit

model. A state space-based cost-benefit model is a collection
of real numbers describing the resources or factors for each
player. These resources/factors provide meaningful informa-
tion about the state of the game. They may come from pop-
ular analyzes such as PMESII (political, military, economic,
social, infrastructure, and information systems)3 or ASCOPE
(areas, structures, capabilities, organizations, people, events)
[51]. A state space allows for a more natural representation
of the impact of actions and provides insight into why an
outcome would be considered good or bad.

The state space-based cost-benefit model provides the fun-
damental way strategies interact and provides the basis for
the player payoffs. Strategies perform affine transformations
on the state space. Let s be the old state concatenated with
the value 1.0 and M be the affine transformation. Then the
new state is s′ = Ms. For example, an action operating under
the ASCOPE model will have a 12×13 matrix, and the state
space will be a vector of length 12. Likewise, each player
has a linear transformation of the state vector which gener-
ates their payoff. Again assuming the ASCOPE model, each
player would have 12 weights describing the relative impor-
tance of each component of the state.

Each player also has a real number describing their risk
attitude r . Larger values of r mean the player wants to avoid
risk (have tighter guarantees), and smaller values of r mean
the player is risk seeking. This risk attitude is interpreted
identically to the risk attitude in Szidarovszky and Luo [62].
Let an action a have the outcome distribution ua . Then the
objective function maximized is

E [ua]− r V ar [ua] . (4)

The variables and methods in Algorithm 1 are described
as follows. The variable players contains an attacker and
defender player. Each player contains their risk attitudes, ini-
tial state vector, and a linear payoff function as previously
defined. The variable actions is a set of affine transition
matrices. rules is a set of rules, with each rule containing
the aforementioned seven-tuple. max Depth is an integer
which limits the depth the game tree is expanded. The method
BuildProbabilisticGameTree builds the game tree out
to max Depth and works from the leaves back to the root
assigning probabilities according to the details in the work of
Valenzuela et al. [63]. GetValidActions returns the avail-
able actions at the root node, and StatsFromGameTree
collects the variance and expected value for each action at
the root of the game tree.

The game proceeds roughly as shown in Algorithm 1.
Some steps were hidden for brevity, specifically the steps for
generating the attacker’s action distribution and exploring the
game tree. Using the defender’s prior action distribution, the
attacker calculates the payoff distribution for each of his/her

3 See http://pmesii.dm2research.com/wiki/index.php/Main_Page.
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Algorithm 1 The game proceeds as follows
1: Procedure Analysis(players, actions, rules, max Depth)

2: turn← 0
3: histor y ← empty
4: gameT ree← empty
5: while turn < enough do
6: if IsEven(turn) then � Even turn→ attacker’s turn
7: risk ← player.attacker.risk
8: else
9: risk ← player.de f ender.risk
10: end if
11: scores ← empty
12: statistics ← empty
13: lowCut ←−∞ � Lower bound on performance
14: gameT ree← BuildProbabilisticGameTree(

gameT ree, players, actions, rules,
turn, histor y, max Depth − 1)

15: valid Actions ← GetValidActions(gameT ree, turn)

16: for all a ∈ valid Actions do � Collect statistics
17: act Stats ← StatsFromGameTree(

players, a, gameT ree)
18: lowCut ← Max(lowCut, act Stats.min)

19: Append act Stats → statistics
20: end for
21: for all act Stats ∈ statistics do
22: if act Stats.max < lowCut then � Reject dominated slns
23: Append −∞→ scores
24: else � Calculate utility
25: Append act Stats.eV − act Stats.var · risk → scores
26: end if
27: end for
28: bestV alue←−∞
29: best A←−1
30: for i = 0 thru valid Actions.length do � Find the best action
31: if bestV alue < scores[i] then
32: bestV alue← scores[i]
33: best A← i
34: end if
35: end for � Advance the game one step
36: Append action[best A] → histor y
37: turn← turn + 1
38: end while

actions. Expression 4 converts the payoff distribution from
each action into a certainty equivalent. The certainty equiv-
alents are then mapped onto probabilities using an additive
contest function [35]. The defender then determines the opti-
mal defense with respect to the attacker’s distribution. This
follows the same process as the attacker’s process.4 For more
details can be found in [63].

3 Multiresolution and shared effort

Clearly, creating games to determine how to respond to an
attack is time and resource consuming. When modeling mul-

4 An ε-Nash equilibrium occurs when the attacker’s assumed prior
distribution of the defender’s responses are sufficiently close to the
defender’s actual choice of defense actions.

tiple heterogeneous targets, given a limited budget, mul-
tiresolution modeling is a natural fit. Hence, we propose
using the resource allocation of Szidarovszky and Luo [62]
and distributing a portion of those resources to the con-
struction of games in the framework from Valenzuela et al.
[63].5 Combining these two approaches, not only determines
how resources ought to be divided, but provides the first
step in constructing games of optimal fidelity given limited
resources.

Just to be clear, we will informally define a game’s res-
olution (also referred to as its level of detail). When con-
structing a game, one must consider the level of abstrac-
tion for the: available strategies, corresponding rules, initial
states, payoffs, risk attitude, prior probabilities, and effects
of actions.6 In general, we say a game’s resolution increases
as the number of actions, number of rules, and their cor-
responding level of detail increases. Also, the more accu-
rate the estimates of the game’s initial conditions, players’
payoff functions, and risk attitude, the higher the resolution
of the game. Thus, in our context, multiresolution games
simply mean that some games will be more elaborate than
others.

Now suppose an assignment game has already assigned
the resources for each target. If anticipated attacks on these
targets lack similarities, all that is left is to build the games.
However, similarities between targets or attackers allow
effort spent developing one game to be applied to sim-
ilar games. Then one must address the issue of shared
effort.

3.1 Shared effort

It is most correct to push the issue of effort sharing
back to the resource-allocation problem, as nonlinearities
and constraints from the original problem are lost when
solving the issue of optimal resource sharing post hoc.
For example, many objective functions model diminishing
returns. If effort sharing can be reasonably integrated into
the resource-allocation problem, then optimal effort shar-
ing can account for these diminishing returns. However,
combining the effort sharing problem with the resource-
allocation problem may be unreasonable. The work to com-
bine the two may be infeasible or make the analysis more
complex.

When the effort sharing problem cannot be combined
with the resource-allocation problem, the problem can be
solved post hoc, provided some simple assumptions. (1) If

5 Again any pair can used together, but the more similar the frameworks
between the resource-allocation problem and the optimal response prob-
lem, the more consistent the assumptions.
6 Further discussion of how resources ought to be spent on each com-
ponent of the game is left open for future research.
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the resource-allocation problem is sufficiently linear around
its solution and (2) the fraction of resources, ε, dedi-
cated to constructing attacker/defender games is sufficiently
small, then a linear effort sharing problem can provide
a near optimal solution post hoc. As such, the rest of
this section proposes and solves a linear resource sharing
problem.

The problem is to find wi , the work (in terms of
resources with resource sharing) dedicated to building the
attacker/defender game for asset i . Let mi be the desired
quantity of resources assigned (without resource sharing) to
defend target i, A be the matrix describing how effort may be
shared between different projects, and Ai j an element of A
is the percentage of work that transfers from asset j to asset
i . Typically A is symmetric with Aii = 1.0 and all elements

nonnegative.7 Without any constraints, the problem is

A · w = m · ε. (5)

We notice that this equation is similar to the usual linear
input-output models in economic theory.

Depending on the nature of A, no solution or multiple solu-
tions to (5) may exist. These problems are routinely solved
by using either a pseudoinverse or linear programming. The
pseudoinverse of A solves both of these problems by provid-
ing a least squares fit [54]. However, we have four reasons
why we wish to avoid it.

1. The pseudoinverse always penalizes extra effort, even
when the effort is “free” due to resource sharing.8

2. When multiple solutions exist, the pseudoinverse does
not necessarily provide the solution that minimizes the
total work

∑I
i=1 wi .

3. The pseudoinverse may produce solutions with negative
work, wi < 0.

4. The pseudoinverse does not extend well to account for
further constraints.

This leads us to our second approach to resolving the
problem when (5) has no or multiple solutions. The issues
with using the pseudoinverse can be fixed by switching to
quadratic or linear programming. If no exact solution exists,
we want an approximate solution. Quadratic and linear pro-
gramming can minimize either one-sided (too little effort)
or two-sided (too much or too little effort) error, e. Use
quadratic programming to minimize

∑I
i=1 e2

i and linear pro-

gramming to minimize
∑I

i=1 ei . When multiple solutions
exist, we want to minimize

∑I
i=1 wi . Thus, we arrive at a

7 These are only typical conditions and not requirements.
8 When A has no negative entries, the only way to compensate for an
asset getting too much effort would be to give another project insufficient
effort.

two-objective program, where the first objective is to mini-
mize the error and the second objective is to minimize the
cost.

For simplicity, we will use a lexicographic9 multiobjective
linear programming framework:

min
w,e

(
I∑

i=1

ei ,

I∑
i=1

wi

)

s.t. ei ≥
⎛
⎝mi · ε −

I∑
j=1

Ai j · w j

⎞
⎠ ∀i

ei ≥ 0 ∀i
wi ≥ 0 ∀i

(6)

This resolves the four issues with the pseudoinverse. ei repre-
sents the value from a hinge-loss function, only taking a pos-
itive value when a game lacks level of detail.10 This avoids
penalizing too much effort when it is free due to resource
sharing. Because

∑I
i=1 wi is explicitly minimized, a solu-

tion will provide the least overall effort to minimize defi-
ciencies. The linear constraints force the work to be nonneg-
ative, and this linear program can easily accommodate more
constraints.

We consider two additional sets of constraints to help
make the post hoc resource sharing problem more realis-
tic. First, two games may share only a limited set of features.
Suppose that at most w̃i j effort from project j applies to
project i , with the maximum being Ti j .

w̃i j = min
{
w j , Ti j

} ∀i,∀ j : i �= j

Moreover, if we drop the condition that i �= j , this set of con-
straints can also account for a maximum budget for develop-
ing a single project.

The second constraint models a limited set of common
features, which once completed, leave only a unique work
for preparing the game. For example, if games only share the
attacker, resource sharing halts once the attacker’s objectives,
possible strategies, and assumptions are approximated. To
model this, we limit the total amount of shared work a game
may receive, regardless the source. Thereupon, let project i
receive no more than si total shared work. Mathematically,
this condition can be given as

9 By lexicographic we mean the first objective is minimized, then the
second objective is minimized with the additional constraint that the
first objective remains at its optimal value.
10 To minimize the square of the deficiencies, use a quadratic program
to minimize eᵀe.
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swi = min

⎧⎨
⎩

∑
j �=i

Ai j · w̃i j , si

⎫⎬
⎭ ∀i

If si ≥∑
j �=i Ai j Ti j the constraint swi is redundant and can

be eliminated prior to solving.
With constraints, the most general problem becomes

min
w,e,α,sw,w̃

(
I∑

i=1

ei ,

I∑
i=1

wi

)

s.t. αi = Aii · w̃i i + swi ∀i
ei ≥ (mi · ε − αi ) ∀i
ei ≥ 0 ∀i
wi ≥ 0 ∀i
swi ≤

∑
j �=i

Ai j · w̃i j ∀i

swi ≤ si ∀i
swi ≥ 0 ∀i
w̃i j ≤ w j ∀i,∀ j

w̃i j ≤ Ti j ∀i,∀ j

w̃i j ≥ 0 ∀i,∀ j,

(7)

where αi is the sum of the total shared work and individual
work, the following three constraints are from (6), and the
last six constraints define the maximum amount of shared
work. This is a multiobjective linear program which can be
solved efficiently with standard methods [46]. Again, this is
the most general problem, which can usually be simplified
given certain problem specifics.

3.2 Special cases

We will now consider assumptions to simplify the problem
and obtain special cases. First, assume Ai j ≥ 0 ∀i,∀ j , mean-
ing that effort spent developing one attacker/defender game
does not harm the development of another game. Addition-
ally, assume Aii > 0 ∀i ; this means that work on the i th
attacker/defender game makes progress toward completing
that game. Also assume that each project receives a satisfac-
tory budget (w̃i i ≤ Tii ).

These assumptions allow us to complete the first step
of the lexicographic multiobjective linear program symbol-
ically. Namely, we know

∑I
i=1 ei = 0, which allows us to

remove it from the objectives and introduce it as a constraint.
To see this note that

∑I
i=1 ei achieves its minimum at zero

when each ei = 0. To set ei = 0, it is necessary to have a
sufficiently large αi . Since Aii > 0, a sufficiently large w̃i i ,
makes αi sufficiently large. From the assumption of a satis-
factory budget, w̃i i is only bounded from above by wi . Thus,
ei = 0,∀i by setting w̃i i = wi and making wi sufficiently
large. This reduces the optimization problem to the following
single objective linear program:

min
w,α,sw,w̃

⎛
⎝ I∑

i=1

wi

⎞
⎠

s.t. αi = Aii · w̃i i + swi ∀i
0 ≥ (mi · ε − αi ) ∀i
wi ≥ 0 ∀i
swi ≤

∑
j �=i

Ai j · w̃i j ∀i

swi ≤ si ∀i
swi ≥ 0 ∀i
w̃i j ≤ w j ∀i,∀ j
w̃i j ≤ Ti j ∀i,∀ j : i �= j
w̃i j ≥ 0 ∀i,∀ j,

(8)

We will address four relaxations which makes the opti-
mization problem (7) or (8) easier to solve including
attacker/defender games having: perfectly unique, overlap
without constraints, overlap with limits on only the total
shared effort, overlap with constraints on only shared work
between related games. When games are perfectly unique, all
the assets are sufficiently distinct such that effort spent build-
ing an attacker/defender game cannot be reused for another
asset’s game. Thus, A is simply the identity matrix. The effort
vector is simply a scaled version of assigned resources:

w = m · ε. (9)

Overlap without constraints mean the assets share identical
features. As features are improved, it can be used elsewhere
without limits. This means (6) must be solved.

Suppose each game has unique features. These features
cannot come from other games. While effort sharing limita-
tions between any two games may be negligible, effort shar-
ing across all games is limited. When limits are only imposed
on total shared effort the linear program (7) simplifies to

min
w,e,α,sw

(
I∑

i=1

ei ,

I∑
i=1

wi

)

s.t. αi = Aii · wi + swi ∀i
ei ≥ (mi · ε − αi ) ∀i
ei ≥ 0 ∀i
wi ≥ 0 ∀i
swi ≤

∑
j �=i

Ai j · wi ∀i

swi ≤ si ∀i
swi ≥ 0 ∀i.

(10)

Again if the above mentioned three assumptions (Ai j ≥
0, Aii > 0, and w̃i i ≤ Tii ∀i,∀ j) are met, all ei are con-
strained to zero and the problem becomes a single objective
linear program.

Let us consider the scenario where each game shares only a
small overlap with the other games, but the games are not par-
ticularly unique. In other words, it may be possible to entirely
build a game out of components from other games. Hence,
the effort shared between any two games is limited. This also
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implies a limit on the sum of shared efforts and subsumes the
previous case by allowing si = ∑

j �=i Ai j Ti j . When limits
are imposed on only effort sharing between games, the linear
program (7) simplifies to

min
w,e,α,sw,w̃

(
I∑

i=1

ei ,

I∑
i=1

wi

)

s.t. αi =
I∑

j=1

Ai j · w̃i j ∀i

ei ≥ (mi · ε − αi ) ∀i
ei ≥ 0 ∀i
wi ≥ 0 ∀i
w̃i j ≤ w j ∀i,∀ j
w̃i j ≤ Ti j ∀i,∀ j
w̃i j ≥ 0 ∀i,∀ j.

(11)

Similarly, if the three aforementioned assumptions are true,
then all ei are constrained to zero and the problem becomes
a single objective linear program.

4 Illustrative example

We will extend the example given in [62]. Given:

– three assets of equal value v1 = v2 = v3 = 4,
– the attacker engages any target with equal effort n1 =

n2 = n3 = 1,
– the costs to defend each asset are c1 = c2 = 1, c3 = 4,
– the probability of attack for each asset is the same p1 =

p2 = p3 = 1
3 , and

– the risk attitude is r = 1.

Then:

– the stationary points are u∗1 = u∗2 = (
√

4 −√1 )2 and
u∗3 = 0,

– according to (2) and (3), u1 = u2 = 1 and u3 = 0, and
– the corresponding optimal resource distribution is m1 =

m2 = 1 and m3 = 0.

This is the solution to the resource-allocation problem. More
detail can be found in [62].

We will now solve the effort sharing post hoc. Assume:

– A =
⎡
⎣ 1 0.25 0.5

0.25 1 0.25
0.5 0.25 1

⎤
⎦,

– T =
⎡
⎣ 1 0.2 0.4

0.2 1 0.2
0.4 0.2 0

⎤
⎦,

– s = [1, 1, 1], and

– ε = 1.

We can solve the problem by using the special form (11)
as all si are redundant since si >

∑
j �=i Ai j Ti j :

– s1 = 1 > 0.2︸︷︷︸
T12

0.25︸︷︷︸
A12

+ 0.4︸︷︷︸
T13

0.5︸︷︷︸
A13

= 0.25,

– s2 = 1 > 0.2︸︷︷︸
T21

0.25︸︷︷︸
A21

+ 0.2︸︷︷︸
T23

0.25︸︷︷︸
A23

= 0.10, and

– s3 = 1 > 0.4︸︷︷︸
T31

0.5︸︷︷︸
A31

+ 0.2︸︷︷︸
T32

0.25︸︷︷︸
A32

= 0.25.

Furthermore, Tii Aii ≥ mi ∀i and Ai j > 0 ∀i, j imply a
sufficient budget, so all ei = 0∀i . This means we only have
to minimize the work done, as all mi can be met or exceeded:

min
w,α,w̃

(
I∑

i=1

wi

)

αi =
I∑

j=1

Ai j · w̃i j ∀i

0 ≥ (mi · ε − αi ) ∀i
wi ≥ 0 ∀i
w̃i j ≤ w j ∀i,∀ j
w̃i j ≤ Ti j ∀i,∀ j
w̃i j ≥ 0 ∀i,∀ j.

(12)

A standard linear program solver provides the following
answer:

–
3∑

i=1

wi = 1.9

– w = [0.95, 0.95, 0.00],
– α = [1.00, 1.00, 0.00], and

– w̃ =
⎡
⎣0.95 0.20 0.00

0.20 0.95 0.00
0.00 0.00 0.00

⎤
⎦.

Thus, resource sharing reduces the total effort (and hence
resources) by 5 %.

The multiresolution principle now states that deeper
analysis should be conducted according to the resources
assigned. Now one begins the task of constructing the games
to determine the optimal actions to take for defending assets
i1 and i2. Specifically, these extended games require the infor-
mation as specified in Sect. 2.2, including the actions, rules,
initial state, linear mappings from the state space to the pay-
offs, and optional prior probabilities.11 The time spent devel-
oping these optimal response games should be proportional

11 The player risk attitude should be inherited from the resource-
allocation game.
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Fig. 1 The resource distribution is used to determine which threats are
“nearby” to determine the desired level of detailed needed to construct
or analyze a game. Resource i3, is so “far away” that no effort should
be spent on its game

to the resources assigned above. i3 being deemed too “far
away” to build its optimal response game is an example of
how the multiresolution principle saves work.

The whole process is illustrated in Fig. 1. First the resource
assignment game is analyzed to determine the resource dis-
tribution before resource sharing, m. Solving the post hoc
effort sharing problem produces w, the resource distribution
after work is reused. The gray triangle in Fig. 1 represents the
shared work which need only be constructed once and inte-
grated into the games for i1 and i2. Then the optimal response
games are constructed according to the budget.

5 Conclusions

Game theory has been instrumental for national security and
dealing with security breaches. On approach for handling
security is the use of resource-allocation games. Given mul-
tiple assets, how much effort should go into protecting each
asset. Another approach has been to build attacker/defender
games to optimize responses to attacks.

Nevertheless, building optimal response games is time-
consuming. This problem is exacerbated when protecting
multiple assets. Since, protecting some assets more than
others is worthwhile, some attacker/defender games should
be built to higher levels of detail. However, we ameliorate
the expense of building multiple attacker/defender games
by constructing multiresolution games. Our multiresolution
approach combines both the resource-allocation game and
the attacker/defender game. It allows lower priority assets to

use games constructed at a lower level of detail (i.e., with
fewer and more generic actions). The level of detail is deter-
mined by a resource-allocation game.

We also reviewed a large number of resource-allocation
games and attacker/defender games. The resource-allocation
game and attacker/defender games ought to be selected such
that they share similar assumptions and similar models. For
instance, the resource-allocation and optimal response games
we used share the same stochastic framework and made use
of a second-order approximation of the utility function.

We introduce a bi-objective linear effort sharing model.
This model describes the fraction of effort shared, the limi-
tations of effort sharing between any two attacker/defender
games, and the limit that one attacker/defender game may
benefit in general. With a few reasonable assumptions, the
model can be simplified to a single objective linear program.
The model suggests that when no effort sharing is possible,
the efforts ought to be proportional to the resources allo-
cated to the individual targets. For optimality, effort sharing
ought to be incorporated into the resource-allocation problem
whenever feasible. Nevertheless, when this is impossible or
unnecessary, an approximate solution can be solved for post
hoc.

In solving the multiobjective optimization problems, we
selected the lexicographic method. However, a large variety
of solution concepts and methods are drawn from the liter-
ature. It is an interesting research problem to compare the
application of the different methods and the obtained solu-
tions.

Further research could be conducted to determine the
effects of mis-estimating games. Game theory is missing
a fundamental tool that is present in other fields. Informa-
tion theory has the Kullback-Leibler divergence, statistics
has confidence intervals, and chaos theory has the Lyapunov
exponent. It would be useful, if even possible, to extend some
sort of sensitivity analysis or error measure to the creation
of games. Relevant questions include “what are the con-
sequences of omitting/adding strategies”, “how accurately
should payoff functions be modeled”, “how abstract/detailed
should strategies be”, and “what is the ideal effort to spend
on refining the accuracy of strategies?” If possible, such an
extension could be used to determine how to optimally dis-
tribute resources when constructing a game.

Multiresolution analysis should be further studied as it
may improve the game’s fidelity. If uncertainties accumu-
late in the analysis of repeated games, using more detailed
actions near the root of the game tree may provide a ben-
efit. Switching to the less detailed actions further from the
root node would compensate for the initial increase in the
game’s fan out. Alternatively, multiresolution analysis may
provide techniques to control a game’s fan-out to best suit a
machine’s resources.
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